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Mostly based on my research work with Jim Burke and Adrian Lewis
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Problem: find x that locally minimizes f , where f : Rn → R is
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Problem: find x that locally minimizes f , where f : Rn → R is

■ Continuous
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Problem: find x that locally minimizes f , where f : Rn → R is

■ Continuous
■ Not differentiable everywhere, in particular often not

differentiable at local minimizers
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Problem: find x that locally minimizes f , where f : Rn → R is

■ Continuous
■ Not differentiable everywhere, in particular often not

differentiable at local minimizers
■ Not convex
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Problem: find x that locally minimizes f , where f : Rn → R is

■ Continuous
■ Not differentiable everywhere, in particular often not

differentiable at local minimizers
■ Not convex
■ Usually, but not always, locally Lipschitz: for all x there

exists Lx such that |f(x+ d)− f(x)| ≤ Lx‖d‖ for small ‖d‖
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differentiable at local minimizers
■ Not convex
■ Usually, but not always, locally Lipschitz: for all x there

exists Lx such that |f(x+ d)− f(x)| ≤ Lx‖d‖ for small ‖d‖

Lots of interesting applications
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Problem: find x that locally minimizes f , where f : Rn → R is

■ Continuous
■ Not differentiable everywhere, in particular often not

differentiable at local minimizers
■ Not convex
■ Usually, but not always, locally Lipschitz: for all x there

exists Lx such that |f(x+ d)− f(x)| ≤ Lx‖d‖ for small ‖d‖

Lots of interesting applications

Any locally Lipschitz function is differentiable almost everywhere
on its domain. So, whp, can evaluate gradient at any given point.
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Problem: find x that locally minimizes f , where f : Rn → R is

■ Continuous
■ Not differentiable everywhere, in particular often not

differentiable at local minimizers
■ Not convex
■ Usually, but not always, locally Lipschitz: for all x there

exists Lx such that |f(x+ d)− f(x)| ≤ Lx‖d‖ for small ‖d‖

Lots of interesting applications

Any locally Lipschitz function is differentiable almost everywhere
on its domain. So, whp, can evaluate gradient at any given point.

What happens if we simply use steepest descent (gradient
descent) with a standard line search?
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f(x)=10*|x
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In fact, it’s been known for several decades that at any given
iterate, we need to exploit the gradient information obtained at
several points, not just at one point. Some such methods:
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In fact, it’s been known for several decades that at any given
iterate, we need to exploit the gradient information obtained at
several points, not just at one point. Some such methods:

■ Bundle methods (C. Lemaréchal, K.C. Kiwiel, etc.):
extensive practical use and theoretical analysis, but
complicated in nonconvex case
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several points, not just at one point. Some such methods:

■ Bundle methods (C. Lemaréchal, K.C. Kiwiel, etc.):
extensive practical use and theoretical analysis, but
complicated in nonconvex case

■ Gradient sampling: an easily stated method with nice
convergence theory (J.V. Burke, A.S. Lewis, M.L.O., 2005;
K.C. Kiwiel, 2007), but computationally intensive
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In fact, it’s been known for several decades that at any given
iterate, we need to exploit the gradient information obtained at
several points, not just at one point. Some such methods:

■ Bundle methods (C. Lemaréchal, K.C. Kiwiel, etc.):
extensive practical use and theoretical analysis, but
complicated in nonconvex case

■ Gradient sampling: an easily stated method with nice
convergence theory (J.V. Burke, A.S. Lewis, M.L.O., 2005;
K.C. Kiwiel, 2007), but computationally intensive

■ BFGS: traditional workhorse for smooth optimization, works
amazingly well for nonsmooth optimization too, but very
limited convergence theory
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Let f(x) = 6|x1|+ 3x2. Note that f is polyhedral and convex.
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Let f(x) = 6|x1|+ 3x2. Note that f is polyhedral and convex.

On this function, using a bisection-based backtracking line

search with “Armijo” parameter in [0, 13 ] and starting at

[
2
3

]
,

steepest descent generates the sequence

2−k

[
2(−1)k

3

]
, k = 1, 2, . . . ,

converging to

[
0
0

]
.
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Let f(x) = 6|x1|+ 3x2. Note that f is polyhedral and convex.

On this function, using a bisection-based backtracking line

search with “Armijo” parameter in [0, 13 ] and starting at

[
2
3

]
,

steepest descent generates the sequence

2−k

[
2(−1)k

3

]
, k = 1, 2, . . . ,

converging to

[
0
0

]
.

In contrast, BFGS with the same line search rapidly reduces the
function value towards −∞ (arbitrarily far, in exact arithmetic)
(A.S. Lewis and S. Zhang, 2010).
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Fix sample size m ≥ n+ 1, line search parameter β ∈ (0, 1),
reduction factors µ ∈ (0, 1) and θ ∈ (0, 1).
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Fix sample size m ≥ n+ 1, line search parameter β ∈ (0, 1),
reduction factors µ ∈ (0, 1) and θ ∈ (0, 1).

Initialize sampling radius ǫ > 0, tolerance τ > 0, iterate x.
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Fix sample size m ≥ n+ 1, line search parameter β ∈ (0, 1),
reduction factors µ ∈ (0, 1) and θ ∈ (0, 1).

Initialize sampling radius ǫ > 0, tolerance τ > 0, iterate x.

Repeat (outer loop)
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Fix sample size m ≥ n+ 1, line search parameter β ∈ (0, 1),
reduction factors µ ∈ (0, 1) and θ ∈ (0, 1).

Initialize sampling radius ǫ > 0, tolerance τ > 0, iterate x.

Repeat (outer loop)

■ Repeat (inner loop: gradient sampling with fixed ǫ):
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Fix sample size m ≥ n+ 1, line search parameter β ∈ (0, 1),
reduction factors µ ∈ (0, 1) and θ ∈ (0, 1).

Initialize sampling radius ǫ > 0, tolerance τ > 0, iterate x.

Repeat (outer loop)

■ Repeat (inner loop: gradient sampling with fixed ǫ):

◆ Set G = {∇f(x),∇f(x+ ǫu1), . . . ,∇f(x+ ǫum)},
sampling u1, · · · , um from the unit ball
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Fix sample size m ≥ n+ 1, line search parameter β ∈ (0, 1),
reduction factors µ ∈ (0, 1) and θ ∈ (0, 1).

Initialize sampling radius ǫ > 0, tolerance τ > 0, iterate x.

Repeat (outer loop)

■ Repeat (inner loop: gradient sampling with fixed ǫ):

◆ Set G = {∇f(x),∇f(x+ ǫu1), . . . ,∇f(x+ ǫum)},
sampling u1, · · · , um from the unit ball

◆ Set g = argmin{||g|| : g ∈ conv(G)}
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Fix sample size m ≥ n+ 1, line search parameter β ∈ (0, 1),
reduction factors µ ∈ (0, 1) and θ ∈ (0, 1).

Initialize sampling radius ǫ > 0, tolerance τ > 0, iterate x.

Repeat (outer loop)

■ Repeat (inner loop: gradient sampling with fixed ǫ):

◆ Set G = {∇f(x),∇f(x+ ǫu1), . . . ,∇f(x+ ǫum)},
sampling u1, · · · , um from the unit ball

◆ Set g = argmin{||g|| : g ∈ conv(G)}
◆ If ‖g‖ > τ , do backtracking line search: set d = −g/‖g‖

and replace x by x+ td, with t ∈ {1, 12 ,
1
4 , . . .} and

f(x+ td) < f(x)− βt‖g‖
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Fix sample size m ≥ n+ 1, line search parameter β ∈ (0, 1),
reduction factors µ ∈ (0, 1) and θ ∈ (0, 1).

Initialize sampling radius ǫ > 0, tolerance τ > 0, iterate x.

Repeat (outer loop)

■ Repeat (inner loop: gradient sampling with fixed ǫ):

◆ Set G = {∇f(x),∇f(x+ ǫu1), . . . ,∇f(x+ ǫum)},
sampling u1, · · · , um from the unit ball

◆ Set g = argmin{||g|| : g ∈ conv(G)}
◆ If ‖g‖ > τ , do backtracking line search: set d = −g/‖g‖

and replace x by x+ td, with t ∈ {1, 12 ,
1
4 , . . .} and

f(x+ td) < f(x)− βt‖g‖

■ until ‖g‖ ≤ τ .
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Fix sample size m ≥ n+ 1, line search parameter β ∈ (0, 1),
reduction factors µ ∈ (0, 1) and θ ∈ (0, 1).

Initialize sampling radius ǫ > 0, tolerance τ > 0, iterate x.

Repeat (outer loop)

■ Repeat (inner loop: gradient sampling with fixed ǫ):

◆ Set G = {∇f(x),∇f(x+ ǫu1), . . . ,∇f(x+ ǫum)},
sampling u1, · · · , um from the unit ball

◆ Set g = argmin{||g|| : g ∈ conv(G)}
◆ If ‖g‖ > τ , do backtracking line search: set d = −g/‖g‖

and replace x by x+ td, with t ∈ {1, 12 ,
1
4 , . . .} and

f(x+ td) < f(x)− βt‖g‖

■ until ‖g‖ ≤ τ .

