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Abstract

The results of this thesis investigate the claim that the e�ectiveness of the
BFGS variable metric (quasi-Newton) method with an inexact weak Wolfe line
search for minimizing nonsmooth, nonconvex functions is limited by machine
precision, rather than defects in the algorithm itself. To investigate this ques-
tion, the algorithm was implemented using double-double precision, i.e. twice
as precise as �oating-point double. The double and double-double precision
implementations were tested on Nesterov's Chebyshev-Rosenbrock functions,
which are known to be di�cult to solve. Results for these and other test func-
tions for both the normal and high-precision BFGS codes are presented.
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1 Introduction

The applicability of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [NW06]
is in solving the unconstrained optimization problem

min
x∈Rn

f(x).

BFGS is an iterative method that generates a sequence of points to �nd a local
minimizer x∗, which may not be a global minimizer due to nonconvexity of f . In
this thesis, the function f is only assumed to be continuous, and not continuously
di�erentiable. For an introduction to algorithms for solving nonconvex, nonsmooth
optimization problems, see [Kiw85].

In work by Lewis and Overton [LO10] and Skajaa [Ska10], BFGS and the limited
memory variation LBFGS were shown to work well in solving nonsmooth test prob-
lems, with the primary limitation apparently being machine precision. By imple-
menting a high-precision version of the BFGS solver, this thesis investigates the
claim that the algorithms are unable to solve di�cult problems because of rounding
errors, rather than because of a breakdown in the algorithm itself.

Section 2 will give a brief discussion of the BFGS method. In section 3, a description
of double-double high-precision arithmetic is provided, as developed by David Bailey
in [Bai10], and distributed by Bailey and Xiaoye (Sherry) Li. Section 4 details
the implementation process of incorporating double-double into the BFGS code,
using the C code written by Skajaa [Ska10], explaining the changes made and their
implications for the results. Section 5 describes the test functions that were used
to compare the double and double-double versions, including Nesterov's Chebyshev-
Rosenbrock functions. Finally, section 6 gives the results of the tests, comparing the
correctness and accuracy of the outputs, as well as the time taken.

A website1 is being developed with the BFGS code used in this thesis, which includes
both the double precision version written by Anders Skajaa and the new double-
double version of the code. The double-double version of BFGS uses C++, in order
to allow the use of classes with function and operator overloading. In addition, the
test problems used to verify the algorithms and the Nesterov functions are available
in both double and double-double precision.

2 BFGS

BFGS is the most popular quasi-Newton update formula. Speci�cally, we will focus
on the class of line-search methods that use the search direction de�ned by

d(j) = −Cj∇f(x(j))

1http://cims.nyu.edu/~aak357/
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where Cj , an approximation to the inverse Hessian ∇2f(xj), is updated by a quasi-
Newton update formula with certain properties. The BFGS update formula is

Cj+1 = (I − pjs(j)(y(j))T )Cj(I − pjy(j)(s(j))T ) + pjs
(j)(s(j))T

where
pj = ((y(j))T s(j))−1

and
s(j) = x(j+1) − x(j)

y(j) = ∇f(x(j+1))−∇f(x(j)).

When f is continuously di�erentiable, the BFGS method exhibits superlinear conver-
gence after enough iterations, under standard regularity assumptions. See Nocedal
and Wright [NW06] for more details.

The Limited-Memory BFGS method, or LBFGS, is less computationally intensive,
requiring O(mn) �oating point operations per update rather than the O(n2) �oat-
ing point operations required for BFGS, where for the �rst m iterations, LBFGS
and BFGS generate the same search directions. The best choice of m is problem-
dependent, and the method may require more iterations to converge than BFGS.
Tests using LBFGS were not completed in this thesis; however similar experimenta-
tion is planned for the future.

In dealing with the nonsmooth case, BFGS typically succeeds in �nding a local
minimizer, despite being developed for smooth functions. However, the right line
search must be used, namely, a weak Wolfe line search [LO10, Ska10]. The rate of
convergence in the nonsmooth case is typically linear, not superlinear.

In our tests, the methods begin with a random starting point, unless otherwise
speci�ed. A set of points are generated using the rand and overloaded rand function
in C/C++ and normalizing the output between [−1, 1]. Thus, the starting point
x(0) ∈ Rn is drawn randomly from the uniform distribution on [−1, 1]n.

3 High Precision Arithmetic

High precision computing has existed for many years, and as such there are several
implementations and variations in di�erent computing languages. In Matlab, for
instance, the Symbolic Math Toolbox contains a function called Variable Precision
Arithmetic, or vpa, which allows users to specify the number of digits of accuracy
they desire2. Matlab automatically ensures that the results are precise to at least
the number speci�ed. While this allows high precision computing, it is slow due to
the method by which the extra precision computations are performed, as well as the
general slower nature of Matlab in executing code.

2http://www.mathworks.com/help/toolbox/symbolic/vpa.html
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In other programming languages, many high precision libraries have been created.
They can be split into two distinct groups, based on how the precision is represented.
One group uses a multiple-digit format, which stores a sequence of digits or bits with
a single exponent. The group we will focus on is a multiple-component format, which
stores values as an unevaluated sum of normal precision numbers. The advantage of
this second representation is that calculations are done much faster. Computations
are done on a component level, and then combined at the end to gain the extra preci-
sion. Thus, calculations are on the order of magnitude of normal machine precision.
This idea was apparently originally suggested by Priest [Pri91]. Two examples of
this multiple-component format are double-double and quad-double precison �oating
point arithmetic, implemented by Hida, Li, and Bailey [LHB01]. As �xed precision
libraries, both run faster than other arbitrary precision libraries. We will be focusing
on the double-double library.

3.1 Double-double

A double-double number is the sum of two IEEE double format numbers [Ove01].
The double-double number (a0, a1) represents the exact sum a = a0 + a1. The �rst
number, a0, is the most signi�cant component, with a1 providing the extra precision.
Since a 64 bit IEEE double format number uses 1 bit for the sign, 11 bits for the
exponent and 52 bits for the signi�cand, and since there is an additional "hidden bit"
for normalized numbers as explained in [Ove01], it e�ectively has 53 bits of precision,
or approximately 16 decimal digits. An example of a double-double number would
be π+e∗10−16, namely 3.14159265358979351029082622918449e+00, which has 106
bits of precision or approximately 32 digits. In fact, because of the binary nature of
the representation, the number 1 + 2−1000 can be stored exactly as a double-double
number, since both the numbers 1 and 2−1000 are exact �oating point double format
numbers. Although one might say that such a number has more than 106 bits of
precision, this is somewhat arti�cial as most of the internal zero bits are not stored,
and if arithmetic were done using such numbers, the least signi�cant bits would be
lost rapidly. Thus, double-double numbers e�ectively have 106 bits of precision, or
about 32 digits, somewhat less than if they were stored using a 128-bit �oating point
word, but the advantage is that arithmetic on double-doubles can be done rapidly
using standard double-format hardware.

