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This thesis investigates a large scale L-BFGS-B optimizer for smooth functions and how it

can be modified to optimize non-smooth functions. The new code is called L-BFGS-B-NS.

The changes required include a relaxation of the Wolfe condition, some other changes to
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Chapter 1

Introduction

The problem addressed is to find a local minimizer of the non-smooth minimization

problem

min
x∈Rn

f(x)

s.t. li ≤ xi ≤ ui,

i = 1, . . . , n.

(1.1)

where f : Rn → R, is continuous but not differentiable everywhere and n is large.

The L-BFGS-B algorithm [BLNZ95] is a standard method for solving large instances of

(1.1) when f is a smooth function, typically twice differentiable. The name BFGS stands

for Broyden, Fletcher, Goldfarb and Shanno, the originators of the BFGS quasi-Newton

algorithm for unconstrained optimization discovered and published independently by

them in 1970 [Bro70, Fle70, Gol70, Sha70]. This method requires storing and updating

a matrix which approximates the inverse of the Hessian ∇2f(x) and hence requires

O(n2) operations per iteration. The L-BFGS variant [Noc80], where the L stands for

“Limited-Memory” and also for “Large” problems, is based on BFGS but requires only

O(n) operations per iteration, and less memory. Instead of storing the n × n Hessian

approximations, L-BFGS stores only m vectors of dimension n, where m is a number

much smaller than n. Finally, the last letter B in L-BFGS-B stands for bounds, meaning

the lower and upper bounds li and ui in equation (1.1). The L-BFGS-B algorithm is

implemented in a FORTRAN software package [ZBNM11].

In this thesis, we first give a brief description of the L-BFGS-B algorithm at a high

level and then we introduce a modified algorithm which is more suitable for functions f

which may not be differentiable at their local or global optimal points. We call the new

1



Chapter 1. Introduction 2

algorithm L-BFGS-B-NS where NS stands for non-smooth. These changes were imple-

mented in a modified version of the FORTRAN code [Hen14] which can be downloaded

from a web repository. We report on some numerical experiments that strongly suggest

that the new code should be useful for the non-smooth bound-constrained optimization

problem (1.1).

We are grateful to Jorge Nocedal and his coauthors for allowing us to modify the L-

BFGS-B code and post the modified version.



Chapter 2

L-BFGS-B

This section is a description of the original L-BFGS-B code [ZBNM11, ZBLN97] at a

very high level. The original software is intended to find local minimizers of smooth

functions. This thesis discusses how to modify the algorithm for non-smooth functions.

2.1 BFGS

BFGS is a standard tool for optimization of smooth functions [NW99]. It is a line search

method. The search direction is of type d = −Bk∇f(xk) where Bk is the kth approxi-

mation to the inverse Hessian of f .1 This kth step approximation is calculated via the

BFGS formula

Bk+1 =

(
I −

sky
T
k

yTk sk

)
Bk

(
I −

yks
T
k

yTk sk

)
+
sks

T
k

yTk sk
(2.1)

where yk = ∇f(xk+1)−∇f(xk) and sk = xk+1 − xk. BFGS exhibits super-linear conver-

gence on generic problems but it requires O(n2) operations per iteration [NW99].

In the case of non-smooth functions, BFGS typically succeeds in finding a local minimizer

[LO13]. However, this requires some attention to the line search conditions. These

conditions are known as the Armijo and weak Wolfe line search conditions and they are

a set of inequalities used for the computation of an appropriate step length that reduces

the objective function “sufficiently”. These inequalities will be explained later in section

3.1.

1When it is exactly the inverse Hessian the method is known as Newton’s method. Newton’s method
has quadratic convergence but requires the explicit calculation of the Hessian at every step.

3



Chapter 2. L-BFGS-B 4

2.2 L-BFGS

L-BFGS stands for Limited-memory BFGS. This algorithm approximates BFGS using only

a limited amount of computer memory to update an approximation to the inverse of the

Hessian of f . Instead of storing a dense n× n matrix, L-BFGS keeps a record of the last

m iterations where m is a small number that is chosen in advance2. For this reason the

first m iterations of BFGS and L-BFGS produce exactly the same search directions if the

initial approximation B0 is set to the identity matrix.

Because of this construction, the L-BFGS algorithm is less computationally intensive and

requires only O(mn) operations per iteration. So it is much better suited for problems

where the number of dimensions n is large.

2.3 L-BFGS-B

Finally L-BFGS-B is an extension of L-BFGS. The B stands for the inclusion of Bound-

aries. L-BFGS-B requires two extra steps on top of L-BFGS. First, there is a step called

gradient projection that reduces the dimensionality of the problem. Depending on the

problem, the gradient projection could potentially save a lot of iterations by eliminating

those variables that are on their bounds at the optimum reducing the initial dimension-

ality of the problem and the number of iterations and running time. After this gradient

projection comes the second step of subspace minimization. During the subspace mini-

mization phase, an approximate quadratic model of (1.1) is solved iteratively in a similar

way that the original L-BFGS algorithm is solved. The only difference is that the step

length is restricted as much as necessary in order to remain within the lu-box defined

by equation (1.1).

