
Homework 6: Least Squares

Michael Overton, Numerical Computing, Spring 2017

April 3, 2017

This homework builds on Homework 3, where you built a Vandermonde
matrix and then used Matlab’s backslash operator to implement polyno-
mial interpolation (when the degree of the polynomial was one less than the
number of data points) or least squares approximation (when the degree was
smaller).

Write a Matlab function approxpoly as follows. The input consists
of t and b, which specify the data (ti, bi), i = 1, . . . ,m, and the polynomial
degree d, as before. The nPlot parameter specifying the length of the vector
on which the approximating polynomials are going to be plotted should not
be an input to approxpoly: the plotting is still important, but it should be
done by a different function.

For each choice of d, which will be specified further below, the program
should construct the m× (d+ 1) Vandermonde matrix A and compute the
coefficients x for the least-squares approximating polynomial of degree d,
which is the vector x minimizing ‖Ax− y‖, by four different methods:

1. Using vanilla backslash: x=A\b. This is the only place in the program
where you should use \.

2. The normal equations, as on p. 145 of A&G, using the Cholesky factor-
ization (computed by chol). You can use the codes forsub (modified
appropriately, since the Cholesky factor does not have a unit diago-
nal) and backsub given on p. 112 for forward and back substitution.
Do not use the backslash operator \. In particular, do not compute
B\y as on p. 149, where B = ATA, because Matlab will probably
not recognize that B is symmetric positive definite and will therefore
probably use LU factorization instead of Cholesky, which is twice as
much work and potentially less accurate.

3. Using the economy-size QR factorization, as on p. 156, version (a).
This is done via [Q,R]=qr(A,0). Again you can use backsub to solve
the triangular system.

4. Using the economy-size SVD, as on p. 235, with a cutoff tolerance,
which specifies the size of “small” singular values to be omitted in

1



step 4. In other words, instead of prespecifying r, determine r accord-
ing to whether or not the singular values are bigger or smaller than
the cutoff tolerance. For now, set the cutoff tolerance to zero: we
will come back to this later. Since you are computing the SVD here,
it’s convenient to compute κ(A), the condition number of A at the
same time: this is σ1/σn. Remember that the economy-size SVD is
computed by [U,S,V]=svd(A,0).

The outputs from approxpoly should be the four coefficient vectors com-
puted by these four methods, along with the computed condition number
κ(A). All four methods are computing the same least squares solution x,
but numerically, they may be different.

Now experiment, using the data given in the Matlab data file
linked from the course web page. The first thing you should do is to
make sure the four coefficient vectors are nearly, if not exactly, the same,
for small degree polynomials. If not, you have a bug.

Using the coefficient vectors computed by the SVD method, call the
plotting routine to plot the approximating polynomial on tt, a grid of nPlot
ordered points, equally spaced between t1 and tm, as well as the original
data points (ti, yi), as in Homework 3, for various choices of d. How big do
you need to raise d in order to make the polynomial approximate the data
reasonably well in the “eyeball” norm, in other words so it looks reasonable
to you? In order to make this quantitative, write another routine to call
approxpoly repeatedly to compute the residual r = b − Ax for increasing
degrees d, again using the SVD-computed coefficient vectors, and plot the
residual 2-norms in another figure. As d gets larger you will see these residual
norms decrease. What seems to be a reasonable choice of d, in your opinion?
(There is no “right” answer to this.)

Before going further, carefully think about the following question and
write the answer out carefully in your submitted homework. Intu-
itively, it seems that raising the degree from d to d + 1 should result in a
smaller residual norm, or, possibly, the same, but not bigger. Why is this?
Give a proof that, mathematically speaking, this is true: this is not difficult
once you see how to do it. However, if you make d too big, the residual may
actually increase. If so, for what d does this occur? The reason is the huge
condition number of A for large d. In particular, the residual should be zero
mathematically if d = m−1, because in this case x defines the interpolating
polynomial, but the condition number of A is so large that the computation
is inaccurate and the residual will not be zero.

Now write another routine that plots the relative error norms

ηj =
‖x(j) − x(4)‖
‖x(4)‖

, j = 1, 2, 3,

2



where x(j) denotes the coefficient vector computed by method j in the list of
four methods above. The idea here is that the SVD method should be the
most accurate, so we are comparing the computed coefficients for the other
methods with the SVD method. As you keep raising the degree, because
κ(B) is the square of κ(A), where B = ATA, you should eventually see the
normal equations coefficient vector x(2) differ significantly from the others,
and hence η2 increase. Since these numbers will vary a lot in magnitude as
η2 increases, plot them with semilogy. Plot the condition numbers κ(A)
and κ(B) = κ(A)2 too (it may be better to use another semilogy figure for
this). Think how best to display the results. Make good use of legend,
xlabel, ylabel, title, etc., in your plots.

Answer the following questions:

1. Are there any significant differences between x(1), x(3) and x(4)? In
other words, do η1 and η3 remain small as you increase d, compared
to η2?

2. How big does d have to get for the normal equations coefficient vector
x(2) to agree with the SVD coefficient vector to only about half the
machine precision (8 digits): in other words, η2 > 10−8? What are the
condition numbers κ(A) and κ(B) = κ(A)2 for this degree?

3. If you make d sufficiently large, is the polynomial plotted using the nor-
mal equations coefficient vector x(2) visibly different from the polyno-
mial plotted using the SVD coefficient vector x(4)? Plot them both in
the same figure with different colors and/or symbols (type help plot).
You may have to use the zoom tool to see a difference. If you can see
a difference, what are the condition numbers κ(A) and κ(B) = κ(A)2

for this degree?

4. If you make d larger still, the condition number κ(A), and hence
the condition number κ(B) = κ(A)2, becomes so large that Cholesky
“breaks down”: it decides that the matrix B is not positive definite.
You can prevent an error return by requesting the second output of
chol and, if it is nonzero, skipping the forward and back substitution
and setting the coefficient vector to NaNs, so the residual will then
also be NaN and will not appear in the plot. How big is d when this
happens, how big are the condition numbers κ(A) and κ(B), and how
big is the norm of the SVD coefficient vector?

5. Now, experiment with changing the singular value cutoff tolerance to
be positive. The bigger the tolerance, the more the SVD coefficient
vector should be reduced in norm, because we are no longer dividing
by the small singular values. We say the computation is regularized.
Does this have any effect, good or bad, on (a) the residual norms or

3



(b) the plot of the approximating polynomial? Plot another figure
showing the norm of the SVD coefficient vector and the norm of the
residual as the tolerance cutoff is increased.

Submit written answers to the questions above, with supporting code listings
and plots. You do not need to submit a huge pile of output. Just submit
enough to support your answers.

4