This representation was implemented in C++ by creating a new class, overload-
ing the arithmetic and comparative operators and standard mathematical functions
[LHB01]. In addition, several constants and random number generators were im-
plemented. The source code and documentation is all available open source at
http://crd.lbl.gov/~dhbailey/mpdist/. The necessary libraries and header �les to
use double-double are already packaged with BFGS in the high-precision version of
the code on the companion website to this thesis.

The algorithms to execute the operations between double-doubles is complex, and for
a complete explanation, consult [LDB+02]. The double-double addition algorithm
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Figure 3.1: Algorithm for double-double addition.

shown in Figure 3.1 requires 20 �oating-point operations, and therefore runs about
an order of magnitude slower than double arithmetic.

4 Implementation

We began with a Matlab code for BFGS developed M. Overton as a part of the
HANSO (Hybrid Algorithm for Nonsmooth Optimization) package3. The process of
incorporating the double-double class into the source code for BFGS went through
several iterations. These alterations to the originalMatlab code are detailed below,
as well as their impact on the algorithm's behavior and results.

4.1 Matlab to C

The �rst translation to the originalMatlab code to C was done by A. Skajaa. This
initial translation of the HANSO package into C resulted in a much faster running
version, although it was still partly dependent on Matlab to run. While the BFGS
code and its required functions were translated to C, the HANSO code still ran
through Matlab, using MEX as an interface to call the C code. Furthermore, the
test functions were also called throughMatlab. In order to properly implement the

3http://www.cs.nyu.edu/faculty/overton/software/hanso/
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double-double C++ library, a stand-alone version BFGS, and eventually HANSO,
would need to be created.

Taking just the BFGS source code, the program was stripped down to only its
essential components. This included implementing a function pointer to the various
test functions, now translated into C. To simplify the program and make it more
portable, it was necessary to download and dynamically link the necessary libraries
and header �les from CLAPACK4 and CBLAS5 that are required to do the matrix
and vector operations. An executable was also created in order to verify the correct
translation of the test functions and alterations made to the source code, as well
perform the tests for this thesis. A similar translation can be, but has not been
yet, implemented in the Gradient Sampling code, which is another component of
HANSO.

In addition, the test functions were translated from Matlab to C, with the T func-
tions translated by A. Skajaa, and the F functions and Nesterov functions translated
by the author, who also took responsibility for the debugging of all the code.

4.2 Elimination of CBLAS and CLAPACK

Although we now had a version of BFGS in C, the double-double library could not
yet be added. A majority of the major calculations within BFGS were performed, for
e�ciency and speed, using the optimized algebraic operations provided by CBLAS
and CLAPACK. While useful in both its ease of implementation and its recognition
as a standard in numerical computing, it took away the control over the calculations,
which was necessary in adding double-double. Although Li has been developing
XBLAS, an Extended and Mixed precision BLAS standard [LDB+02], it does not
yet include all the necessary operations for BFGS. Thus, in order to fully implement
double-double precision in all the calculations, the function calls to CBLAS and
CLAPACK were replaced with hard-coded operations that executed the necessary
calculations. While resulting in slower runtimes, as these codes were not at all
optimized, they paved the way for the use of double-double precision. In addition,
these changes simpli�ed the program and made it more portable by eliminating the
need for the CBLAS and CLAPACK libraries and header �les.

In addition, the QP stopping criterion in BFGS [LO10] was removed. The main
purpose of the criterion was to stop the code if the solution was only minimally
improved with further iterations, thus reducing the running time of the program.
However, with the anticipation of using higher precision, allowing slight improve-
ments on each iteration would be required in order for the extra precision to a�ect
the output. Therefore, the QP stopping criterion was commented out of the code in
order to test the increased accuracy that double-double provides. It is recommended
it remains excluded when running any functions using double-double precision.

4http://www.netlib.org/clapack/
5http://www.netlib.org/blas/
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4.3 C to C++ and overload functions

While C and C++ code are for the most part completely compatible with one an-
other, they di�er most importantly in the functionality of classes in C++. Li's
double-double library is primarily written in C++ using a special class called dd_real
to represent double-double numbers, but also contains low-level C implementations
of the operations, without the use of classes. Rather than creating a new class, the
C version stores each number in an array of size two, which represents the double-
double number, as in Figure 3.1 on page 9. Implementing this complicated method
of arrays and low-order functions, while possible, made the code unnecessarily long
and convoluted. A simpler approach was to �rst convert the BFGS C source code
to C++. A few changes were made in order for this to be possible, namely substi-
tuting the use of the new operator in lieu of malloc, as well as the changing of a
few header �les and print statements. In general, the source code was not changed
in any signi�cant way during the translation.

Once compiled in C++, the double-double libraries6 were linked and the necessary
header �les added. Because of the use of classes and overloaded functions, chang-
ing the precision of the necessary variables was as simple as declaring them of type
dd_real instead of double. Once a few initial tests were run on simple functions,
and the program was veri�ed as operating correctly, more comprehensive tests were
made on less trivial functions. All tests were performed using the same random start-
ing points for the double and double-double versions in order to create meaningful
comparisons.

5 Test Functions

In order to compare the performance of the double (D) precision code to the double-
double (DD) precision code, the algorithms were implemented on several test func-
tions.

5.1 F Functions

The �rst set of test functions are nine problems from [HMM04], denoted F1-F9, and
are all nonsmooth at the minimizer. The �rst �ve F1-F5 are convex and the other
four F6-F9 are nonconvex. They are de�ned as follows.