2.3.1 Gradient Projection

The L-BFGS-B algorithm was designed for the case when n is large and f is smooth. Its

first step is the gradient projection similar to the one outlined in [CGT88, MT89] which

is used to determine an active set corresponding to those variables that are on either

their lower or upper bounds. The active set defined at point x∗ is:

A(x∗) = {i ∈ {1 . . . n}|x∗i = li ∨ x∗i = ui} (2.2)

2In this thesis m < 20, and in practice numbers between 5 and 10 are regularly used. There is no
way of knowing a priori what choice of m will provide the best results as will be illustrated later.
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Working with this active set is more efficient in large scale problems. A pure line search

algorithm would have to choose a step length short enough to remain within the box

defined by li and ui. So if at the optimum, a large number B of variables are either on

the lower or the upper bound, as many as B of iterations might be needed. Gradient

projection tries to reduce this number of iterations. In the best case, only 1 iteration is

needed instead of B.

Gradient projection works on the linear part of the approximation model:

mk(x) = f(xk) +∇f(xk)T (x− xk) +
(x− xk)THk(x− xk)

2
(2.3)

where Hk is a L-BFGS-B approximation to the Hessian ∇2f stored in the implicit way

defined by L-BFGS.

In this first stage of the algorithm a piece-wise linear path starts at the current point xk

in the direction −∇f(xk). Whenever this direction encounters one of the constraints,

the path turns corners in order to remain feasible. The path is nothing but the feasible

piece-wise projection of the negative gradient direction on the constraint box determined

by the values l and u. At the end of this stage, the value of x that minimizes mk(x)

restricted to this piece-wise gradient projection path is known as the “Cauchy point”

xc. See Figure 2.1.

2.3.2 Subspace Minimization

The problem with gradient projection is that its search direction does not take advan-

tage of information provided implicitly by the Hessian Hk, and therefore the speed of

convergence is at best linear. It is for this reason that a second stage is necessary. Stage

2 (subspace minimization) uses an L-BFGS implicit approximation of the inverse Hessian

matrix restricted to the free variables that are not in the active set A(xc).

The starting position for stage 2 will be the previously found Cauchy point and the goal

is to find a new x̄ = xc + α∗d̂. The idea at a higher level is to minimize (2.3) over

the free variables subject to their lower and upper bounds. First, the L-BFGS algorithm

provides a new search direction d̂u of the unconstrained problem that takes implicit

advantage of approximations of the Hessian matrix restricted to the free variables. After

an unconstrained search direction has been found, the constraints are taken into account

and the search direction is restricted to the l, u bounding box via a step length factor

α∗. The step length is chosen so that the new point x̄ satisfies the Armijo and Wolfe3

3The Armijo and Wolfe conditions will be explained on section 3.1
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Figure 2.1: The arrow represents the direction of the negative gradient. The dotted
path represents the projected gradient path. The contours represent the level sets of

the model. The optimal point (the ’*’ in red) is the Cauchy point xc

conditions. A restriction on the step length is added so that the next iteration stays

feasible. Sometimes it is not possible to satisfy the Wolfe condition due to the bounded

nature of the problem, so in these cases, only the Armijo condition needs to be satisfied.

Once this step length is found, the next step is to check the termination condition. If

the termination condition fails, a new gradient projection and subspace minimization

will be needed and the method repeats. If the termination condition is successful, the

program exits with an appropriate exit message.



Chapter 3

Modifications to the L-BFGS-B

Algorithm

We made three main changes to the original L-BFGS-B algorithm. They concern the line

search Wolfe conditions, the line search methodology, and the termination condition.

3.1 The Armijo and Wolfe conditions

It is accepted that the Armijo and Wolfe conditions work very well whenever the func-

tion f is smooth [LF01]. The Armijo condition, also known as the sufficient decrease

requirement in the direction dk, is defined as

f(xk + αpdk) ≤ f(xk) + c1αkd
T
k∇f(xk) (3.1)

where 0 < c1 < 1 is a constant, often c1 = 10−4 [NW99]. This condition guarantees

“sufficient decrease” of the function. It is possible to continue decreasing without ever

reaching the optimum if the Armijo condition is not required as is shown in Figure 3.1.

The other condition, which is the one that was actually changed, is the curvature con-

dition, of which the most popular version is the “strong Wolfe” curvature condition:

|dTk∇f(xk + αkdk)| ≤ c2|dTk∇f(xk)| (3.2)

Here dk represents the search direction and c2 is a constant such that 0 < c1 < c2 < 1;

often c2 = 0.9 [NW99]. The strong Wolfe condition is a natural choice for optimization

7
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Figure 3.1: In this figure, the iterations always reduce the value of the function a
little bit, but never enough to go below 12

Figure 3.2: The logic of the Wolfe conditions is this. Starting at point A, Point B is
a step in the right direction, however, point C offers a “flatter” tangent and should be

closer to the optimum which has a tangent of zero (Smooth case).

of smooth functions. Its goal is to find a step length long enough that the slope has been

reduced “sufficiently” as illustrated in figure 3.2, but the problem is that the condition,

as it is, does not work well for the non-smooth case. This is because near the minimal

points there may be abrupt changes in the gradient. A good example of this problem is

the function f(x) = |x|, where the slope never becomes flat near the optimal point.