■ New phase: set ǫ = µǫ and τ = θτ .
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Fix sample size m ≥ n+ 1, line search parameter β ∈ (0, 1),
reduction factors µ ∈ (0, 1) and θ ∈ (0, 1).

Initialize sampling radius ǫ > 0, tolerance τ > 0, iterate x.

Repeat (outer loop)

■ Repeat (inner loop: gradient sampling with fixed ǫ):

◆ Set G = {∇f(x),∇f(x+ ǫu1), . . . ,∇f(x+ ǫum)},
sampling u1, · · · , um from the unit ball

◆ Set g = argmin{||g|| : g ∈ conv(G)}
◆ If ‖g‖ > τ , do backtracking line search: set d = −g/‖g‖

and replace x by x+ td, with t ∈ {1, 12 ,
1
4 , . . .} and

f(x+ td) < f(x)− βt‖g‖

■ until ‖g‖ ≤ τ .

■ New phase: set ǫ = µǫ and τ = θτ .

J.V. Burke, A.S. Lewis and M.L.O., SIOPT, 2005.
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Assume f : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : f is differentiable at x}.
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Assume f : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : f is differentiable at x}.

Rademacher’s Theorem: Rn\D has measure zero.
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Assume f : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : f is differentiable at x}.

Rademacher’s Theorem: Rn\D has measure zero.

The Clarke subdifferential of f at x̄ is

∂f(x̄) = conv

{
lim

x→x̄,x∈D
∇f(x)

}
.
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Assume f : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : f is differentiable at x}.

Rademacher’s Theorem: Rn\D has measure zero.

The Clarke subdifferential of f at x̄ is

∂f(x̄) = conv

{
lim

x→x̄,x∈D
∇f(x)

}
.

F.H. Clarke, 1973 (he used the name “generalized gradient”).
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Assume f : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : f is differentiable at x}.

Rademacher’s Theorem: Rn\D has measure zero.

The Clarke subdifferential of f at x̄ is

∂f(x̄) = conv

{
lim

x→x̄,x∈D
∇f(x)

}
.

F.H. Clarke, 1973 (he used the name “generalized gradient”).

If f is continuously differentiable at x̄, then ∂f(x̄) = {∇f(x̄)}.
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If f is continuously differentiable at x̄, then ∂f(x̄) = {∇f(x̄)}.

If f is convex, ∂f is the subdifferential of convex analysis.
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Assume f : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : f is differentiable at x}.

Rademacher’s Theorem: Rn\D has measure zero.

The Clarke subdifferential of f at x̄ is

∂f(x̄) = conv

{
lim

x→x̄,x∈D
∇f(x)

}
.

F.H. Clarke, 1973 (he used the name “generalized gradient”).

If f is continuously differentiable at x̄, then ∂f(x̄) = {∇f(x̄)}.

If f is convex, ∂f is the subdifferential of convex analysis.

We say x̄ is Clarke stationary for f if 0 ∈ ∂f(x̄).

Key point: the convex hull of the set G generated by Gradient
Sampling is a surrogate for ∂f .
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Lemma. Let G be a compact convex set. Then

−dist(0, G) = min
‖d‖≤1

max
g∈G

gTd
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Lemma. Let G be a compact convex set. Then

−dist(0, G) = min
‖d‖≤1

max
g∈G

gTd

Proof.
−dist(0, G) = −min

g∈G
‖g‖
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Note: the distance is nonnegative, and zero iff 0 ∈ G.
Otherwise, equality is attained by g = ΠG(0), d = −g/|g‖.
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Lemma. Let G be a compact convex set. Then

−dist(0, G) = min
‖d‖≤1

max
g∈G

gTd

Proof.
−dist(0, G) = −min

g∈G
‖g‖

= −min
g∈G

max
‖d‖≤1

gTd

= − max
‖d‖≤1

min
g∈G

gTd

= − max
‖d‖≤1

min
g∈G

gT (−d)

= min
‖d‖≤1

max
g∈G

gTd.

Note: the distance is nonnegative, and zero iff 0 ∈ G.
Otherwise, equality is attained by g = ΠG(0), d = −g/|g‖.
Ordinary steepest descent: G = {∇f(x)}.
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Suppose that f : Rn → R

■ is locally Lipschitz
■ is continuously differentiable on an open dense subset of Rn

■ has bounded level sets

Then, with probability one, the line search always terminates, f
is differentiable at every iterate x, and if the sequence of iterates
{x} converges to some point x̄, then, with probability one
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■ has bounded level sets

Then, with probability one, the line search always terminates, f
is differentiable at every iterate x, and if the sequence of iterates
{x} converges to some point x̄, then, with probability one

■ the inner loop always terminates, so the sequences of
sampling radii {ǫ} and tolerances {τ} converge to zero, and
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Suppose that f : Rn → R

■ is locally Lipschitz
■ is continuously differentiable on an open dense subset of Rn

■ has bounded level sets

Then, with probability one, the line search always terminates, f
is differentiable at every iterate x, and if the sequence of iterates
{x} converges to some point x̄, then, with probability one

■ the inner loop always terminates, so the sequences of
sampling radii {ǫ} and tolerances {τ} converge to zero, and

■ x̄ is Clarke stationary for f , i.e., 0 ∈ ∂f(x̄).
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Suppose that f : Rn → R

■ is locally Lipschitz
■ is continuously differentiable on an open dense subset of Rn

■ has bounded level sets

Then, with probability one, the line search always terminates, f
is differentiable at every iterate x, and if the sequence of iterates
{x} converges to some point x̄, then, with probability one

■ the inner loop always terminates, so the sequences of
sampling radii {ǫ} and tolerances {τ} converge to zero, and

■ x̄ is Clarke stationary for f , i.e., 0 ∈ ∂f(x̄).

J.V. Burke, A.S. Lewis and M.L.O., SIOPT, 2005.
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Suppose that f : Rn → R

■ is locally Lipschitz
■ is continuously differentiable on an open dense subset of Rn

■ has bounded level sets

Then, with probability one, the line search always terminates, f
is differentiable at every iterate x, and if the sequence of iterates
{x} converges to some point x̄, then, with probability one

■ the inner loop always terminates, so the sequences of
sampling radii {ǫ} and tolerances {τ} converge to zero, and

■ x̄ is Clarke stationary for f , i.e., 0 ∈ ∂f(x̄).

J.V. Burke, A.S. Lewis and M.L.O., SIOPT, 2005.

Drop the assumption that f has bounded level sets. Then, wp 1,
either the sequence {f(x)} → −∞, or every cluster point of the
sequence of iterates {x} is Clarke stationary.
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Suppose that f : Rn → R

■ is locally Lipschitz
■ is continuously differentiable on an open dense subset of Rn

■ has bounded level sets

Then, with probability one, the line search always terminates, f
is differentiable at every iterate x, and if the sequence of iterates
{x} converges to some point x̄, then, with probability one

■ the inner loop always terminates, so the sequences of
sampling radii {ǫ} and tolerances {τ} converge to zero, and

■ x̄ is Clarke stationary for f , i.e., 0 ∈ ∂f(x̄).

J.V. Burke, A.S. Lewis and M.L.O., SIOPT, 2005.

Drop the assumption that f has bounded level sets. Then, wp 1,
either the sequence {f(x)} → −∞, or every cluster point of the
sequence of iterates {x} is Clarke stationary.

K.C. Kiwiel, SIOPT, 2007.
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where f and c1, . . . , cp are locally Lipschitz but may not be
differentiable at local minimizers.
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min f(x)

subject to ci(x) ≤ 0, i = 1, . . . , p

where f and c1, . . . , cp are locally Lipschitz but may not be
differentiable at local minimizers.

A successive quadratic programming gradient sampling method
with convergence theory.
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min f(x)

subject to ci(x) ≤ 0, i = 1, . . . , p

where f and c1, . . . , cp are locally Lipschitz but may not be
differentiable at local minimizers.

A successive quadratic programming gradient sampling method
with convergence theory.

F.E. Curtis and M.L.O., SIOPT, 2012.



Quasi-Newton Methods

Introduction

Gradient Sampling

Quasi-Newton
Methods

Bill Davidon

Fletcher and Powell

BFGS
The BFGS Method
(”Full” Version)

BFGS for
Nonsmooth
Optimization

With BFGS
Example:
Minimizing a
Product of
Eigenvalues

BFGS from 10
Randomly Generated
Starting Points

Evolution of
Eigenvalues of
A ◦ X
Evolution of
Eigenvalues of H

Regularity

Partly Smooth
Functions
Same Example
Again

Relation of Partial
Smoothness to
Earlier Work

16 / 59



Bill Davidon

Introduction

Gradient Sampling

Quasi-Newton
Methods

Bill Davidon

Fletcher and Powell

BFGS
The BFGS Method
(”Full” Version)

BFGS for
Nonsmooth
Optimization

With BFGS
Example:
Minimizing a
Product of
Eigenvalues

BFGS from 10
Randomly Generated
Starting Points

Evolution of
Eigenvalues of
A ◦ X
Evolution of
Eigenvalues of H

Regularity

Partly Smooth
Functions
Same Example
Again

Relation of Partial
Smoothness to
Earlier Work

17 / 59

W. Davidon, a physicist at Argonne, had the breakthrough idea
in 1959: since it’s too expensive to compute and factor the
Hessian ∇2f(x) at every iteration, update an approximation to
its inverse using information from gradient differences, and
multiply this onto the negative gradient to approximate
Newton’s method.
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in 1959: since it’s too expensive to compute and factor the
Hessian ∇2f(x) at every iteration, update an approximation to
its inverse using information from gradient differences, and
multiply this onto the negative gradient to approximate
Newton’s method.