F1: Generalization of MAXQ

f(x) = max
1≤i≤n

x2i

6Actually, the quad-double libraries were used, which includes the double-double class.
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F2: Generalization of MAXHILB

f(x) = max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

xj
i+ j − 1

∣∣∣∣∣∣
F3: Chained LQ

f(x) =

n−1∑
i=1

max
{
−xi − xi+1,−xi − xi+1 + (x2i + x2i+1 − 1)

}
F4: Chained CB3 I

f(x) =
n−1∑
i=1

max
{
x4i + x2i+1, (2− xi)2 + (2− xi+1)

2, 2e−xi+xi+1
}

F5: Chained CB3 II

f(x) = max

{
n−1∑
i=1

(x4i + x2i+1),
n−1∑
i=1

((2− xi)2 + (2− xi+1)
2),

n−1∑
i=1

(2e−xi+xi+1)

}

F6: Number of Active Faces

f(x) = max
1≤i≤n

g
− n∑

j=1

xj

 , g(xi)

 , where g(y) = ln(|y|+ 1)

F7: Nonsmooth Generalization of Brown Function 2

f(x) =
n−1∑
i=1

(
|xi|x

2
i+1+1 + |xi+1|x

2
i+1
)

F8: Chained Mi�in 2

f(x) =

n−1∑
i=1

(
−xi + 2

(
x2i + x2i+1 − 1

)
+

7

4

∣∣x2i + x2i+1 − 1
∣∣)

F9: Chained Crescent I
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f(x) = max

{
n−1∑
i=1

(
x2i + (xi+1 − 1)2 + xi+1 − 1

)
,

n−1∑
i=1

(
−x2i − (xi+1 − 1)2 + xi+1 + 1

)}

Through experiments, it has been determined that, apparently, none of these prob-
lems have multiple local minima for n ≤ 200 [Ska10]. All functions were tested with
n = 10, 50, 200 variables using random starting points for 10 runs on each code.

5.2 T Functions

The second set of test problems were �ve functions taken from [LTS+02], denoted
T1-T5. All are again nonsmooth and can be de�ned with any number of variables.
The �rst two, T1 and T2, are convex. The problems are de�ned as follows.

T1: Problem 2 from TEST29

f(x) = max
1≤i≤n

|xi|

T2: Problem 5 from TEST29

f(x) =
n∑

i=1

∣∣∣∣∣∣
n∑

j=1

xj
i+ j − 1

∣∣∣∣∣∣
T3: Problem 6 from TEST29

f(x) = max
1≤i≤n

|(3− 2xi)xi + 1− xi−1 − xi+1| , with x0 = xn+1 = 0

T4: Problem 11 from TEST29

f(x) =

2(n−1)∑
k=1

|fk(x)|

where

fk(x) = xi + xi+1 ((1 + xi+1)xi+1 − 14)− 29 if mod (k, 2) = 0

fk(x) = xi + xi+1 ((5− xi+1)xi+1 − 2)− 13 if mod (k, 2) = 1

i = b(k + 1) /2c

T5: Problem 22 from TEST29
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f(x) = max
1≤i≤n

∣∣∣∣∣2xi +
1

2 (n+ 1)2

(
xi +

i

n+ 1
+ 1

)3

− xi−1 − xi+1

∣∣∣∣∣
All functions were tested for n = 10, 50, 200 variables using random starting points
for 10 runs on each code.

5.3 Nesterov's Chebyshev-Rosenbrock Functions

The three Nesterov Chebyshev-Rosenbrock (NCR) functions are all very di�cult to
solve. For reasons that are only partially understood, the functions are exponentially
di�cult in n. This makes these the most challenging test functions for our double-
double BFGS solver.

The smooth function, which we will denote as NCR-S, is:

f̃(x) =
1

4
(x1 − 1)2 +

n−1∑
i=1

(
xi+1 − 2x2i + 1

)2
.

The �rst nonsmooth variation, which we will denote as NCR-NS1, is:

f̂(x) =
1

4
(x1 − 1)2 +

n−1∑
i=1

∣∣xi+1 − 2x2i + 1
∣∣ .

The second nonsmooth variation, which we will denote as NCR-NS2, is:

f(x) =
1

4
|x1 − 1|+

n−1∑
i=1

|xi+1 − 2 |xi|+ 1| .

In all three cases, the only local minimizer is x̄ = [1, 1, 1, ..., 1]T .

For the smooth variant, the starting point used is x̂ = [−1, 1, 1, ..., 1]T . This point
is contained in the manifold

M = {x : xi+1 − 2x2i + 1 = 0, i = 1, ..., n− 1}

which also contains the minimizer x̄. Because f̃ is the sum of a quadratic term and
a nonnegative sum whose zero set is the manifold M , minimizing f̃ is equivalent to
minimizing its �rst quadratic term onM , and it is easy to see that the only stationary
point of f̃ is the global minimizer x̄. Due to the manifold's highly oscillatory nature,
BFGS requires many iterations to converge to the minimizer.

The �rst nonsmooth variation is nondi�erentiable at points inM , including the point
x̂, but as explained in [GO10], it is �partly smooth� with respect to the manifold M
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in the sense of [Lew03]. See Figure 5.1 (left) for a contour plot for n = 2, where the
line segments show the iterates of BFGS from 7 random starting points. Minimizing
this function is similarly equivalent to minimizing its �rst quadratic term onM , and
again it has only one stationary point, namely the minimizer x̄. The starting point
x is chosen randomly from the uniform distribution between −1 and 1.

Nesterov−Chebyshev−Rosenbrock, first variant
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Nesterov−Chebyshev−Rosenbrock, second variant
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Figure 5.1: Contour plot for NCR-NS1 (left) and NCR-NS2 (right), n=2. The line

segments show the iterates of BFGS initialized from 7 random starting points.

The second variation is not only nonsmooth, but also non-regular in the sense of
Clarke (see [GO10]). Minimizing f is equivalent to minimizing its �rst term on the
set S, where

S = {x : xi+1 − 2 |xi|+ 1 = 0, i = 1, ..., n− 1}.

The set S is again highly oscillatory, and contains �corners�, resulting in its non-
regularity. See Figure 5.1 (right) for a contour plot for n = 2, again showing the
iterates of BFGS initialized from 7 random starting points. In fact, for a given n,
the NCR-NS2 function has 2n−1 Clarke stationary points, of which all except the
global minimizer x̄ are �corners� of S [GO10]. The starting point x is again chosen
randomly from the uniform distribution between −1 and 1.

In all cases, the BFGS inverse Hessian approximation matrix was initialized as the
identity matrix. NCR-S was tested with n = 2, ..., 10 variables, NCR-NS1 was tested
with n = 2, ..., 7 variables, and NCR-NS2 was tested with n = 2, ..., 8 variables.
BFGS was intialized at x̂ for NCR-S and at randomly generated starting points for
the 1000 runs of NCR-NS1 and NCR-NS2.