The weak Wolfe condition defined as
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dTk∇f(xk + αkdk) ≥ c2dTk∇f(xk) (3.3)

can be used in the non-smooth case. It is all that is needed to guarantee that the BFGS

updated inverse Hessian approximation is positive definite [NW99]. This weak version

is suited for the problems in this thesis and it was implemented as part of the line search

algorithm explained in the next section.

3.2 The Line Search Methodology

The original FORTRAN software [ZBNM11] contains a line search subroutine. It was

partially changed for the purpose of this thesis. The old version of the code was com-

mented out.

The change in the Wolfe condition has already been described, but there is an additional

problem with the function dcstep in the non-smooth case. The function dcstep was

designed to work only with smooth functions in mind. The algorithm in dcstep takes

advantage of quadratic and cubic approximations to the function in order to calculate

step lengths that satisfy Armijo and Wolfe conditions. These second and third order

approximations do not work well in the non-smooth case, and the optimizer breaks down

using the line search as it is.

The solution to this particular issue is to use a line search similar to the one suggested

in [LO13] and in [OS12]. This approach is to double the step length while the Armijo

condition is violated, and once the interval has been bracketed, do bisection until both

the Armijo and Wolfe conditions are satisfied. The only difference with the approach in

this thesis is that the line search in HANSO can double its step length up to 30 times,

whereas in this thesis, the step length can double only as long as it is less than the

maximum value that guarantees feasibility of the solution (the maximum established in

the first step of the original line search). Also, as in the HANSO line search, the number

of bisections is limited to 30.

3.3 The Termination Condition

In the case of smooth functions, L-BFGS-B checks whether the algorithm has converged

by means of the projected gradient which is nothing but the projection of the negative

gradient onto the bounding box defined by l and u. If this projected gradient has a

small norm the algorithm terminates. In the case of non-smooth functions however, the
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function at the minimum may have a “wedge”. In this wedge the projected gradient

may not vanish (it is not defined at the “bottom” of the wedge, such as is the case for

f(x) = |x| at x = 0). Furthermore, if there is a sequence of points that approaches

the optimum x in a direction ~p, the projected gradients corresponding to this sequence

of points might be completely different from the projected gradients associated with a

sequence of points that approach the optimum x from a different direction.

3.3.1 Termination Condition Sub-algorithm

Lewis and Overton formulate an algorithm that gives a practical solution to this problem

in section 6.3 of [LO13] in the case of unconstrained non-smooth optimization. They

suggest computing the norm of the smallest vector that is part of the convex hull of

gradients evaluated at points near the optimum candidate x and terminate if this is

sufficiently small. The neighborhood is defined as those points at which the gradient

has already been evaluated with a distance to x smaller than a small tolerance τx > 0

and no more than J ∈ N iterations back in history. This list of gradients is referred to

as the set G [LO13].

With this list G of gradients at hand, the next step is to find the vector with the

minimal norm contained in the convex hull of these gradients. If the minimum such

norm is smaller than another tolerance τd, the algorithm terminates.

In order to find this vector, there is the need to solve a quadratic problem. Every vector

in the convex hull can be expressed as a convex combination Gz of those vectors in

G, where G is the matrix with columns made up of gradients in G and z is such that∑
zi = 1 and zi ≥ 0.

The objective is to find the right combination of z that minimizes the norm ||Gz||2. This

is equivalent to solving the following optimization problem

min q(z) = ||Gz||22 = zTGTGz

s.t.
∑

zi = 1

zi ≥ 0.

(3.4)

The solution to this problem z∗ defines the associated vector Gz∗, so if ||Gz∗||2 < τd the

algorithm terminates.

In the bound-constrained case, it is important to notice that instead of the gradient we

have to work with the projected gradient. In the unconstrained case, if a component of

the gradient is not zero this yields a direction of descent. But in the bounded case, it
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may be impossible to reduce f in this direction because the boundary may have been

reached. For this reason the gradients have to be projected onto the bounding box,

and it is these projected gradients that we incorporate in the termination condition of

L-BFGS-B-NS.

3.3.2 The Solution of the Quadratic Program

The solution of the quadratic program (3.4) is obtained using a practical primal-dual

method. This is the same method implemented by Skajaa [Ska10] in his thesis. His

code qpspecial was implemented in FORTRAN for this thesis. The method is the well

known Mehrotra’s Predictor-Corrector algorithm applied to quadratic programming, as

explained in chapter 16 of [NW99].



Chapter 4

Experimental Results

The L-BFGS-B implementation was tested on the high performance cluster machines

at NYU. In order to run these tests it was necessary to create a series of PBS files1

using a PBS generator script. This script generator created PBS files which in turn run

bash shell scripts2. Several of these shell scripts are available at the repository [Hen14].