Each inverse Hessian approximation differs from the previous one
by a rank-two correction.
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W. Davidon, a physicist at Argonne, had the breakthrough idea
in 1959: since it’s too expensive to compute and factor the
Hessian ∇2f(x) at every iteration, update an approximation to
its inverse using information from gradient differences, and
multiply this onto the negative gradient to approximate
Newton’s method.

Each inverse Hessian approximation differs from the previous one
by a rank-two correction.

Ahead of its time: the paper was rejected by the physics
journals, but published 30 years later in the first issue of SIAM J.
Optimization.
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W. Davidon, a physicist at Argonne, had the breakthrough idea
in 1959: since it’s too expensive to compute and factor the
Hessian ∇2f(x) at every iteration, update an approximation to
its inverse using information from gradient differences, and
multiply this onto the negative gradient to approximate
Newton’s method.

Each inverse Hessian approximation differs from the previous one
by a rank-two correction.

Ahead of its time: the paper was rejected by the physics
journals, but published 30 years later in the first issue of SIAM J.
Optimization.

Davidon was a well known active anti-war protester during the
Vietnam War. In December 2013, it was revealed that he was
the mastermind behind the break-in at the FBI office in Media,
PA, on March 8, 1971, during the Muhammad Ali - Joe Frazier
world heavyweight boxing championship.
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In 1963, R. Fletcher and M.J.D. Powell improved Davidon’s
method and established convergence for convex quadratic
functions.
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In 1963, R. Fletcher and M.J.D. Powell improved Davidon’s
method and established convergence for convex quadratic
functions.

They applied it to solve problems in 100 variables: a lot at the
time.
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In 1963, R. Fletcher and M.J.D. Powell improved Davidon’s
method and established convergence for convex quadratic
functions.

They applied it to solve problems in 100 variables: a lot at the
time.

The method became known as the DFP method.
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In 1970, C.G. Broyden, R. Fletcher, D. Goldfarb and D. Shanno
all independently proposed the BFGS method, which is a kind of
dual of the DFP method. It was soon recognized that this was a
remarkably effective method for smooth optimization.
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In 1970, C.G. Broyden, R. Fletcher, D. Goldfarb and D. Shanno
all independently proposed the BFGS method, which is a kind of
dual of the DFP method. It was soon recognized that this was a
remarkably effective method for smooth optimization.

In 1973, C.G. Broyden, J.E. Dennis and J.J. Moré proved generic
local superlinear convergence of BFGS and DFP and other
quasi-Newton methods.
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In 1970, C.G. Broyden, R. Fletcher, D. Goldfarb and D. Shanno
all independently proposed the BFGS method, which is a kind of
dual of the DFP method. It was soon recognized that this was a
remarkably effective method for smooth optimization.

In 1973, C.G. Broyden, J.E. Dennis and J.J. Moré proved generic
local superlinear convergence of BFGS and DFP and other
quasi-Newton methods.

In 1975, M.J.D. Powell established convergence of BFGS with an
inexact Armijo-Wolfe line search for a general class of smooth
convex functions for BFGS. In 1987, this was extended by
R.H. Byrd, J. Nocedal and Y.-X. Yuan to include the whole
“Broyden” class of methods interpolating BFGS and DFP:
except for the DFP end point.
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In 1970, C.G. Broyden, R. Fletcher, D. Goldfarb and D. Shanno
all independently proposed the BFGS method, which is a kind of
dual of the DFP method. It was soon recognized that this was a
remarkably effective method for smooth optimization.

In 1973, C.G. Broyden, J.E. Dennis and J.J. Moré proved generic
local superlinear convergence of BFGS and DFP and other
quasi-Newton methods.

In 1975, M.J.D. Powell established convergence of BFGS with an
inexact Armijo-Wolfe line search for a general class of smooth
convex functions for BFGS. In 1987, this was extended by
R.H. Byrd, J. Nocedal and Y.-X. Yuan to include the whole
“Broyden” class of methods interpolating BFGS and DFP:
except for the DFP end point.

Pathological counterexamples to convergence in the smooth,
nonconvex case are known to exist (Y.-H. Dai, 2002, 2013;
W. Mascarenhas 2004), but it is widely accepted that the
method works well in practice in the smooth, nonconvex case.
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Choose line search parameters 0 < β < γ < 1
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Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)
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Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)

Repeat



The BFGS Method (”Full” Version)

Introduction

Gradient Sampling

Quasi-Newton
Methods

Bill Davidon

Fletcher and Powell

BFGS
The BFGS Method
(”Full” Version)

BFGS for
Nonsmooth
Optimization

With BFGS
Example:
Minimizing a
Product of
Eigenvalues

BFGS from 10
Randomly Generated
Starting Points

Evolution of
Eigenvalues of
A ◦ X
Evolution of
Eigenvalues of H

Regularity

Partly Smooth
Functions
Same Example
Again

Relation of Partial
Smoothness to
Earlier Work

20 / 59

Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)

Repeat

■ Set d = −H∇f(x). Let α = ∇f(x)Td < 0
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Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)

Repeat

■ Set d = −H∇f(x). Let α = ∇f(x)Td < 0
■ Armijo-Wolfe line search: find t so that

f(x+ td) < f(x) + βtα and ∇f(x+ td)Td > γα
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Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)

Repeat

■ Set d = −H∇f(x). Let α = ∇f(x)Td < 0
■ Armijo-Wolfe line search: find t so that

f(x+ td) < f(x) + βtα and ∇f(x+ td)Td > γα
■ Set s = td, y = ∇f(x+ td)−∇f(x)
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Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)

Repeat

■ Set d = −H∇f(x). Let α = ∇f(x)Td < 0
■ Armijo-Wolfe line search: find t so that

f(x+ td) < f(x) + βtα and ∇f(x+ td)Td > γα
■ Set s = td, y = ∇f(x+ td)−∇f(x)
■ Replace x by x+ td
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Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)

Repeat

■ Set d = −H∇f(x). Let α = ∇f(x)Td < 0
■ Armijo-Wolfe line search: find t so that

f(x+ td) < f(x) + βtα and ∇f(x+ td)Td > γα
■ Set s = td, y = ∇f(x+ td)−∇f(x)
■ Replace x by x+ td
■ Replace H by V HV T + 1

sT y
ssT , where V = I − 1

sT y
syT
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Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)

Repeat

■ Set d = −H∇f(x). Let α = ∇f(x)Td < 0
■ Armijo-Wolfe line search: find t so that

f(x+ td) < f(x) + βtα and ∇f(x+ td)Td > γα
■ Set s = td, y = ∇f(x+ td)−∇f(x)
■ Replace x by x+ td
■ Replace H by V HV T + 1

sT y
ssT , where V = I − 1

sT y
syT

Note that H can be computed in O(n2) operations since V is a
rank one perturbation of the identity
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Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)

Repeat

■ Set d = −H∇f(x). Let α = ∇f(x)Td < 0
■ Armijo-Wolfe line search: find t so that

f(x+ td) < f(x) + βtα and ∇f(x+ td)Td > γα
■ Set s = td, y = ∇f(x+ td)−∇f(x)
■ Replace x by x+ td
■ Replace H by V HV T + 1

sT y
ssT , where V = I − 1

sT y
syT

Note that H can be computed in O(n2) operations since V is a
rank one perturbation of the identity
The Armijo condition ensures “sufficient decrease” in f
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Choose line search parameters 0 < β < γ < 1

Initialize iterate x and positive-definite symmetric matrix H
(which is supposed to approximate the inverse Hessian of f)

Repeat

■ Set d = −H∇f(x). Let α = ∇f(x)Td < 0
■ Armijo-Wolfe line search: find t so that

f(x+ td) < f(x) + βtα and ∇f(x+ td)Td > γα
■ Set s = td, y = ∇f(x+ td)−∇f(x)
■ Replace x by x+ td
■ Replace H by V HV T + 1

sT y
ssT , where V = I − 1

sT y
syT

Note that H can be computed in O(n2) operations since V is a
rank one perturbation of the identity
The Armijo condition ensures “sufficient decrease” in f
The Wolfe condition ensures that the directional derivative along
the line increases algebraically, which guarantees that sT y > 0
and that the new H is positive definite.
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In 1982, C. Lemaréchal observed that quasi-Newton methods can be
effective for nonsmooth optimization, but dismissed them as there was
no theory behind them and no good way to terminate them.
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In 1982, C. Lemaréchal observed that quasi-Newton methods can be
effective for nonsmooth optimization, but dismissed them as there was
no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until
A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in
detail, but our convergence results are limited to special cases.
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In 1982, C. Lemaréchal observed that quasi-Newton methods can be
effective for nonsmooth optimization, but dismissed them as there was
no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until
A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in
detail, but our convergence results are limited to special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on
reducing the magnitude of the directional derivative along the line!
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In 1982, C. Lemaréchal observed that quasi-Newton methods can be
effective for nonsmooth optimization, but dismissed them as there was
no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until
A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in
detail, but our convergence results are limited to special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on
reducing the magnitude of the directional derivative along the line!