6 Results and Comparison of Performance

To fully test the capabilities of the BFGS algorithm with higher precision, we ter-
minate the program only when it breaks down because of rounding errors due to
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machine precision. That is, all parameters are set such that the termination only
occurs when a search direction is not a descent direction (∇f(x(j))T p(j) < 0) or a
reduction is not obtained in the line search (the limit on the number of bisection or
expansion steps, 100, is exceeded). For F1-F4 and F8, n = 200, the limit on the
number of iterations was set to 105, and for NCR-NS1, n = 6, 7, the limit on the
number of iterations was set to 10n−1, so that the tests would run in a reasonable
amount of time. In all other tests, the iteration limit was set large enough that it
did not cause termination.

All tests were done using a dual-core 64-bit Intel Pentium Processor SU4100, 1.3
GHz, 2 MB cache, and 3 GB DDR3 memory, running Ubuntu 10.04.

6.1 F Functions Results

The minimum and maximum �nal values found by the D and DD codes over the
10 randomly generated starting points on the F functions are shown in Tables 1, 2,
and 3 for n = 10, 50, and 200, respectively. Also shown is the optimal value f∗ to
double-double precision, when it is known.

D DD

Problem # f∗ min max min max

F1 0 2.0066500862662096e-92 1.7598318660798305e-75 1.89733574848909154732525772036497e-231 2.29653194203334775377210255634163e-187

F2 0 7.4592726093114514e-10 6.0591901898665590e-08 9.36011982957647853299213885014954e-16 2.41962019380626166470085465814475e-14

F3 -1.2727922061357855439215198517887e+01 -1.2727922061357845e+01 -1.2727922061357859e+01 -1.27279220613578554392151985178865e+01 -1.27279220613578554392151985178873e+01

F4 18 1.8000000000000007e+01 1.8000000000000039e+01 1.80000000000000000000000000000005e+01 1.80000000000000000000000000000021e+01

F5 18 1.8000000000000000e+01 1.8000000000000007e+01 1.80000000000000000000000000000000e+01 1.80000000000000000000000000000001e+01

F6 0 1.3322676295501871e-15 1.1324274851176532e-14 1.59421996846431829222547129492694e-32 1.36747052287869415053000131594318e-31

F7 0 2.0264389251848834e-15 9.0434354618988751e-15 6.67782176277300765732658343900183e-31 7.03185560395220389762047070724862e-31

F8 - -6.5146142106623506e+00 -6.5146142106776281e+00 -6.51461421067764171433379112908743e+00 -6.51461421067764171433379113013307e+00

F9 0 -1.1102230246251565e-16 4.4408920985006262e-16 -3.77286666839921398557645678986852e-33 1.14446882312442438039841289255342e-31

Table 1: Minimum and maximum �nal values found by the D and DD codes for the

F functions, n = 10, and the optimal value.

D DD

Problem # f∗ min max min max

F1 0 4.1109297512990274e-78 5.7156919175156493e-72 4.16193040390410660681449811504549e-206 1.44435573419311235441498997967932e-180

F2 0 9.5770040422354930e-10 2.3555088200918547e-07 7.32161863907410688795970137594072e-15 2.55952906295883934527397557339396e-13

F3 -6.9296464556281657391282747486275+01 -6.9296464556281350e+01 -6.9296464556281592e+01 -6.92964645562816573912827474862540e+01 -6.92964645562816573912827474862767e+01

F4 98 9.8000000000000099e+01 9.8000000000000512e+01 9.80000000000000000000000000000114e+01 9.80000000000000000000000000000183e+01

F5 98 9.7999999999999986e+01 9.8000000000000540e+01 9.79999999999999999999999999999996e+01 9.80000000000000000000000000000154e+01

F6 0 1.1546319456101562e-14 1.9628743075370842e-13 2.36712607886581685214168213331985e-31 1.53872561001547266917713004254936e-30

F7 0 2.4364638592174621e-14 5.4037965138567655e-14 2.70892088728952935867918856419888e-30 7.71090743677752458997131253777296e-30

F8 - -3.4795181409482488e+01 -3.4795181409546011e+01 -3.47951814095476429837035775994992e+01 -3.47951814095476429837035776080450e+01

F9 0 0 2.8865798640254070e-15 3.85185988877447170611195588516987e-33 1.19311360054789261096817833543137e-31

Table 2: Minimum and maximum �nal values found by the D and DD codes for the

F functions, n = 50, and the optimal value.

D DD

Problem # f∗ min max min max

F1 0 5.2745683191926849e-43 3.8387659508038081e-40 3.77374919674166623862341319931020e-43 3.67265473914890822301240313034569e-40

F2 0 1.4803212635729202e-09 9.7432916068129066e-08 2.18156680367399721695769444811633e-14 4.08757881288719634403693013811766e-13

F3 -2.8142849891224591471153605611773e+02 -2.8142849891224233e+02 -2.8142849891224591e+02 -2.81428498912245914711536056117155e+02 -2.81428498912245914711536056117599e+02

F4 398 3.9800000000000233e+02 3.9800000000000495e+02 3.98000000000000000000000000000093e+02 3.98000000000000000000000000000123e+02

F5 398 3.9800000000000006e+02 3.9800000000000398e+02 3.98000000000000000000000000000001e+02 3.98000000000000000000000000000244e+02

F6 0 6.6391336872582152e-14 1.5241141682042535e-12 8.54982823487414634140425891229906e-31 6.56634217726881695146388049678088e-30

F7 0 2.4244868800304813e-13 3.3815857155322334e-13 2.84629823120409264591809189749495e-29 2.19701603466485119167094768170693e+01

F8 - -1.4086070716519524e+02 -1.4086070717278730e+02 -1.40860707172869442040965687302156e+02 -1.40860707172869442040965733244829e+02

F9 0 0 6.4392935428259079e-15 -6.62700456801495436812480410181332e-32 1.54575137336519549566272789671866e-30

Table 3: Minimum and maximum �nal values found by the D and DD codes for the

F functions, n = 200, and the optimal value.
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For most of the F functions, the D code of BFGS was able to �nd the minimizer
fairly well when n = 10, as demonstrated in Skajaa [Ska10]. The DD code did
converge to a lower �nal function value, re�ecting the di�erent machine precision,
about 10−16 for D and 10−32 for DD. The exception was for F2, for which the D
code only reduced the function value to 10−10, while the DD code was able to reduce
the function value to 10−16. The easiest problem for either code to solve was F1, as
seen by the �nal function values being as low as 10−92 and 10−231 for the D and DD
code, respectively.