The main reason to run scripts this way is because it achieves parallelism, and because

the system sends confirmation e-mails and statistics about the different stages of the

processes giving a lot of control to the practitioner.

4.1 Exit Messages

The original L-BFGS-B optimizer displays different messages depending on the condition

that triggered the exit. The following is a list of some of the most common exit messages

in the original L-BFGS-B optimizer along with an explanation of how we generalized them

in L-BFGS-B-NS.

• “ABNORMAL TERMINATION IN LNSRCH” This message means that there

was a problem with the line search and the program’s exit was premature. In

L-BFGS-B, it typically occurs for non-smooth functions where the line search breaks

down. In L-BFGS-B-NS, it typically occurs when the limit on the number of bisec-

tions in the line search (30) is exceeded.

1PBS stands for Portable Batch System. This is software that performs job scheduling. It is used
by High Performance Computing at NYU (and many other High Performance Computing Centers) to
allocate computational tasks. In order to run jobs at the high performance clusters, a series of PBS
batch files need to be created.

2Bash is a command processor. Each Bash script that was created includes a series of computer
commands, namely, execution of the original L-BFGS-B software and the new code L-BFGS-B-NS.

12
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• “CONVERGENCE: NORM OF PROJECTED GRADIENT LT PGTOL”: Means

that convergence was achieved because the norm of the projected gradient is small

enough. We made just one change to the original L-BFGS-B code: in order to

have results that are comparable with the results obtained with the new code, we

terminated when the 2-norm of the projected gradient was less than the tolerance

τ = 10−6, instead of the ∞-norm. Notice that this convergence message does not

apply to L-BFGS-B-NS because of particular requirements for non-smooth func-

tions involving the convex hull of projected gradients as explained in section 3.3.

Instead it is replaced by:

• “CONVERGENCE: ZERO GRAD IN CONV HULL” This means that the ter-

mination condition discussed in section 3.3 was satisfied3. We set τd = 10−6,

τx = 10−3 and J = 10 the (maximum number of gradients in the optimality

check).

• “CONVERGENCE: REL REDUCTION OF F LT FACTR*EPSMCH”: This con-

vergence condition is achieved whenever the relative reduction of the value of func-

tion f is smaller than a predefined factor times the machine precision ε. This exit

message does not apply to our tests. It was disabled by setting the factor “FACTR”

to zero, both in our runs of L-BFGS-B-NS and our tests using the original code

L-BFGS-B.

The limit on the number of iterations was set to 10000.

4.2 Modified Rosenbrock Function

Consider a modified version of the Rosenbrock function problem [Ros61]:

f(x) = (x1 − 1)2 +
n∑

i=2

|xi − x2i−1|p (4.1)

We can study the properties of function f based on the properties of the function φ(ti),

where φ(ti) = |ti|p and ti = xi − x2i−1. The properties of the function depend on the

value of the p parameter4. This function can be proven to be locally Lipschitz continuous

whenever p ≥ 1. However, its second derivative blows up at zero whenever p < 2. Note

that although φ(ti) is convex for p ≥ 1, f is not convex.

3This does not mean that the resulting vector is exactly equal to zero, but it is small enough to
satisfy the termination condition.

4The original Rosenbrock function had values of p = 2, n = 2 and the second term was multiplied by
100.
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The properties of φ(ti) can be separated into different cases. Whenever p > 1 the

derivative can be represented as:

d

dt
φ(t) = ±p|t|p−1 (4.2)

and therefore, the limit of the derivative exists and is equal to zero near t = 0:

lim
t→0

d

dt
φ(t) = 0

From this we conclude that f has a smooth first derivative for p > 1.

However, if p = 1, φ(t) = |t|, and the absolute value function is not differentiable at

t = 0. Note that in this case, φ(t) is Lipschitz continuous at t = 0.

The second derivative provides a bit more of information.

d2

dt2
φ(t) = ±p(p− 1)|t|p−2 (4.3)

If p ≥ 2 the function is twice continuously differentiable. However if p < 2, the second

derivative becomes p(p−1)
|t|q , where q = 2− p > 0, and this second derivative blows up as

|t| → 0. The special case p = 1 has second derivative equal to zero since p(p − 1) = 0

except at t = 0 where it is undefined. For p < 1, φ is not Lipschitz continuous at t = 0.

Having explained the characteristics of the function, the next thing that needs to be

defined is the region to be tested. We chose the region to be defined by the “box” with

boundaries

xi =

[−100, 100] if i ∈ even numbers

[10, 100] if i ∈ odd numbers
(4.4)

The initial point was chosen to be the midpoint of the box, plus a different small pertur-

bation for each dimension, chosen so that the line search does not reach the boundary

of several dimensions in one step:

xi =
ui + li

2
−
(
1− 21−i

)
(4.5)

It is important to note that this choice of initial point makes the problem more difficult

to solve. The problem is easier if the midpoint is chosen.
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p n m L-BFGS-B results L-BFGS-B-NS results
iters. #fg f NPG iters. #fg f NSVCHPG