In the nonsmooth case, BFGS builds a very ill-conditioned inverse
“Hessian” approximation, with some tiny eigenvalues converging to
zero, corresponding to “infinitely large” curvature in the directions
defined by the associated eigenvectors.
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In 1982, C. Lemaréchal observed that quasi-Newton methods can be
effective for nonsmooth optimization, but dismissed them as there was
no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until
A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in
detail, but our convergence results are limited to special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on
reducing the magnitude of the directional derivative along the line!

In the nonsmooth case, BFGS builds a very ill-conditioned inverse
“Hessian” approximation, with some tiny eigenvalues converging to
zero, corresponding to “infinitely large” curvature in the directions
defined by the associated eigenvectors.

Remarkably, the condition number of the inverse Hessian
approximation typically reaches 1016 before the method breaks down.
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In 1982, C. Lemaréchal observed that quasi-Newton methods can be
effective for nonsmooth optimization, but dismissed them as there was
no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until
A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in
detail, but our convergence results are limited to special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on
reducing the magnitude of the directional derivative along the line!

In the nonsmooth case, BFGS builds a very ill-conditioned inverse
“Hessian” approximation, with some tiny eigenvalues converging to
zero, corresponding to “infinitely large” curvature in the directions
defined by the associated eigenvectors.

Remarkably, the condition number of the inverse Hessian
approximation typically reaches 1016 before the method breaks down.

We have never seen convergence to non-stationary points that cannot
be explained by numerical difficulties.
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In 1982, C. Lemaréchal observed that quasi-Newton methods can be
effective for nonsmooth optimization, but dismissed them as there was
no theory behind them and no good way to terminate them.

Otherwise, there is not much in the literature on the subject until
A.S. Lewis and M.L.O. (Math. Prog., 2013): we address both issues in
detail, but our convergence results are limited to special cases.

Key point: use the original Armijo-Wolfe line search. Do not insist on
reducing the magnitude of the directional derivative along the line!

In the nonsmooth case, BFGS builds a very ill-conditioned inverse
“Hessian” approximation, with some tiny eigenvalues converging to
zero, corresponding to “infinitely large” curvature in the directions
defined by the associated eigenvectors.

Remarkably, the condition number of the inverse Hessian
approximation typically reaches 1016 before the method breaks down.

We have never seen convergence to non-stationary points that cannot
be explained by numerical difficulties.

Convergence rate of BFGS is typically linear (not superlinear) in the
nonsmooth case.
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f(x)=10*|x
2
 − x

1
2| + (1−x

1
)2

steepest descent, grad sampling and BFGS iterates
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Let SN denote the space of real symmetric N ×N matrices, and

λ1(X) ≥ λ2(X) ≥ · · ·λN (X)

denote the eigenvalues of X ∈ SN .
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Let SN denote the space of real symmetric N ×N matrices, and

λ1(X) ≥ λ2(X) ≥ · · ·λN (X)

denote the eigenvalues of X ∈ SN . We wish to minimize

f(X) = log

N/2∏

i=1

λi(A ◦X)

where A ∈ SN is fixed and ◦ is the Hadamard (componentwise)
matrix product, subject to the constraints that X is positive
semidefinite and has diagonal entries equal to 1.
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Let SN denote the space of real symmetric N ×N matrices, and

λ1(X) ≥ λ2(X) ≥ · · ·λN (X)

denote the eigenvalues of X ∈ SN . We wish to minimize

f(X) = log

N/2∏

i=1

λi(A ◦X)

where A ∈ SN is fixed and ◦ is the Hadamard (componentwise)
matrix product, subject to the constraints that X is positive
semidefinite and has diagonal entries equal to 1.

If we replace
∏

by
∑

we would have a semidefinite program.
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Let SN denote the space of real symmetric N ×N matrices, and

λ1(X) ≥ λ2(X) ≥ · · ·λN (X)

denote the eigenvalues of X ∈ SN . We wish to minimize

f(X) = log

N/2∏

i=1

λi(A ◦X)

where A ∈ SN is fixed and ◦ is the Hadamard (componentwise)
matrix product, subject to the constraints that X is positive
semidefinite and has diagonal entries equal to 1.

If we replace
∏

by
∑

we would have a semidefinite program.

Since f is not convex, may as well replace X by Y Y T where
Y ∈ R

N×N : eliminates psd constraint, and then also easy to
eliminate diagonal constraint.
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Let SN denote the space of real symmetric N ×N matrices, and

λ1(X) ≥ λ2(X) ≥ · · ·λN (X)

denote the eigenvalues of X ∈ SN . We wish to minimize

f(X) = log

N/2∏

i=1

λi(A ◦X)

where A ∈ SN is fixed and ◦ is the Hadamard (componentwise)
matrix product, subject to the constraints that X is positive
semidefinite and has diagonal entries equal to 1.

If we replace
∏

by
∑

we would have a semidefinite program.

Since f is not convex, may as well replace X by Y Y T where
Y ∈ R

N×N : eliminates psd constraint, and then also easy to
eliminate diagonal constraint.

Application: entropy minimization in an environmental
application (K.M. Anstreicher and J. Lee, 2004)
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f − fopt, where fopt is least value of f found over all runs
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A locally Lipschitz, directionally differentiable function f is
regular (Clarke 1970s) near a point x when its directional
derivative x 7→ f ′(x; d) is upper semicontinuous there for every
fixed direction d.
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A locally Lipschitz, directionally differentiable function f is
regular (Clarke 1970s) near a point x when its directional
derivative x 7→ f ′(x; d) is upper semicontinuous there for every
fixed direction d.

In this case 0 ∈ ∂f(x) is equivalent to the first-order optimality
condition f ′(x, d) ≥ 0 for all directions d.
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A locally Lipschitz, directionally differentiable function f is
regular (Clarke 1970s) near a point x when its directional
derivative x 7→ f ′(x; d) is upper semicontinuous there for every
fixed direction d.

In this case 0 ∈ ∂f(x) is equivalent to the first-order optimality
condition f ′(x, d) ≥ 0 for all directions d.

■ All convex functions are regular
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A locally Lipschitz, directionally differentiable function f is
regular (Clarke 1970s) near a point x when its directional
derivative x 7→ f ′(x; d) is upper semicontinuous there for every
fixed direction d.

In this case 0 ∈ ∂f(x) is equivalent to the first-order optimality
condition f ′(x, d) ≥ 0 for all directions d.

■ All convex functions are regular
■ All smooth functions are regular
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A locally Lipschitz, directionally differentiable function f is
regular (Clarke 1970s) near a point x when its directional
derivative x 7→ f ′(x; d) is upper semicontinuous there for every
fixed direction d.

In this case 0 ∈ ∂f(x) is equivalent to the first-order optimality
condition f ′(x, d) ≥ 0 for all directions d.

■ All convex functions are regular
■ All smooth functions are regular
■ Nonsmooth concave functions are not regular

Example: f(x) = −|x|
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A locally Lipschitz, directionally differentiable function f is
regular (Clarke 1970s) near a point x when its directional
derivative x 7→ f ′(x; d) is upper semicontinuous there for every
fixed direction d.

In this case 0 ∈ ∂f(x) is equivalent to the first-order optimality
condition f ′(x, d) ≥ 0 for all directions d.

■ All convex functions are regular
■ All smooth functions are regular
■ Nonsmooth concave functions are not regular

Example: f(x) = −|x|

Note: this is simpler than the definition of regularity at a point

given in last week’s lecture.
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A regular function f is partly smooth at x relative to a manifold
M containing x (A.S. Lewis 2003) if
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A regular function f is partly smooth at x relative to a manifold
M containing x (A.S. Lewis 2003) if

■ its restriction to M is twice continuously differentiable near x
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A regular function f is partly smooth at x relative to a manifold
M containing x (A.S. Lewis 2003) if

■ its restriction to M is twice continuously differentiable near x
■ the Clarke subdifferential ∂f is continuous on M near x
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A regular function f is partly smooth at x relative to a manifold
M containing x (A.S. Lewis 2003) if

■ its restriction to M is twice continuously differentiable near x
■ the Clarke subdifferential ∂f is continuous on M near x
■ par ∂f(x), the subspace parallel to the affine hull of the

subdifferential of f at x, is exactly the subspace normal to
M at x.
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A regular function f is partly smooth at x relative to a manifold
M containing x (A.S. Lewis 2003) if

■ its restriction to M is twice continuously differentiable near x
■ the Clarke subdifferential ∂f is continuous on M near x
■ par ∂f(x), the subspace parallel to the affine hull of the

subdifferential of f at x, is exactly the subspace normal to
M at x.

We refer to par ∂f(x) as the V-space for f at x (with respect to
M), and to its orthogonal complement, the subspace tangent to
M at x, as the U-space for f at x.
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A regular function f is partly smooth at x relative to a manifold
M containing x (A.S. Lewis 2003) if

■ its restriction to M is twice continuously differentiable near x
■ the Clarke subdifferential ∂f is continuous on M near x
■ par ∂f(x), the subspace parallel to the affine hull of the

subdifferential of f at x, is exactly the subspace normal to
M at x.