When n = 50, both codes exhibited the same behavior as n = 10. For n = 200, the
problems were more di�cult for either code to solve. On F1, both codes reduced the
�nal function value to around 10−43, signi�cantly higher than with fewer variables.
Most interesting was the DD code's �nal function values on F7, ranging from 10−29

to 22, while the D code always converged around 10−13. The reason why the DD
code sometimes fails in solving F7 for n = 200 needs further investigation.

6.2 T Functions Results

The minimum and maximum �nal values found by the D and DD codes over the 10
randomly generated starting points on the T functions are shown in Tables 4 and 5
on this page, and 6 on the following page for n = 10, 50, and 200, respectively. Also
shown is the optimal value f∗ to double-double precision, when it is known.

D DD

Problem # f∗ min max min max

T1 0 1.4600658163256693e-16 8.2340403956125942e-16 1.73192903530815863168723237441175e-32 7.97966255429890611008730620634931e-32

T2 0 6.7428593524682112e-10 1.2019196891617859e-07 2.46273384860065925125674845594735e-15 2.08959152325082623512778323565036e-13

T3 0 3.2196467714129540e-15 4.4617856727674143e-01 2.83496887813801117569839953148502e-31 4.46176671004398955088565094513944e-01

T4 - 1.0605911852062579e+02 1.0605911852062738e+02 1.06059118520625632823803211457878e+02 1.06059118520625632823803211457957e+02

T5 0 7.2164496600635175e-16 7.5495165674510645e-15 6.16297582203915472977912941627187e-32 7.90016463187644146923562152048337e-31

Table 4: Minimum and maximum �nal values found by the D and DD codes for the

T functions, n = 10, and the optimal value.

D DD

Problem # f∗ min max min max

T1 0 1.4601138701364973e-15 5.3033915333941507e-15 1.04077052403730597882313188466135e-31 4.78213141783335944624492452218446e-31

T2 0 8.1392709499333860e-09 3.2645285200950946e-07 7.38422049500142581209762558409305e-15 1.32699936552973002946751645600318e-12

T3 0 5.2624571367232420e-14 5.0598160442741924e-01 1.71947025434892416960837710713982e-30 5.05973651364335990653577129153149e-01

T4 - 5.6317033620503435e+02 5.8799776162067542e+02 5.63170336204998739130455870927457e+02 5.87997761620669625756282362037082e+02

T5 0 5.9396931817445875e-15 2.5079938126282286e-13 5.40801128383935827538118606277848e-31 1.10436674871052878285935887183704e-29

Table 5: Minimum and maximum �nal values found by the D and DD codes for the

T functions, n = 50, and the optimal value.
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D DD

Problem # f∗ min max min max

T1 0 1.0620278236118440e-14 2.1619668381963696e-14 8.74714516122606297848555744313087e-31 1.96100321869372239665757142029997e-30

T2 0 1.3242105659618322e-08 3.4949545577428036e-07 7.36021573643631110286635269854721e-14 1.21516202980395497525178368262557e-12

T3 0 1.4343876061581251e-01 4.6214915356057096e-01 7.75403659008250178613729750667026e-02 4.62072399121541681882224700663063e-01

T4 - 2.2378539839989403e+03 2.3952676732459868e+03 2.23785398399887367684157263585940e+03 2.39526767324585797651230511115300e+03

T5 0 1.2307932450994485e-12 1.0875109146546436e-10 4.70805130485126127694652143932541e-29 7.21352438438372659396069204048122e-28

Table 6: Minimum and maximum �nal values found by the D and DD codes for the

T functions, n = 200, and the optimal value.

For T1 and T5, the D and DD codes worked as we expected, reducing the �nal
function values close to machine precision, around 10−16 for D and 10−32 for DD.
On T2, the codes reduced the �nal function value to slightly larger values, but still
close to the minimal value. However, the results for T3 and T4 were quite di�erent,
with the �nal function values varying quite widely over the 10 runs. For this reason,
we decided to run both codes on T3 and T4 for n = 10 and 50 with 1000 random
starting points7, graphing the results with the DD values sorted and plotted with the
corresponding D value for the same starting point, as shown in Figures 6.1 and 6.2
on the following page.

It seems that for both T3 and T4, there may be multiple local minima. For T3,
we know the global minimum value is 0, and while the method sometimes �nds this
value in 10 runs for n = 10 and n = 50, for n = 200, 10 runs are not enough. As
can be seen in Figure 6.1, 1000 runs of T3 result in several plateaus, suggesting the
presence of multiple local minima. For T4, we do not know the global minimum
value, which changes with the number of variables. When n = 10, all 10 runs on
T4 �nd the same value, and for n = 50 and 200, 10 runs are enough to sometimes
�nd what may be the minimum value. However, over 1000 runs, it can be seen in
Figure 6.2 on the following page that there are several plateaus, suggesting multiple
local minima. Further investigation is required to prove there are in fact other local
minima.
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Figure 6.1: T3 performance plots for n = 10 (left) and n = 50 (right), with the �nal

DD function values sorted and plotted with the corresponding �nal D function value

for 1000 random starting points. It appears that there are multiple local minima.

7Tests on T3 and T4 for n = 200 were not completed because of the extraordinarily long amount
of time one run of the DD code takes to run before breakdown due to machine precision.
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Figure 6.2: T4 performance plots for n = 10 (left) and n = 50 (right), with the �nal

DD function values sorted and plotted with the corresponding �nal D function value

for 1000 random starting points. It appears that there are multiple local minima.

6.3 Nesterov Functions Results

The three Nesterov functions are all very di�erent from one another, and are thus
a�ected di�erently by the implementation of higher precision.

The smooth function NCR-S is di�erentiable and we �nd, for n = 10, that using
the D code we can reduce the gradient norm to about 10−15, while using the DD
code, with only a few more iterations, we can reduce it to about 10−161 before
breakdown occurs. These gradient norm values correspond to �nal function values
of approximately 10−31 and 10−323 for D and DD, respectively. As shown for n = 10
in Table 7 on the next page, the D and DD codes generate function values that
agree to double precision accuracy for many iterations, but eventually they start
to diverge. By iteration 1988, they agree to only three digits, and by iteration
55025, they have no signi�cant digits in common, although the order of magnitude
is the same for both. The D code terminates at iteration 55036, while the DD
code continues running until iteration 55102. The fact that the DD code makes
so much improvement to the gradient norm with a relatively small increase in the
number of iterations is evidence of superlinear convergence. The fourth and eighth

columns show the gradient norm ratios ‖(∇f̃(x(j))‖
‖(∇f̃(x(j−1))‖ , and we see that indeed this

ratio converges to zero, as required for superlinear convergence.