2 100 5 29 131 452116.014385974 2.92E-06 34 67 452116.014385974 1.46E-08
2 100 10 25 67 452116.014385974 7.37E-05 32 45 452116.014385974 2.29E-07
2 100 20 25 28 452116.014385974 8.97E-07 29 47 452116.014385974 1.20E-04
2 200 5 32 74 913376.515331672 1.97E-07 34 62 913376.515331677 8.44E-07
2 200 10 27 32 913376.515331672 5.26E-07 32 43 913376.515331672 1.04E-07
2 200 20 26 29 913376.515331672 5.80E-07 33 58 913376.515331677 3.98E-08
2 1000 5 26 68 4603460.52289722 2.61E-04 37 80 4603460.52289732 9.85E-07
2 1000 10 26 71 4603460.52289722 5.93E-04 33 45 4603460.52289733 5.89E-07
2 1000 20 30 95 4603460.52289722 1.18E-05 33 59 4603460.52289732 9.02E-07
2 5000 5 27 122 23053880.5607232 4.44E-03 23 41 23053880.5607253 2.19E-07
2 5000 10 25 28 23053880.5607256 8.96E-07 32 40 23053880.5607253 8.40-07
2 5000 20 26 80 23053880.560724 3.75E-03 17 43 23053880.5607232 1.08E-07
2 10000 5 26 68 46116905.6080045 2.80E-06 12 232 46116905.6079994 5.41E-06
2 10000 10 25 67 46116905.6080057 7.70E-03 18 297 46116905.6080044 3.66E-05
2 10000 20 28 73 46116905.608006 5.18E-06 18 297 46116905.6080044 3.66E-05

Table 4.1: Satisfactory results for the original algorithm L-BFGS-B and for
L-BFGS-B-NS applied to the Modified Rosenbrock function with p = 2. NPG: Norm
of Projected Gradient with tolerance 10−6. NSVCHPG: Norm of Smallest Vector in

Convex Hull of Projected Gradients with τd = 10−6, τx = 10−3

We tested both the original L-BFGS-B optimizer and the new code L-BFGS-B-NS on the

modified Rosenbrock function with p varying between 2 and 0.9 and n varying between

100 and 10000, with the variable memory parameter m set to 5, 10 and 20.

4.2.1 Performance of L-BFGS-B and L-BFGS-B-NS on the Modified Rosen-

brock Function

In the tables, iters shows the number of iterations, #fg shows the number of function

and gradient evaluations taken, and f shows the final computed function value that

was achieved by the optimization. In the case of L-BFGS-B, NPG shows the 2-norm of

the projected gradient with termination tolerance 10−6. In the case of L-BFGS-B-NS,

NSVCHPG shows the norm of the smallest vector in the convex hull of projected gra-

dients.

In Table 4.1 we can see that since the test function is smooth when p = 2, L-BFGS-B has

no problems minimizing it and that L-BFGS-B-NS reaches exactly the same final values,

although because of the line search changes, the number of iterations and function and

gradient evaluations usually increase.

On the other hand, in Table 4.2 we see that the value of p = 1 leads to an abnormal line

search termination for L-BFGS-B in all of the cases presented. This is to be expected

as the function is non-smooth. In fact, for all cases L-BFGS-B terminates at the first

iteration because of breakdown in the line search. L-BFGS-B-NS on the other hand is able

to converge under most scenarios. In fact, it is possible to converge under all scenarios

by tweaking the starting point of the optimization.
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p n m L-BFGS-B results L-BFGS-B-NS results
iters. #fg f NPG iters. #fg f NSVCHPG

1 100 5 1 21 151292.8 7.79E+02 15 130 4826.1066601788 1.34E-08
1 100 10 1 21 151292.8 7.79E+02 15 129 4826.1066352341 1.34E-08
1 100 20 1 21 151292.8 7.79E+02 15 129 4826.1066352341 1.34E-08
1 200 5 1 21 299792.8 1.10E+03 15 128 9668.0522943829 1.82E-08
1 200 10 1 21 299792.8 1.10E+03 15 128 9668.0522930362 1.82E-08
1 200 20 1 21 299792.8 1.10E+03 15 112 9667.9345180734 1.19E-07
1 1000 5 1 21 1487792.8 2.46E+03 23 193 48403.1390323475 5.72E-09
1 1000 10 1 21 1487792.8 2.46E+03 16 160 48403.3203939957 2.44E-08
1 1000 20 1 21 1487792.8 2.46E+03 16 160 48403.320394002 2.44E-08
1 5000 5 1 21 7427792.8 5.51E+03 20 127 242078.712084738 1.26E-08
1 5000 10 1 21 7427792.8 5.51E+03 56 339 242078.839910433 1.26E-08
1 5000 20 1 21 7427792.8 5.51E+03 45 249 242078.560631846 7.84E-08
1 10000 5 1 21 14852792.8 7.79E+03 18 148 484172.781463252 8.25E-08
1 10000 10 1 21 14852792.8 7.79E+03 10000 20019 484269.73074638832 3.76E+02
1 10000 20 1 21 14852792.8 7.79E+03 21 101 484172.918293261 1.77E-08