We refer to par ∂f(x) as the V-space for f at x (with respect to
M), and to its orthogonal complement, the subspace tangent to
M at x, as the U-space for f at x.

When we refer to the V-space and U-space without reference to
a point x, we mean at a minimizer.
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A regular function f is partly smooth at x relative to a manifold
M containing x (A.S. Lewis 2003) if

■ its restriction to M is twice continuously differentiable near x
■ the Clarke subdifferential ∂f is continuous on M near x
■ par ∂f(x), the subspace parallel to the affine hull of the

subdifferential of f at x, is exactly the subspace normal to
M at x.

We refer to par ∂f(x) as the V-space for f at x (with respect to
M), and to its orthogonal complement, the subspace tangent to
M at x, as the U-space for f at x.

When we refer to the V-space and U-space without reference to
a point x, we mean at a minimizer.

For nonzero y in the V-space, the mapping t 7→ f(x+ ty) is
necessarily nonsmooth at t = 0, while for nonzero y in the
U-space, t 7→ f(x+ ty) is differentiable at t = 0 as long as f is
locally Lipschitz.
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f(x)=10*|x
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steepest descent, grad sampling and BFGS iterates
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Partial smoothness is closely related to earlier work of J.V. Burke
and J.J. Moré (1990,1994) and S.J. Wright (1993) on
identification of constraint structure by algorithms.
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Partial smoothness is closely related to earlier work of J.V. Burke
and J.J. Moré (1990,1994) and S.J. Wright (1993) on
identification of constraint structure by algorithms.

When f is convex, the partly smooth nomenclature is consistent
with the usage of V-space and U-space by C. Lemaréchal,
F. Oustry and C. Sagastizábal (2000), but partial smoothness
does not imply convexity and convexity does not imply partial
smoothness.
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The eigenvalue product is partly smooth with respect to the
manifold of matrices with an eigenvalue with given multiplicity.
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The eigenvalue product is partly smooth with respect to the
manifold of matrices with an eigenvalue with given multiplicity.

Recall that at the computed minimizer,

λ6(A ◦X) ≈ . . . ≈ λ14(A ◦X).

Matrix theory says that imposing multiplicity m on an eigenvalue
a matrix ∈ SN is m(m+1)

2 − 1 conditions, or 44 when m = 9, so
the dimension of the V -space at this minimizer is 44.
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The eigenvalue product is partly smooth with respect to the
manifold of matrices with an eigenvalue with given multiplicity.

Recall that at the computed minimizer,

λ6(A ◦X) ≈ . . . ≈ λ14(A ◦X).

Matrix theory says that imposing multiplicity m on an eigenvalue
a matrix ∈ SN is m(m+1)

2 − 1 conditions, or 44 when m = 9, so
the dimension of the V -space at this minimizer is 44.

Thus BFGS automatically detected the U and V space
partitioning without knowing anything about the mathematical
structure of f !
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Assume f is locally Lipschitz with bounded level sets and is
semi-algebraic
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Assume f is locally Lipschitz with bounded level sets and is
semi-algebraic

Assume the initial x and H are generated randomly (e.g. from
normal and Wishart distributions)
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Assume f is locally Lipschitz with bounded level sets and is
semi-algebraic

Assume the initial x and H are generated randomly (e.g. from
normal and Wishart distributions)

Prove or disprove that the following hold with probability one:
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Assume f is locally Lipschitz with bounded level sets and is
semi-algebraic

Assume the initial x and H are generated randomly (e.g. from
normal and Wishart distributions)

Prove or disprove that the following hold with probability one:

1. BFGS generates an infinite sequence {x} with f
differentiable at all iterates
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Assume f is locally Lipschitz with bounded level sets and is
semi-algebraic

Assume the initial x and H are generated randomly (e.g. from
normal and Wishart distributions)

Prove or disprove that the following hold with probability one:

1. BFGS generates an infinite sequence {x} with f
differentiable at all iterates

2. Any cluster point x̄ is Clarke stationary
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Assume f is locally Lipschitz with bounded level sets and is
semi-algebraic

Assume the initial x and H are generated randomly (e.g. from
normal and Wishart distributions)

Prove or disprove that the following hold with probability one:

1. BFGS generates an infinite sequence {x} with f
differentiable at all iterates

2. Any cluster point x̄ is Clarke stationary
3. The sequence of function values generated (including all of

the line search iterates) converges to f(x̄) R-linearly
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Assume f is locally Lipschitz with bounded level sets and is
semi-algebraic

Assume the initial x and H are generated randomly (e.g. from
normal and Wishart distributions)

Prove or disprove that the following hold with probability one:

1. BFGS generates an infinite sequence {x} with f
differentiable at all iterates

2. Any cluster point x̄ is Clarke stationary
3. The sequence of function values generated (including all of

the line search iterates) converges to f(x̄) R-linearly
4. If {x} converges to x̄ where f is “partly smooth” w.r.t. a

manifold M then the subspace defined by the eigenvectors
corresponding to eigenvalues of H converging to zero
converges to the “V-space” of f w.r.t. M at x̄
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A combined BFGS-Gradient Sampling method with convergence
theory (F.E. Curtis and X. Que, 2015)
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A combined BFGS-Gradient Sampling method with convergence
theory (F.E. Curtis and X. Que, 2015)

Constrained Problems

min f(x)

subject to ci(x) ≤ 0, i = 1, . . . , p

where f and c1, . . . , cp are locally Lipschitz but may not be
differentiable at local minimizers.
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A combined BFGS-Gradient Sampling method with convergence
theory (F.E. Curtis and X. Que, 2015)

Constrained Problems

min f(x)

subject to ci(x) ≤ 0, i = 1, . . . , p

where f and c1, . . . , cp are locally Lipschitz but may not be
differentiable at local minimizers.

A successive quadratic programming (SQP) BFGS method
applied to challenging problems in static-output-feedback control
design (F.E. Curtis, T. Mitchell and M.L.O., 2015).
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A combined BFGS-Gradient Sampling method with convergence
theory (F.E. Curtis and X. Que, 2015)

Constrained Problems

min f(x)

subject to ci(x) ≤ 0, i = 1, . . . , p

where f and c1, . . . , cp are locally Lipschitz but may not be
differentiable at local minimizers.

A successive quadratic programming (SQP) BFGS method
applied to challenging problems in static-output-feedback control
design (F.E. Curtis, T. Mitchell and M.L.O., 2015).

Although there are no theoretical results, it is much more
efficient and effective than the SQP Gradient Sampling method
which does have convergence results.
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Consider a generalization of the Rosenbrock (1960) function:

Rp(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − x2i |
p, where p > 0.
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Consider a generalization of the Rosenbrock (1960) function:

Rp(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − x2i |
p, where p > 0.

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Rp(x
∗) = 0.
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Consider a generalization of the Rosenbrock (1960) function:

Rp(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − x2i |
p, where p > 0.

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Rp(x
∗) = 0.

Define x̂ = [−1, 1, 1, . . . , 1]T with Rp(x̂) = 1 and the manifold

MR = {x : xi+1 = x2i , i = 1, . . . , n− 1}
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Consider a generalization of the Rosenbrock (1960) function:

Rp(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − x2i |
p, where p > 0.

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Rp(x
∗) = 0.

Define x̂ = [−1, 1, 1, . . . , 1]T with Rp(x̂) = 1 and the manifold

MR = {x : xi+1 = x2i , i = 1, . . . , n− 1}

For x ∈ MR, e.g. x = x∗ or x = x̂, the 2nd term of Rp is zero.
Starting at x̂, BFGS needs to approximately follow MR to reach
x∗ (unless it “gets lucky”).
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Consider a generalization of the Rosenbrock (1960) function:

Rp(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − x2i |
p, where p > 0.

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Rp(x
∗) = 0.

Define x̂ = [−1, 1, 1, . . . , 1]T with Rp(x̂) = 1 and the manifold

MR = {x : xi+1 = x2i , i = 1, . . . , n− 1}

For x ∈ MR, e.g. x = x∗ or x = x̂, the 2nd term of Rp is zero.
Starting at x̂, BFGS needs to approximately follow MR to reach
x∗ (unless it “gets lucky”).

When p = 2: R2 is smooth but not convex. Starting at x̂:
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Consider a generalization of the Rosenbrock (1960) function:

Rp(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − x2i |
p, where p > 0.

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Rp(x
∗) = 0.

Define x̂ = [−1, 1, 1, . . . , 1]T with Rp(x̂) = 1 and the manifold

MR = {x : xi+1 = x2i , i = 1, . . . , n− 1}

For x ∈ MR, e.g. x = x∗ or x = x̂, the 2nd term of Rp is zero.
Starting at x̂, BFGS needs to approximately follow MR to reach
x∗ (unless it “gets lucky”).

When p = 2: R2 is smooth but not convex. Starting at x̂:

■ n = 5: BFGS needs 43 iterations to reduce R2 below 10−15
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Consider a generalization of the Rosenbrock (1960) function:

Rp(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − x2i |
p, where p > 0.

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Rp(x
∗) = 0.

Define x̂ = [−1, 1, 1, . . . , 1]T with Rp(x̂) = 1 and the manifold

MR = {x : xi+1 = x2i , i = 1, . . . , n− 1}

For x ∈ MR, e.g. x = x∗ or x = x̂, the 2nd term of Rp is zero.
Starting at x̂, BFGS needs to approximately follow MR to reach
x∗ (unless it “gets lucky”).