Figure 6.3 on page 21 and Figure 6.4 on page 22 shows the �nal function values
found by both the D and DD codes for NCR-NS1 and NCR-NS2, respectively. The
�nal function values found by the DD code have been sorted, and plotted with the
corresponding function value the D code �nds for the same starting point.

For the �rst nonsmooth variant NCR-NS1, the DD code overall performs better at
converging to the global minimizer than the D code. For n = 2, the D and DD codes
consistently reduce the �nal function value to about 10−15 and 10−30, respectively,
for all 1000 runs. For n = 3, the problem is much more di�cult and BFGS already
has trouble �tracking� the manifold M . As a result, for all starting points the D
code is able to reduce the function value only to values in the range 10−3 to 10−8,
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Double Double-double

iteration # f value gradient norm gradient norm ratio iteration # f value gradient norm gradient norm ratio

0 1.0000000000000000e+00 1.00e+00 0 1.00000000000000000000000000000000e+00 1.00e+00

1 9.9713134765625000e-01 9.76e-01 9.76e-01 1 9.97131347656250000000000000000000e-01 9.76e-01 9.76e-01

2 9.9558682074316829e-01 8.03e-01 8.23e-01 2 9.95586820743168268275978325513396e-01 8.03e-01 8.23e-01

1988 9.7224397108592209e-01 2.31e-02 1.09e+00 1988 9.72437838251788204096169116613658e-01 1.08e-02 2.15e+00

1989 9.7217838105665322e-01 2.25e-02 9.74e-01 1989 9.72430883872208813397005684647731e-01 6.38e-03 5.91e-01

1990 9.7215264554336966e-01 5.84e-02 2.60e+00 1990 9.72404840430861654428482797546735e-01 1.37e-02 2.15e+00

1991 9.7201814908113804e-01 7.78e-02 1.33e+00 1991 9.72387198935592781600786873296769e-01 1.04e-02 7.59e-01

1992 9.7159770041401672e-01 3.30e-02 4.24e-01 1992 9.72373552571879118532169026418070e-01 2.59e-03 2.49e-01

1993 9.7158629322000323e-01 4.25e-02 1.29e+00 1993 9.72368712349502782081137723139568e-01 2.35e-02 9.07e+00

1994 9.7156054349185494e-01 9.06e-03 2.13e-01 1994 9.72353434828202937409674979651386e-01 4.88e-03 2.08e-01

1995 9.7155717855465851e-01 4.81e-03 5.31e-01 1995 9.72320465170916529711941362169960e-01 9.87e-03 2.02e+00

3.51E-011

55025 3.8464142897599387e-21 4.54e-11 2.47e+00 55040 1.36016830443403326688507176195698e-21 1.94e-10 5.53e+00

55026 2.5356214550219539e-21 2.62e-10 5.77e+00 55041 8.76081717388940710031385066561499e-22 9.07e-11 4.68e-01

55027 1.5820933700832428e-21 8.55e-11 3.26e-01 55042 2.58982489685111526573726048751922e-22 4.60e-11 5.07e-01

55028 6.2784355786157786e-22 6.01e-11 7.03e-01 55043 7.84836770402995020584598152750246e-23 4.15e-11 9.02e-01

55029 2.5081377338650191e-22 8.74e-11 1.45e+00 55044 1.21985100184319338251598351089778e-23 1.20e-11 2.89e-01

55030 4.5703340141257500e-23 1.22e-11 1.40e-01 55045 5.49455337875079633371246955767164e-24 1.70e-11 1.42e+00

55031 9.6263875386555454e-24 2.51e-11 2.06e+00 55046 1.56333422601228232556369414727610e-25 1.84e-14 1.08e-03

55032 1.1800109413869144e-24 3.09e-12 1.23e-01 55047 1.02987507846577314030418736221096e-26 3.09e-13 1.68e+01

55033 8.7452787152106979e-26 4.50e-13 1.46e-01 55048 6.34700140921867487077260764553929e-29 6.37e-14 2.06e-01

55034 1.2666456058245973e-28 7.67e-14 1.70e-01 55049 4.79600291673943850635842124557142e-31 5.42e-15 8.51e-02

55035 6.1629758220391547e-32 1.83e-15 2.39e-02 55050 6.80255531444838133689387622711984e-35 1.43e-17 2.64e-03

55036 6.1629758220391547e-32 6.48e-15 3.54e+00 55051 2.17490545742709934286578838594657e-38 3.11e-19 2.17e-02