Table 4.2: Unsatisfactory results for the original algorithm L-BFGS-B applied to the
Modified Rosenbrock function with p = 1, but converging results for L-BFGS-B-NS.
NPG: Norm of Projected Gradient with tolerance = 10−6. NSVCHPG: Norm of Small-

est Vector in Convex Hull of Projected Gradients with τd = 10−6, τx = 10−3

p n m L-BFGS-B results L-BFGS-B-NS results
iters. #fg f NPG iters. #fg f NSVCHPG

2 200 5 32 74 913376.515331672 1.97E-07 35 55 913376.515331676 3.19E-09
2 200 10 27 32 913376.515331672 5.26E-07 20 41 913376.515331677 3.98E-07
2 200 20 26 29 913376.515331672 5.80E-07 19 40 913376.515331672 8.03E-07
1.5 200 5 8 50 95144.1877450699 9.60E+02 29 68 94261.6310280216 7.52E-07
1.5 200 10 8 50 95095.5635531693 9.61E+02 30 59 94261.6310280212 9.69E-07
1.5 200 20 8 50 95095.5635531693 9.61E+02 26 66 94261.6310280211 9.95E-07
1.1 200 5 1 21 658485.96769483 1.10E+03 26 75 15226.525226329 4.24E-07
1.1 200 10 1 21 658485.96769483 1.10E+03 34 107 15226.5210644821 1.16E-07
1.1 200 20 1 21 658485.96769483 1.10E+03 38 99 15226.5209960549 1.73E-07
1.01 200 5 1 21 324235.017102379 1.10E+03 31 305 10218.0196721806 3.64E+01
1.01 200 10 1 21 324235.017102379 1.10E+03 47 151 10116.5275434197 7.29E-07
1.01 200 20 1 21 324235.017102379 1.10E+03 29 123 10116.5603888173 2.95E-09
1.001 200 5 1 21 302150.58179968 1.10E+03 36 111 9711.8763115237 5.70E-08
1.001 200 10 1 21 302150.58179968 1.10E+03 23 100 9711.8906439951 2.81E-09
1.001 200 20 1 21 302150.58179968 1.10E+03 39 164 9711.876311317 1.41E-07
1.0001 200 5 1 21 300027.736327598 1.10E+03 306 638 9672.3210642275 5.09E-07
1.0001 200 10 1 21 300027.736327598 1.10E+03 17 96 9672.3639815678 1.82E-08
1.0001 200 20 1 21 300027.736327598 1.10E+03 19 96 9672.3922445339 2.80E-09
1.00001 200 5 1 21 299816.285236336 1.10E+03 27 96 9668.3934739514 4.32E-07
1.00001 200 10 1 21 299816.285236336 1.10E+03 15 80 9668.373073478 2.80E-09
1.00001 200 20 1 21 299816.285236336 1.10E+03 15 80 9668.3730743134 2.80E-09
1 200 5 1 21 299792.8 1.10E+03 15 128 9668.0522943829 1.82E-08
1 200 10 1 21 299792.8 1.10E+03 15 128 9668.0522930362 1.82E-08
1 200 20 1 21 299792.8 1.10E+03 15 112 9667.9345180734 1.19E-07

Table 4.3: Results for different values of p, with n = 200.

Looking at the computed solutions, it seems that the (likely global) exact constrained

minimizer satisfies xi = 10 when i is odd, xi =
√

10 when i is even and less than n, and

xn = 100, which means that n/2−1 of the n−1 terms in the sum defining the objective

function are zero.

Several other values of p were also tested. In Table 4.3, the parameter p is varied and for

fixed n = 200. With a tolerance of 10−6 L-BFGS-B always fails as expected, and those

values where p is closer to 1 are the most difficult for the original algorithm to handle.

Values generated via L-BFGS-B-NS are comparatively better whenever p < 2, since the

function is “less” smooth. Most runs of L-BFGS-B-NS converge using the termination

condition from section 3.3.
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p n m L-BFGS-B results L-BFGS-B-NS results
iters. #fg f NPG iters. #fg f NSVCHPG

0.999 100 5 1 21 150123.179035242 7.79E+02 10000 20003 4900.9128213197 3.86E+01
0.999 100 10 1 21 150123.179035242 7.79E+02 10000 19999 4900.9123782223 3.79E+01
0.999 100 20 1 21 150123.179035242 7.79E+02 10000 20000 4900.8873111184 3.78E+01
0.999 200 5 1 21 297453.671572579 1.10E+03 10000 29971 9720.7074076621 5.50E+01
0.999 200 10 1 21 297453.671572579 1.10E+03 10000 19999 9720.7073593488 5.41E+01
0.999 200 20 1 21 297453.671572579 1.10E+03 10000 20000 9720.7067337013 5.39E+01
0.999 1000 5 1 21 1476097.61187127 2.46E+03 10000 29961 48279.0637949643 9.94E-01
0.999 1000 10 1 21 1476097.61187127 2.46E+03 10000 20000 48279.0637881564 1.68E+02
0.999 1000 20 1 21 1476097.61187127 2.46E+03 10000 20000 48279.0637186514 1.66E+02
0.999 5000 5 1 21 7369317.31336543 5.51E+03 10000 29983 241070.845631957 9.94E-01
0.999 5000 10 1 21 7369317.31336543 5.51E+03 10000 29983 241070.845630635 9.94E-01
0.999 5000 20 1 21 7369317.31336543 5.51E+03 10000 20005 241070.845626631 2.73E+02
0.999 10000 5 1 21 14735841.9402302 7.79E+03 10000 29981 482060.572922137 3.89E+02
0.999 10000 10 1 21 14735841.9402302 7.79E+03 10000 29983 482060.572921515 9.94E-01
0.999 10000 20 1 21 14735841.9402302 7.79E+03 10000 20003 482060.572910768 5.28E+02