When p = 2: R2 is smooth but not convex. Starting at x̂:

■ n = 5: BFGS needs 43 iterations to reduce R2 below 10−15

■ n = 10, BFGS needs 276 iterations to reduce R2 below 10−15.
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R1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − x2i |
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R1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − x2i |

R1 is nonsmooth (but locally Lipschitz) as well as nonconvex.
The second term is still zero on the manifold MR, but R1 is not
differentiable on MR.
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R1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − x2i |

R1 is nonsmooth (but locally Lipschitz) as well as nonconvex.
The second term is still zero on the manifold MR, but R1 is not
differentiable on MR.

However, R1 is regular at x ∈ MR and partly smooth at x w.r.t.
MR.
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i=1

|xi+1 − x2i |

R1 is nonsmooth (but locally Lipschitz) as well as nonconvex.
The second term is still zero on the manifold MR, but R1 is not
differentiable on MR.

However, R1 is regular at x ∈ MR and partly smooth at x w.r.t.
MR.

We cannot initialize BFGS at x̂, so starting at normally
distributed random points:
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R1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − x2i |

R1 is nonsmooth (but locally Lipschitz) as well as nonconvex.
The second term is still zero on the manifold MR, but R1 is not
differentiable on MR.

However, R1 is regular at x ∈ MR and partly smooth at x w.r.t.
MR.

We cannot initialize BFGS at x̂, so starting at normally
distributed random points:

■ n = 5: BFGS reduces R1 only to about 1× 10−3 in 1000
iterations
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R1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − x2i |

R1 is nonsmooth (but locally Lipschitz) as well as nonconvex.
The second term is still zero on the manifold MR, but R1 is not
differentiable on MR.

However, R1 is regular at x ∈ MR and partly smooth at x w.r.t.
MR.

We cannot initialize BFGS at x̂, so starting at normally
distributed random points:

■ n = 5: BFGS reduces R1 only to about 1× 10−3 in 1000
iterations

■ n = 10: BFGS reduces R1 only to about 7× 10−4 in 1000
iterations
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R1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − x2i |

R1 is nonsmooth (but locally Lipschitz) as well as nonconvex.
The second term is still zero on the manifold MR, but R1 is not
differentiable on MR.

However, R1 is regular at x ∈ MR and partly smooth at x w.r.t.
MR.

We cannot initialize BFGS at x̂, so starting at normally
distributed random points:

■ n = 5: BFGS reduces R1 only to about 1× 10−3 in 1000
iterations

■ n = 10: BFGS reduces R1 only to about 7× 10−4 in 1000
iterations

Again the method appears to be converging, very slowly, but
may be having numerical difficulties.
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A sequence of orthogonal polynomials defined on [−1, 1] by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x).
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A sequence of orthogonal polynomials defined on [−1, 1] by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x).

So T2(x) = 2x2 − 1,
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A sequence of orthogonal polynomials defined on [−1, 1] by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x).

So T2(x) = 2x2 − 1, T3(x) = 4x3 − 3, etc.
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A sequence of orthogonal polynomials defined on [−1, 1] by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x).

So T2(x) = 2x2 − 1, T3(x) = 4x3 − 3, etc.

Important properties that can be proved easily include
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A sequence of orthogonal polynomials defined on [−1, 1] by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x).

So T2(x) = 2x2 − 1, T3(x) = 4x3 − 3, etc.

Important properties that can be proved easily include

■ Tn(x) = cos(n cos−1(x))
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A sequence of orthogonal polynomials defined on [−1, 1] by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x).

So T2(x) = 2x2 − 1, T3(x) = 4x3 − 3, etc.

Important properties that can be proved easily include

■ Tn(x) = cos(n cos−1(x))

■ Tm(Tn(x)) = Tmn(x)
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A sequence of orthogonal polynomials defined on [−1, 1] by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x).

So T2(x) = 2x2 − 1, T3(x) = 4x3 − 3, etc.

Important properties that can be proved easily include

■ Tn(x) = cos(n cos−1(x))

■ Tm(Tn(x)) = Tmn(x)

■

∫ 1
−1

1√
1−x2

Ti(x)Tj(x)dx = 0 if i 6= j
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Left: Plots of T0(x), . . . , T4(x) Right: Plot of T8(x).
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Left: Plots of T0(x), . . . , T4(x) Right: Plot of T8(x).
Question: How many extrema does Tn(x) have in [−1, 1]?
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Consider the function

Np(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|p, where p > 0
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Consider the function

Np(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|p, where p > 0

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Np(x
∗) = 0.
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Consider the function

Np(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|p, where p > 0

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Np(x
∗) = 0.

Define x̂ = [−1, 1, 1, . . . , 1]T with Np(x̂) = 1 and the manifold

MN = {x : xi+1 = 2x2i − 1, i = 1, . . . , n− 1}
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Consider the function

Np(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|p, where p > 0

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Np(x
∗) = 0.

Define x̂ = [−1, 1, 1, . . . , 1]T with Np(x̂) = 1 and the manifold

MN = {x : xi+1 = 2x2i − 1, i = 1, . . . , n− 1}

For x ∈ MN , e.g. x = x∗ or x = x̂, the 2nd term of Np is zero.
Starting at x̂, BFGS needs to approximately follow MN to reach
x∗ (unless it “gets lucky”).
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Consider the function

Np(x) =
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(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|p, where p > 0

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Np(x
∗) = 0.

Define x̂ = [−1, 1, 1, . . . , 1]T with Np(x̂) = 1 and the manifold

MN = {x : xi+1 = 2x2i − 1, i = 1, . . . , n− 1}

For x ∈ MN , e.g. x = x∗ or x = x̂, the 2nd term of Np is zero.
Starting at x̂, BFGS needs to approximately follow MN to reach
x∗ (unless it “gets lucky”).

When p = 2: N2 is smooth but not convex. Starting at x̂:
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(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|p, where p > 0

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Np(x
∗) = 0.

Define x̂ = [−1, 1, 1, . . . , 1]T with Np(x̂) = 1 and the manifold

MN = {x : xi+1 = 2x2i − 1, i = 1, . . . , n− 1}

For x ∈ MN , e.g. x = x∗ or x = x̂, the 2nd term of Np is zero.
Starting at x̂, BFGS needs to approximately follow MN to reach
x∗ (unless it “gets lucky”).

When p = 2: N2 is smooth but not convex. Starting at x̂:

■ n = 5: BFGS needs 370 iterations to reduce N2 below 10−15
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Consider the function

Np(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|p, where p > 0

The unique minimizer is x∗ = [1, 1, . . . , 1]T with Np(x
∗) = 0.

Define x̂ = [−1, 1, 1, . . . , 1]T with Np(x̂) = 1 and the manifold

MN = {x : xi+1 = 2x2i − 1, i = 1, . . . , n− 1}

For x ∈ MN , e.g. x = x∗ or x = x̂, the 2nd term of Np is zero.
Starting at x̂, BFGS needs to approximately follow MN to reach
x∗ (unless it “gets lucky”).

When p = 2: N2 is smooth but not convex. Starting at x̂:

■ n = 5: BFGS needs 370 iterations to reduce N2 below 10−15

■ n = 10: needs ∼ 50,000 iterations to reduce N2 below 10−15

even though N2 is smooth!
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2i − 1 = T2(xi) = T2(T2(xi−1))
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).

To move from x̂ to x∗ along the manifold MN exactly requires
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).

To move from x̂ to x∗ along the manifold MN exactly requires

■ x1 to change from −1 to 1
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).

To move from x̂ to x∗ along the manifold MN exactly requires

■ x1 to change from −1 to 1
■ x2 = 2x21 − 1 to trace the graph of T2(x1) on [−1, 1]
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).

To move from x̂ to x∗ along the manifold MN exactly requires

■ x1 to change from −1 to 1
■ x2 = 2x21 − 1 to trace the graph of T2(x1) on [−1, 1]
■ x3 = T2(T2(x)) to trace the graph of T4(x1) on [−1, 1]
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).

To move from x̂ to x∗ along the manifold MN exactly requires

■ x1 to change from −1 to 1
■ x2 = 2x21 − 1 to trace the graph of T2(x1) on [−1, 1]
■ x3 = T2(T2(x)) to trace the graph of T4(x1) on [−1, 1]
■ xn = T2n−1(x) to trace the graph of T2n−1(x1) on [−1, 1]

which has 2n−1 − 1 extrema in (−1, 1).
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).

To move from x̂ to x∗ along the manifold MN exactly requires

■ x1 to change from −1 to 1
■ x2 = 2x21 − 1 to trace the graph of T2(x1) on [−1, 1]
■ x3 = T2(T2(x)) to trace the graph of T4(x1) on [−1, 1]
■ xn = T2n−1(x) to trace the graph of T2n−1(x1) on [−1, 1]

which has 2n−1 − 1 extrema in (−1, 1).
Even though BFGS will not track the manifold MN exactly, it
will follow it approximately. So, since the manifold is highly
oscillatory, BFGS must take relatively short steps to obtain
reduction in N2 in the line search, and hence it takes many

iterations!
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Let Ti(x) denote the ith Chebyshev polynomial. For x ∈ MN ,

xi+1 = 2x2i − 1 = T2(xi) = T2(T2(xi−1))

= T2(T2(. . . T2(x1) . . .)) = T2i(x1).