55052 9.98123840971977145138916247867635e-44 2.48e-21 7.97e-03

55053 3.95256742643155123146253361021236e-46 1.56e-22 6.29e-02

55054 1.71957933337100508387652040538676e-47 3.29e-23 2.11e-01

55055 9.30210226651205099550904426783349e-52 2.46e-25 7.48e-03

55056 3.48865671761624136653426926686208e-55 4.70e-27 1.91e-02

55057 7.65910576628363852983449786530361e-60 2.32e-29 4.94e-03

55058 1.44168300251534811302845390904585e-61 3.30e-30 1.42e-01

55059 5.11650193786460008497600518330151e-65 5.65e-32 1.71e-02

55060 4.75534523581623293739021446360475e-67 5.22e-33 9.24e-02

55061 1.73153691091351950338280925813442e-70 1.14e-34 2.18e-02

55062 5.50961511707012022526855319175153e-72 2.10e-35 1.84e-01

55063 4.57581984347376238801132233017522e-75 5.67e-37 2.70e-02

55064 1.11192140796356968337928611527172e-76 8.60e-38 1.52e-01

55065 1.13075676088187163362291965632891e-82 9.38e-41 1.09e-03

55066 3.87532413593686367271638511169429e-86 1.58e-42 1.68e-02

55067 2.06565695460783815682480358420569e-88 1.06e-43 6.71e-02

55068 2.12273457334140370095999292945673e-92 1.20e-45 1.13e-02

55069 3.93595399737738495942440609602142e-96 1.77e-47 1.48e-02

55070 1.41201933319065215451456872406262e-101 3.09e-50 1.75e-03

55071 9.70210305370674932782151000024867e-107 7.64e-53 2.47e-03

55072 1.79563500806363496742421991079174e-112 1.12e-55 1.47e-03

55073 5.93894871261638218411121350044390e-117 6.05e-58 5.40e-03

55074 1.02825952229205319490940775355354e-123 2.40e-61 3.97e-04

55075 9.38652613902593923776992130399695e-130 2.48e-64 1.03e-03

55076 2.37365131904632234224028663910748e-136 1.21e-67 4.88e-04

55077 2.87556449140241933593776179039414e-141 4.18e-70 3.45e-03

55078 6.73913589966158739519868451956139e-150 2.27e-74 5.43e-05

55079 2.39366099153348236957666796978149e-155 4.08e-77 1.80e-03

55080 1.79591516857394293733622507747822e-159 3.56e-79 8.73e-03

55081 2.61739873059889931543308260853175e-166 1.38e-82 3.88e-04

55082 3.72349878891967750347631374363834e-172 1.55e-85 1.12e-03

55083 1.84498934861703140797443860575022e-178 1.16e-88 7.48e-04

55084 3.30509463745221358158184141828516e-184 1.63e-91 1.41e-03

55085 3.69517250553648843196316867876103e-192 1.61e-95 9.88e-05

55086 1.37160652884311251229846212189785e-199 2.90e-99 1.80e-04

55087 3.30498388734871166246586332796718e-209 4.76e-104 1.64e-05

55088 4.98041929567289835906015000120704e-218 1.93e-108 4.05e-05

55089 3.85347771371676023719775360073517e-226 1.74e-112 9.02e-05

55090 6.09746339419566318492243550723581e-234 2.03e-116 1.17e-04

55091 2.02704047172850065118656344015725e-242 1.15e-120 5.67e-05

55092 1.16791216498261533584522958264514e-250 9.73e-125 8.46e-05

55093 7.76478913491329158848942593915328e-260 2.39e-129 2.46e-05

55094 1.21364827147284398938587392100999e-266 9.74e-133 4.08e-04

55095 1.36978432195256289924331216545868e-273 3.35e-136 3.44e-04

55096 1.37973081994056613224180984645614e-280 2.83e-140 8.45e-05

55097 4.04436751790345677047872488481844e-287 1.92e-143 6.78e-04

55098 2.32773417327698651522409578511019e-296 1.45e-147 7.55e-05

55099 6.75549265185909825757444479122310e-305 7.05e-152 4.86e-05

55100 7.39971014811772129212765303894124e-314 2.25e-156 3.19e-05

55101 1.48219693752373963252970637860443e-323 3.56e-161 1.58e-05

55102 1.48219693752373963252970637860443e-323 3.56e-161 1.00e+00

Table 7: Values of BFGS for double and double-double precision. Superlinear con-

vergence can be seen in the higher iterations, before the program terminates.
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Figure 6.3: NCR-NS1 performance plots, with the �nal DD function values sorted

and plotted with the corresponding �nal D function value for 1000 starting points.

Top left: Plot for n = 2. The DD code reduces the function value to as low as its

precision allows. Top right: Plot for n = 3. The DD code overall does better than

the D code, but with a much larger range. Middle left: Plot for n = 4. The DD code

again does better than the D code, but �nal values are much closer. Middle right:

Plot for n = 5. Both codes do equally well in some runs, and both codes have a large

range of �nal values. Bottom left: Plot for n = 6. A limit is placed on the maximum

number of iterations for n ≥ 6. Neither code does very well, with little di�erence

between the two. Bottom right: Plot for n = 7. Neither code does very well, with

little di�erence between the two.
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Figure 6.4: NCR-NS2 performance plots, with the �nal DD function values sorted

and plotted with the corresponding �nal D function value for 1000 starting points.

Top left: Plot for n = 2. The DD code �nds the minimizer much more often than

the D code. Top right: Plot for n = 3. The DD code �nds the minimizer most

of the time, while the D code converges to the other Clarke stationary points more

often. Top-Middle left: Plot for n = 4. The DD code �nds the minimizer rather than

the Clarke stationary points much more often than the D code. Top-Middle right:

Plot for n = 5. The DD code �nds a lower stationary point than the D code almost

every time, but only �nds the minimizer on a quarter of the runs. Bottom-Middle

left: Plot for n = 6. Neither code �nds the minimizer very often, but the DD code

still �nds a lower stationary point most of the time. Bottom-Middle right: Plot for

n = 7. Neither code does very well in �nding the minimizer a majority of the time,

with minimal improvement of the DD code over the D code. Bottom: Plot for n = 8.
Both codes perform practically the same.
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but the DD code does much better, with �nal results ranging from 10−6 to 10−23.
When n = 4, both codes do much worse in converging to the global minimizer, but
DD still performs better, with the D code �nal results ranging from 10−1 to 10−4,
while the DD code reduces the function value to values ranging from 10−2 to 10−6.
For n = 5, the D code �nal function values vary widely from 1 to 10−6, while the DD
code performs slightly better, resulting in a tighter range of function values, 10−2

to 10−7. In all the cases for n = 2, ..., 5, the DD code does much better than the D
code in almost all but a couple runs. The �nal function values form an �S�-shaped
smooth curve, with a long, slowly increasing middle area, presumably re�ecting the
use of a uniform distribution for the starting points.

When n = 6 and n = 7, the number of maximum iterations was limited to 10n−1.
This was necessary in order to run the tests in a timely manner, as each run of
the DD code would run for a couple of minutes before the machine precision causes
termination of the code. Under these additional restrictions, the DD code has much
less advantage over the D code. More runs of the D code produce the same if not
better results. Also, the �nal function value curve loses its S-shape, looking more
like a logarithmic curve. This indicates that although the D and DD codes are able
to occasionally reduce the �nal function value to around 10−7, a majority of the time
the algorithm is unable to reduce the �nal function value below 10−3. When the DD
code was allowed to run with as many iterations as needed for n = 6, around three
to four million iterations were required before the program terminated; however the
�nal function value was still around 10−7. A complete run for NCR-NS1 n = 7 was
not performed due to the limitations of the machine.

On the second nonsmooth variant NCR-NS2, the DD code does signi�cantly better
than the D code. As the plots show, starting from enough starting points BFGS
��nds� all the Clarke stationary points, whose f values are marked on the plots by
horizontal green lines. Intuitively, BFGS has trouble tracking the set S to the global
minimizer because it cannot get past the corners, and as we can see, the algorithm
ends up converging to these corners in both the D and DD implementations. For
n = 2 the DD code reduces the �nal function value to about 10−32 most of the time,
where the D version reduces it to about 10−16 noticeably less often. In general, both
codes do well in approaching the global minimizer under their respective precision.
For n = 3, the DD code reduces the �nal function value to about 10−31 a large
majority of the time, however it also ��nds� all the other Clarke stationary points.
In contrast, the D code reduces the function value to 10−15 only about two-thirds of
the time, converging to the other Clarke stationary points much more often.