Table 4.4: Results for p = 0.999, and non-converging but better results for
L-BFGS-B-NS; NPG: Norm of Projected Gradient with tolerance = 10−6, never sat-
isfied. NSVCHPG: Norm of Smallest Vector in Convex Hull of Projected Gradients

with τd = 10−6, τx = 10−3, also, never satisfied

p n m L-BFGS-B results L-BFGS-B-NS results
iters. #fg f NPG iters. #fg f NSVCHPG

0.99 100 5 1 21 140004.324489439 7.79E+02 10000 29999 4706.5690751224 9.46E-01
0.99 100 10 1 21 140004.324489439 7.79E+02 10000 29983 4706.5690446185 9.46E-01
0.99 100 20 1 21 140004.324489439 7.79E+02 10000 29989 4706.5690446185 9.46E-01
0.99 200 5 1 21 277216.896653442 1.10E+03 10000 29985 9332.020553172 9.46E-01
0.99 200 10 1 21 277216.896653442 1.10E+03 10000 20009 9332.0205286749 6.56E+01
0.99 200 20 1 21 277216.896653442 1.10E+03 10000 20007 9332.0182250141 8.21E+01
0.99 1000 5 1 21 1374917.47396547 2.46E+03 10000 29993 46335.6319951054 9.46E-01
0.99 1000 10 1 21 1374917.47396547 2.46E+03 10000 29993 46335.6319927555 9.46E-01
0.99 1000 20 1 21 1374917.47396547 2.46E+03 10000 20009 46335.6319815415 1.92E+02
0.99 5000 5 1 21 6863420.36052535 5.51E+03 10000 29995 231353.689126569 9.46E-01
0.99 5000 10 1 21 6863420.36052535 5.51E+03 10000 29995 231353.689125989 9.46E-01
0.99 5000 20 1 21 6863420.36052535 5.51E+03 10000 29995 231353.689125497 9.46E-01
0.99 10000 5 1 21 13724048.9687287 7.79E+03 10000 20013 462626.260534309 4.91E+02
0.99 10000 10 1 21 13724048.9687287 7.79E+03 10000 20013 462626.260533983 4.91E+02
0.99 10000 20 1 21 13724048.9687287 7.79E+03 10000 20013 462626.260533741 4.91E+02

Table 4.5: Results for p = 0.99; similar to Table 4.4

p n m L-BFGS-B results L-BFGS-B-NS results
iters. #fg f NPG iters. #fg f NSVCHPG

0.9 100 5 1 21 70247.1102599127 7.79E+02 10000 29985 3145.9378051899 7.82E+01
0.9 100 10 1 21 70247.1102599127 7.79E+02 10000 20005 3145.9378011472 4.17E+02
0.9 100 20 1 21 70247.1102599127 7.79E+02 10000 20007 3145.9375231332 2.66E+02
0.9 200 5 1 21 137705.665344048 1.10E+03 10000 29983 6210.7940850593 5.70E-01
0.9 200 10 1 21 137705.665344048 1.10E+03 10000 29987 6210.7940839115 5.70E-01
0.9 200 20 1 21 137705.665344048 1.10E+03 10000 20007 6210.793392882 3.72E+02
0.9 1000 5 1 21 677374.106017129 2.46E+03 10000 29997 30729.6443168733 2.49E+02
0.9 1000 10 1 21 677374.106017129 2.46E+03 10000 29999 30729.6443166765 5.70E-01
0.9 1000 20 1 21 677374.106017129 2.46E+03 10000 20013 30729.6443164162 1.58E+03
0.9 5000 5 1 21 3375716.30938256 5.51E+03 10000 29993 153323.895471387 5.70E-01
0.9 5000 10 1 21 3375716.30938256 5.51E+03 10000 29993 153323.895471342 5.70E-01
0.9 5000 20 1 21 3375716.30938256 5.51E+03 10000 29993 153323.895471246 5.70E-01
0.9 10000 5 1 21 6748644.0635896 7.79E+03 10000 29999 306566.709414405 5.70E-01
0.9 10000 10 1 21 6748644.0635896 7.79E+03 10000 29999 306566.709414387 5.70E-01
0.9 10000 20 1 21 6748644.0635896 7.79E+03 10000 29999 306566.709414375 5.70E-01

Table 4.6: Results for p = 0.9; similar to Table 4.4

Some runs with a value of p = 0.999 are shown in Table 4.4. As can be seen, both

algorithms fail in the sense that the termination criteria are never met, but L-BFGS-B-NS

reaches a better feasible solution in every scenario. The same thing can be said for

p = 0.99 on Table 4.5 and for p = 0.9 on Table 4.6.