To move from x̂ to x∗ along the manifold MN exactly requires

■ x1 to change from −1 to 1
■ x2 = 2x21 − 1 to trace the graph of T2(x1) on [−1, 1]
■ x3 = T2(T2(x)) to trace the graph of T4(x1) on [−1, 1]
■ xn = T2n−1(x) to trace the graph of T2n−1(x1) on [−1, 1]

which has 2n−1 − 1 extrema in (−1, 1).
Even though BFGS will not track the manifold MN exactly, it
will follow it approximately. So, since the manifold is highly
oscillatory, BFGS must take relatively short steps to obtain
reduction in N2 in the line search, and hence it takes many

iterations! At the very end, since N2 is smooth, BFGS is
superlinearly convergent!
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N1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|
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N1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|

N1 is nonsmooth (though locally Lipschitz) as well as
nonconvex. The second term is still zero on the manifold MN ,
but N1 is not differentiable on MN .
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N1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|

N1 is nonsmooth (though locally Lipschitz) as well as
nonconvex. The second term is still zero on the manifold MN ,
but N1 is not differentiable on MN .

However, N1 is regular at x ∈ MN and partly smooth at x w.r.t.
MN .
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N1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|

N1 is nonsmooth (though locally Lipschitz) as well as
nonconvex. The second term is still zero on the manifold MN ,
but N1 is not differentiable on MN .

However, N1 is regular at x ∈ MN and partly smooth at x w.r.t.
MN .

We cannot initialize BFGS at x̂, so starting at normally
distributed random points:
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N1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|

N1 is nonsmooth (though locally Lipschitz) as well as
nonconvex. The second term is still zero on the manifold MN ,
but N1 is not differentiable on MN .

However, N1 is regular at x ∈ MN and partly smooth at x w.r.t.
MN .

We cannot initialize BFGS at x̂, so starting at normally
distributed random points:

■ n = 5: BFGS reduces N1 only to about 5× 10−3 in 1000
iterations
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N1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|

N1 is nonsmooth (though locally Lipschitz) as well as
nonconvex. The second term is still zero on the manifold MN ,
but N1 is not differentiable on MN .

However, N1 is regular at x ∈ MN and partly smooth at x w.r.t.
MN .

We cannot initialize BFGS at x̂, so starting at normally
distributed random points:

■ n = 5: BFGS reduces N1 only to about 5× 10−3 in 1000
iterations

■ n = 10: BFGS reduces N1 only to about 2× 10−2 in 1000
iterations
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N1(x) =
1

4
(x1 − 1)2 +

n−1∑

i=1

|xi+1 − 2x2i + 1|

N1 is nonsmooth (though locally Lipschitz) as well as
nonconvex. The second term is still zero on the manifold MN ,
but N1 is not differentiable on MN .

However, N1 is regular at x ∈ MN and partly smooth at x w.r.t.
MN .

We cannot initialize BFGS at x̂, so starting at normally
distributed random points:

■ n = 5: BFGS reduces N1 only to about 5× 10−3 in 1000
iterations

■ n = 10: BFGS reduces N1 only to about 2× 10−2 in 1000
iterations

The method appears to be converging, very slowly, but may be
having numerical difficulties.
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N̂1(x) =
1

4
|x1 − 1|+

n−1∑

i=1

|xi+1 − 2|xi|+ 1|.

Again, the unique global minimizer is x∗. The second term is
zero on the set

S = {x : xi+1 = 2|xi| − 1, i = 1, . . . , n− 1}

but S is not a manifold: it has “corners”.
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Nesterov−Chebyshev−Rosenbrock, first variant
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Nesterov−Chebyshev−Rosenbrock, second variant
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Contour plots of nonsmooth Chebyshev-Rosenbrock functions N1

(left) and N̂1 (right), with n = 2, with iterates generated by
BFGS initialized at 7 different randomly generated points.
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Nesterov−Chebyshev−Rosenbrock, second variant
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Contour plots of nonsmooth Chebyshev-Rosenbrock functions N1

(left) and N̂1 (right), with n = 2, with iterates generated by
BFGS initialized at 7 different randomly generated points.
On the left, always get convergence to x∗ = [1, 1]T . On the
right, most runs converge to [1, 1] but some go to x = [0,−1]T .
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When n = 2, the point x = [0,−1]T is Clarke stationary for the
second nonsmooth variant N̂1. We can see this because zero is
in the convex hull of the gradient limits for N̂1 at the point x.
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When n = 2, the point x = [0,−1]T is Clarke stationary for the
second nonsmooth variant N̂1. We can see this because zero is
in the convex hull of the gradient limits for N̂1 at the point x.

However, x = [0,−1]T is not a local minimizer, because
d = [1, 2]T is a direction of linear descent: N̂ ′

1(x, d) < 0.
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When n = 2, the point x = [0,−1]T is Clarke stationary for the
second nonsmooth variant N̂1. We can see this because zero is
in the convex hull of the gradient limits for N̂1 at the point x.

However, x = [0,−1]T is not a local minimizer, because
d = [1, 2]T is a direction of linear descent: N̂ ′

1(x, d) < 0.

These two properties mean that N̂1 is not regular at [0,−1]T .
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When n = 2, the point x = [0,−1]T is Clarke stationary for the
second nonsmooth variant N̂1. We can see this because zero is
in the convex hull of the gradient limits for N̂1 at the point x.

However, x = [0,−1]T is not a local minimizer, because
d = [1, 2]T is a direction of linear descent: N̂ ′

1(x, d) < 0.

These two properties mean that N̂1 is not regular at [0,−1]T .

In fact, for n ≥ 2:

■ N̂1 has 2n−1 Clarke stationary points
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When n = 2, the point x = [0,−1]T is Clarke stationary for the
second nonsmooth variant N̂1. We can see this because zero is
in the convex hull of the gradient limits for N̂1 at the point x.

However, x = [0,−1]T is not a local minimizer, because
d = [1, 2]T is a direction of linear descent: N̂ ′

1(x, d) < 0.

These two properties mean that N̂1 is not regular at [0,−1]T .

In fact, for n ≥ 2:

■ N̂1 has 2n−1 Clarke stationary points
■ the only local minimizer is the global minimizer x∗
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When n = 2, the point x = [0,−1]T is Clarke stationary for the
second nonsmooth variant N̂1. We can see this because zero is
in the convex hull of the gradient limits for N̂1 at the point x.

However, x = [0,−1]T is not a local minimizer, because
d = [1, 2]T is a direction of linear descent: N̂ ′

1(x, d) < 0.

These two properties mean that N̂1 is not regular at [0,−1]T .

In fact, for n ≥ 2:

■ N̂1 has 2n−1 Clarke stationary points
■ the only local minimizer is the global minimizer x∗

■ x∗ is the only stationary point in the sense of Mordukhovich
(i.e., with 0 ∈ ∂N̂1(x) where ∂ is defined in Rockafellar and
Wets, Variational Analysis, 1998).

(M. Gürbüzbalaban and M.L.O., 2012).
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When n = 2, the point x = [0,−1]T is Clarke stationary for the
second nonsmooth variant N̂1. We can see this because zero is
in the convex hull of the gradient limits for N̂1 at the point x.

However, x = [0,−1]T is not a local minimizer, because
d = [1, 2]T is a direction of linear descent: N̂ ′

1(x, d) < 0.

These two properties mean that N̂1 is not regular at [0,−1]T .

In fact, for n ≥ 2:

■ N̂1 has 2n−1 Clarke stationary points
■ the only local minimizer is the global minimizer x∗

■ x∗ is the only stationary point in the sense of Mordukhovich
(i.e., with 0 ∈ ∂N̂1(x) where ∂ is defined in Rockafellar and
Wets, Variational Analysis, 1998).

(M. Gürbüzbalaban and M.L.O., 2012).

Furthermore, starting from enough randomly generated starting
points, BFGS finds all 2n−1 Clarke stationary points!
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Left: sorted final values of N̂1 for 1000 randomly generated
starting points, when n = 5: BFGS finds all 16 Clarke stationary
points. Right: same with n = 6: BFGS finds all 32 Clarke
stationary points.
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When f is smooth, convergence of methods such as BFGS to
non-locally-minimizing stationary points or local maxima is
possible but not likely, because of the line search, and such
convergence will not be stable under perturbation.
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When f is smooth, convergence of methods such as BFGS to
non-locally-minimizing stationary points or local maxima is
possible but not likely, because of the line search, and such
convergence will not be stable under perturbation.

However, this kind of convergence is what we are seeing for the
non-regular, non-smooth Nesterov Chebyshev-Rosenbrock
example, and it is stable under perturbation. The same behavior
occurs for gradient sampling or bundle methods.
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When f is smooth, convergence of methods such as BFGS to
non-locally-minimizing stationary points or local maxima is
possible but not likely, because of the line search, and such
convergence will not be stable under perturbation.

However, this kind of convergence is what we are seeing for the
non-regular, non-smooth Nesterov Chebyshev-Rosenbrock
example, and it is stable under perturbation. The same behavior
occurs for gradient sampling or bundle methods.