For n = 4 we start to see a big di�erence in performance between the two codes. The
DD code reduces the �nal function value to 10−31 over half of the time, while the D
code reduces it to 10−15 only about a quarter of the time. The DD code still �nds
all the other Clarke stationary points, but the higher the corresponding function
value, the less likely the DD code is to terminate there. The D code, on the other
hand, converges to the other Clarke stationary points almost as often as the global
minimizer. For n = 5 the DD code reduces the �nal function value to approximately



6.3 Nesterov Functions Results 24

10−30 about a quarter of the time, but the D code only reaches 10−14 a tenth of
the time. The DD code �nds the other Clarke stationary points decreasingly less
often as the function value increases, while the D code �nds most of the other Clarke
stationary points almost as often as the global minimizer, and rarely converges to a
lower �nal function value than the DD code.

Starting at n = 6, neither code does very well in �nding the global minimizer.
The DD code reduces the �nal function value to 10−30 about a tenth of the time,
while the D code reduces it to 10−14 around 60 times in 1000 runs. In both codes, all
other Clarke stationary points are found about as frequently as the global minimizer.
However, on practically every run, the DD code reduces the �nal function value lower
than the D code for the same starting point. For n = 7, although the DD code �nds
a lower �nal function value than the D code on almost every run, neither code does
well in converging to the global minimizer a signi�cant amount of times. By the
time n = 8, there is almost no di�erence between the performance of the D and the
DD code. Neither code successfully reduces the �nal function value to the global
minimizer any more often than to any of the other Clarke stationary values.

On each test, the DD version is able to get past the corners to a lower point, possibly
even the global minimizer, more often than the D code. However, occasionally the
D code is able to reduce the �nal function value lower than the DD code, which
we hypothesize happens because the D code gets lucky with rounding in the right
direction, lower than the DD code does. However, this phenomenon occurs so seldom,
it has almost no statistical signi�cance.

To better demonstrate the ability of the DD code to reduce the �nal function value
and get past the corners, where the D code could not, we looked at the function
values for each iteration during some of the runs where a lower Clarke stationary
point or the global minimizer was obtained by the DD code. These iteration plots for
NCR-NS2 are shown in Figure 6.5 on the following page. In the graph where n = 3,
although the DD code does not reach the global minimizer, it demonstrates its ability
to get past the �rst corner and reach a lower Clarke stationary value. In the case
where n = 5, the D code terminates after only 215 iterations at a Clarke stationary
value, while the DD code continues on past several more corners, eventually reaching
and terminating at the global minimizer. Finally, in the graph where n = 7, the D
code again terminates very quickly after only 305 iterations, stopping at a Clarke
stationary value. The DD code, however, continues on for several tens of thousands
more iterations, eventually reaching a �nal function value of 10−30, where the code
�nally terminates.

In general, the DD runs for many more iterations than the D code before the program
terminates. Consequentially, the DD code takes much longer to run. However,
because of the huge e�ect di�erent starting points have on the algorithm's ability
and speed at �nding the minimizer, it is di�cult to �nd meaningful statistics on the
time and number of iterations required. Some of the DD code runs took much longer
than the corresponding D code, because of the longer time it takes to perform each
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Figure 6.5: Function values after each iteration of several runs of NCR-NS2.

Top left: Plot for n = 3. The DD code is able to �nd a smaller stationary point than
the D code after several more iterations beyond the D code termination. Top right:

Plot for n = 5. The DD code is able to get past several more corners than the D

code. Bottom: Plot for n = 7. The DD code gets past many more corners than the

D code.

�oating point operation in double-double precision, the larger number of iterations
the DD code required to converge, and the longer time spent in the linesearch in
each iteration. For example, in one run of NCR-NS1, n = 5, the D code took 7841
iterations, took an average of 2.54 expansion and/or bisection steps per line search,
and took 0.04 seconds to run. The DD code took 342,830 iterations, took an average
of 3.14 expansion and/or bisection steps per line search, and took 20.54 seconds to
run. In addition, the D code has at most 25 expansion and/or bisection steps per
line search, while the DD code took at most 72 expansion and/or bisection steps per
line search. The DD code took approximately 44 times more iterations, but ran for
about 514 times longer before terminating.

7 Conclusion

Using the BFGS code written in C by Skajaa [Ska10], we were able to implement
double-double precision and test the hypothesis by Lewis and Overton [LO10] that
BFGS is limited by machine precision, rather than the algorithm itself. In general,
the DD code was able to reduce the �nal function values closer to the minimal
value than the D code. In many cases, both codes were able to reduce the function
essentially to the minimum value, 10−16 for the D code and 10−32 for the DD code.
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Depending on the speci�c problem and the starting points chosen, the DD code was
sometimes able to reduce the �nal function value signi�cantly farther than the D
code, particularly in the case of getting past Clarke stationary points in NCR-NS2.

As we saw on the Nesterov functions, the DD code performed much better overall
than the D code for all three variations. For the smooth version, the DD code
reduced the �nal function value much lower than the D code, 10−323 compared
to 10−32, without taking an exorbitant amount of time before terminating under
machine precision. On the �rst nonsmooth variation, the DD code proved much
better at reducing the �nal function value better than the D code for a small number
of variables. For n = 6 and larger, neither code performed well, and the DD version
only did slightly better than the D code. However, the DD code took much longer to
run, partly because of the extra iterations taken, and partly because each linesearch
required more bisections and expansions before a su�cient stepsize was found.

For the second nonsmooth variation of Nesterov's function, the DD code proved
much better at �nding the minimizer and getting past the Clarke stationary points
than the D code. When n = 2, ..., 5 the DD code found the minimizer more often
than the other stationary points, and in general converged to a lower function value
than the corresponding D code. For n = 6 and larger, neither code does particularly
well in �nding the minimizer more than the other stationary points; however the
DD code still does slightly better. By n = 8, however, there is almost no di�erence
in the �nal function values of the two codes. With few exceptions, the double-
double precision code proved much better at �nding the minimizer and getting past
the Clarke stationary points. However, for a larger number of variables and more
di�cult problems, much longer time is needed for the double-double precision code
to run, and in some cases, an unrealistic amount of time is required before the code
breaks down because of machine precision.
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