Conclusions

We conclude that the new code L-BFGS-B-NS works well on the modified Rosenbrock

function, giving much better results than the original L-BFGS-B code for p < 2, when the

function is not twice continuously differentiable, particularly for values of p close to or

equal to 1. For p ≥ 1, the algorithm typically terminates when the NSVCHPG condition

holds: this is an approximate first-order non-smooth optimality condition following a

suggestion of [LO13]. Even for p < 1, the computed function values seem reasonable,

although we cannot verify this by the NSVCHPG condition since the gradients blow up

when f is not Lipschitz. We hope the new code will be useful to users who wish to solve

large-scale non-smooth bound-constrained optimization problems.
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Appendix A

Running L-BFGS-B-NS

A.1 Running tests in local machines

In order to run the software, a copy of the files is required. The easiest way to get a copy is

downloading directly from the repository [Hen14] and clicking on the download zip link.

Users of git can also clone the repository by issuing either the Hypertext Transfer Proto-

col Secure command git clone https://github.com/wilmerhenao/L-BFGS-B-NS.git

or the secure shell command git clone git@github.com:wilmerhenao/L-BFGS-B-NS.git.

Other requirements on the machine are a FORTRAN compiler and LAPACK.

Once the user has obtained a local copy of the code, new executables need to be created.

A simple Makefile has been provided; in order to “make” the executables and run a

typical test with parameters p = 1.1, n = 100, m = 5 and τd = 10−6, the user should

issue the following commands.

$ make

$ ./ rosenbrockp 1.1 100 5 1d-6

Output by default goes directly to the screen. The best way to capture the results in a

text file is using the redirection operator >.

$ make

$ ./ rosenbrockp 1.1 100 5 1d-6 > mysampleresults.txt

If the user is running several tests, a bash script might be necessary.

#!/bin/bash

for ptol in 1d-6

do

for p in 2 1 1.5 1.1 1.01 1.001 1.0001 1.00001 0.99 0.9

do

for n in 2 4 6 8 10 20 50 100 200 1000 5000 10000

19
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do

for m in 5 10 20

do

echo $ptol $p $n $m

./ rosenbrockp $p $n $m $ptol >> OUTPUTS/res1d6.txt

done

done

done

done

exit 0;

This bash script can be made executable and run directly on the user’s machine. All

the results from the runs will be located on file OUTPUTS/resid6.txt in this case.

$ chmod +x runall.sh

$ ./ runbatch.sh

A.2 Running on High Performance Computer Clusters

The requirements are different on the high performance computing cluster, but the

standard is to use Portable Batch System PBS files. They allow the user to get detailed

information of the tests via e-mails and provide the user with the ressources to run larger

problems.

#!/bin/bash

#PBS -l nodes =1: ppn=8,walltime =48:00:00

#PBS -m abe

#PBS -M youremail@nyu.edu

#PBS -N rosenbrockHD9

module load gcc /4.7.3

cd /scratch/weh227/rosenbrock/

for ptol in 1d-6

do

for p in 2 1 1.5 1.1 1.01 1.001 1.0001 1.00001 0.99 0.9

do

for n in 2 4 6 8 10 20 50 100 200 1000 5000 10000 100000 1000000

do

for m in 5 10 20

do

echo $ptol $p $n $m

./ rosenbrockp $p $n $m $ptol >> res1d6.txt

done

done

done

done
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exit 0;

Typically the user logs into the clusters, runs the tests using a software called qsub and

picks up the results once the tests have finished. At NYU a user logs into the hpc access

cluster, followed by the bowery computer cluster.

$ ssh youremail@hpc.nyu.edu

$ ssh bowery

$ password: ********

$ git clone https :// www.github.com/wilmerhenao/L-BFGS -B-NS.git

$ cd L-BFGS -B-NS

$ make

$ qsub -o precision1d6.log -j oe precision1d6.pbs

It is also possible to run several PBS jobs simultaneously. Your local High Performance

Computer Cluster always has some documentation on how to create and use PBS files.

https://wikis.nyu.edu/display/NYUHPC/Tutorial+-+Submitting+a+job+using+qsub

A.3 Specifying the Function and the Gradient

The user can specify a new function and its corresponding gradient. Just change lines

222 to 234 in file DriverRosenbrockp.f90

222 f=((x(1) -1d0)**2)

223 g(1)=2d0*(x(1) -1d0)

224

225 do 20 i=1, (n-1)

226 z=x(i+1)-x(i)**2

227 f=f+abs(z)**p

228 r1=p * abs(z)**(p - 1)

229 if (z < 0) then

230 r1 = -r1

231 endif

232 g(i+1)=r1

233 g(i)=g(i)-2d0*x(i)*r1

234 20 continue

Boundaries and starting points are also specified in this file in between lines 95 and 119.
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