Kiwiel (private communication): the Nesterov example is the first
he had seen which causes his bundle code to have this behavior.
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When f is smooth, convergence of methods such as BFGS to
non-locally-minimizing stationary points or local maxima is
possible but not likely, because of the line search, and such
convergence will not be stable under perturbation.

However, this kind of convergence is what we are seeing for the
non-regular, non-smooth Nesterov Chebyshev-Rosenbrock
example, and it is stable under perturbation. The same behavior
occurs for gradient sampling or bundle methods.

Kiwiel (private communication): the Nesterov example is the first
he had seen which causes his bundle code to have this behavior.

Nonetheless, we don’t know whether, in exact arithmetic, the
methods would actually generate sequences converging to the
nonminimizing Clarke stationary points. Experiments by Kaku
(2011) suggest that the higher the precision used, the more likely
BFGS is to eventually move away from such a point.
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“Full” BFGS requires storing an n× n matrix and doing
matrix-vector multiplies, which is not possible when n is large.
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“Full” BFGS requires storing an n× n matrix and doing
matrix-vector multiplies, which is not possible when n is large.

In the 1980s, J. Nocedal and others developed a “limited
memory” version of BFGS, with O(n) space and time
requirements, which is very widely used for minimizing smooth
functions in many variables. It works by saving only the most
recent k rank two updates to an initial inverse Hessian
approximation.
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“Full” BFGS requires storing an n× n matrix and doing
matrix-vector multiplies, which is not possible when n is large.

In the 1980s, J. Nocedal and others developed a “limited
memory” version of BFGS, with O(n) space and time
requirements, which is very widely used for minimizing smooth
functions in many variables. It works by saving only the most
recent k rank two updates to an initial inverse Hessian
approximation.

There are two variants: with and without “scaling” (usually
scaling is preferred).
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“Full” BFGS requires storing an n× n matrix and doing
matrix-vector multiplies, which is not possible when n is large.

In the 1980s, J. Nocedal and others developed a “limited
memory” version of BFGS, with O(n) space and time
requirements, which is very widely used for minimizing smooth
functions in many variables. It works by saving only the most
recent k rank two updates to an initial inverse Hessian
approximation.

There are two variants: with and without “scaling” (usually
scaling is preferred).

The convergence rate of limited memory BFGS is linear, not
superlinear, on smooth problems.
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“Full” BFGS requires storing an n× n matrix and doing
matrix-vector multiplies, which is not possible when n is large.

In the 1980s, J. Nocedal and others developed a “limited
memory” version of BFGS, with O(n) space and time
requirements, which is very widely used for minimizing smooth
functions in many variables. It works by saving only the most
recent k rank two updates to an initial inverse Hessian
approximation.

There are two variants: with and without “scaling” (usually
scaling is preferred).

The convergence rate of limited memory BFGS is linear, not
superlinear, on smooth problems.

Question: how effective is it on nonsmooth problems?
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.

No significant improvement when k reaches 44
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Let x = [y; z;w] ∈ R
nA+nB+nR and consider the test function

f(x) = (y − e)TA(y − e) + {(z − e)TB(z − e)}1/2 +R1(w)

where A = AT ≻ 0, B = BT ≻ 0, e = [1; 1; . . . ; 1].
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nA+nB+nR and consider the test function

f(x) = (y − e)TA(y − e) + {(z − e)TB(z − e)}1/2 +R1(w)

where A = AT ≻ 0, B = BT ≻ 0, e = [1; 1; . . . ; 1].

The first term is quadratic, the second is nonsmooth but convex,
and the third is the nonsmooth, nonconvex Rosenbrock function.
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f(x) = (y − e)TA(y − e) + {(z − e)TB(z − e)}1/2 +R1(w)

where A = AT ≻ 0, B = BT ≻ 0, e = [1; 1; . . . ; 1].

The first term is quadratic, the second is nonsmooth but convex,
and the third is the nonsmooth, nonconvex Rosenbrock function.

The optimal value is 0, with x = e. The function f is partly
smooth and the dimension of the V-space is nB + nR − 1.
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Let x = [y; z;w] ∈ R
nA+nB+nR and consider the test function

f(x) = (y − e)TA(y − e) + {(z − e)TB(z − e)}1/2 +R1(w)

where A = AT ≻ 0, B = BT ≻ 0, e = [1; 1; . . . ; 1].

The first term is quadratic, the second is nonsmooth but convex,
and the third is the nonsmooth, nonconvex Rosenbrock function.

The optimal value is 0, with x = e. The function f is partly
smooth and the dimension of the V-space is nB + nR − 1.

Set A = XXT where xij are normally distributed, with condition
number about 106 when nA = 200. Similarly B with nB < nA.
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Let x = [y; z;w] ∈ R
nA+nB+nR and consider the test function

f(x) = (y − e)TA(y − e) + {(z − e)TB(z − e)}1/2 +R1(w)

where A = AT ≻ 0, B = BT ≻ 0, e = [1; 1; . . . ; 1].

The first term is quadratic, the second is nonsmooth but convex,
and the third is the nonsmooth, nonconvex Rosenbrock function.

The optimal value is 0, with x = e. The function f is partly
smooth and the dimension of the V-space is nB + nR − 1.

Set A = XXT where xij are normally distributed, with condition
number about 106 when nA = 200. Similarly B with nB < nA.

Besides limited memory BFGS and full BFGS, we also compare
limited memory Gradient Sampling, where we sample k ≪ n
gradients per iteration.
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We see that that addition of nonsmoothness to a problem,
convex or nonconvex, creates great difficulties for Limited
Memory BFGS, even when the dimension of the V-space is less
than the size of the memory, although it helps to turn off scaling.
With scaling it may be no better than Limited Memory Gradient
Sampling. More investigation of this is needed.
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■ Exploit structure! Lots of work on this has been done.
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■ Exploit structure! Lots of work on this has been done.
■ Smoothing! Lots of work on this has been done too, most

notably by Yu. Nesterov.
■ Bundle methods, pioneered by C. Lemaréchal in the convex

case and K. Kiwiel in the 1980s in the nonconvex case, and
with lots of work done since, e.g. by P. Apkarian and D. Noll
in small-scale control applications and by T.M.T. Do and
T. Artières in large-scale machine learning applications.
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■ Exploit structure! Lots of work on this has been done.
■ Smoothing! Lots of work on this has been done too, most

notably by Yu. Nesterov.
■ Bundle methods, pioneered by C. Lemaréchal in the convex

case and K. Kiwiel in the 1980s in the nonconvex case, and
with lots of work done since, e.g. by P. Apkarian and D. Noll
in small-scale control applications and by T.M.T. Do and
T. Artières in large-scale machine learning applications.

■ Lots of other recent work on nonconvexity in machine
learning.
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■ Exploit structure! Lots of work on this has been done.
■ Smoothing! Lots of work on this has been done too, most

notably by Yu. Nesterov.
■ Bundle methods, pioneered by C. Lemaréchal in the convex

case and K. Kiwiel in the 1980s in the nonconvex case, and
with lots of work done since, e.g. by P. Apkarian and D. Noll
in small-scale control applications and by T.M.T. Do and
T. Artières in large-scale machine learning applications.

■ Lots of other recent work on nonconvexity in machine
learning.

■ Adaptive Gradient Sampling (F.E. Curtis and X. Que).
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■ Exploit structure! Lots of work on this has been done.
■ Smoothing! Lots of work on this has been done too, most

notably by Yu. Nesterov.
■ Bundle methods, pioneered by C. Lemaréchal in the convex

case and K. Kiwiel in the 1980s in the nonconvex case, and
with lots of work done since, e.g. by P. Apkarian and D. Noll
in small-scale control applications and by T.M.T. Do and
T. Artières in large-scale machine learning applications.

■ Lots of other recent work on nonconvexity in machine
learning.

■ Adaptive Gradient Sampling (F.E. Curtis and X. Que).
■ Automatic Differentiation (AD): (B. Bell, A. Griewank).
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Gradient Sampling is a simple method for nonsmooth, nonconvex
optimization for which a convergence theory is known, but it is
too expensive to use in most applications.
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BFGS — the full version — is remarkably effective on
nonsmooth problems, but little theory is known. Our package
HIFOO (H-infinity fixed order optimization) for controller design,
primarily based on BFGS, has been used successfully in many
applications.
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Gradient Sampling is a simple method for nonsmooth, nonconvex
optimization for which a convergence theory is known, but it is
too expensive to use in most applications.

BFGS — the full version — is remarkably effective on
nonsmooth problems, but little theory is known. Our package
HIFOO (H-infinity fixed order optimization) for controller design,
primarily based on BFGS, has been used successfully in many
applications.

Limited Memory BFGS is not so effective on nonsmooth
problems, but it seems to help to turn off scaling.

Diabolical nonconvex problems such as Nesterov’s
Chebyshev-Rosenbrock problems can be very difficult, especially
in the nonsmooth case.
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“Nonconvexity is scary to some, but there are vastly different
types of nonconvexity (some of which are really scary!)”

— Yann LeCun
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“Nonconvexity is scary to some, but there are vastly different
types of nonconvexity (some of which are really scary!)”

— Yann LeCun

Papers, software are available at www.cs.nyu.edu/overton.
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