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In this talk, I will present a framework, inspired by random matrix the-
ory, for analyzing the dynamics of stochastic optimization algorithms (e.g.,
stochastic gradient descent (SGD) and momentum (SGD + M)) when both
the number of samples and dimensions are large. Using this new framework,
we show that the dynamics of optimization algorithms on a least squares
problem with random data become deterministic in the large sample and
dimensional limit. In particular, the limiting dynamics for stochastic algo-
rithms are governed by a Volterra equation. From this model, we identify
a stability measurement, the implicit conditioning ratio (ICR), which reg-
ulates the ability of SGD+M to accelerate the algorithm. When the batch
size exceeds this ICR, SGD+M converges linearly at a rate of O(1/

√
κ),

matching optimal full-batch momentum (in particular performing as well as
a full-batch but with a fraction of the size). For batch sizes smaller than
the ICR, in contrast, SGD+M has rates that scale like a multiple of the
single batch SGD rate. We give explicit choices for the learning rate and
momentum parameter in terms of the Hessian spectra that achieve this per-
formance. Finally we show this model matches performances on real data
sets.
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