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1 Eigenvalues

Everyone who has studied linear algebra knows the definition: given a square
n×n matrix A, an eigenvalue is a scalar (real or complex number) λ satisfying

Ax = λx

for some nonzero vector x called an eigenvector.1 This is equivalent to writing

(λI − A)x = 0

so, since x 6= 0, A− λI must be singular, and hence

det(λI − A) = 0.

From the (complicated!) definition of determinant, it follows that det(λI−A)
is a polynomial in the variable λ with degree n, and this is called the char-
acteristic polynomial. By the fundamental theorem of algebra (a nontrivial
result), it follows that the characteristic polynomial has n roots which we
denote λ1, . . . , λn, but these may not be distinct (different from each other).
For example, the identity matrix I has characteristic polynomial (λ−1)n and
so all its eigenvalues are equal to one. Note that if A is real, the eigenvalues
may not all be real, but those that are not real must occur in complex con-
jugate pairs λ = α±βi. It does not matter what order we use for numbering
the λj. Although in principle we could compute eigenvalues by finding the
roots of the characteristic polynomial, in practice there are much better al-
gorithms, and in any case there is no general formula for finding the roots

1If x is an eigenvector, so is αx for any nonzero scalar α.
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of a polynomial of degree 5 or more,2 so whatever we do we will have to use
some kind of approximation algorithm.

If all the eigenvalues are distinct, each λj corresponds to an eigenvector xj
(the null vector of λjI −A), which is unique except for scalar multiplication,
and in this case the eigenvectors xj, j = 1, . . . , n, are linearly independent.3

So, in this case, the n× n matrix

X = [x1, x2, . . . , xn]

is nonsingular. By the eigenvalue-eigenvector definition, we have

AX = XΛ, where Λ = diag(λ1, . . . , λn),

the diagonal matrix of eigenvalues, so since X is nonsingular we can premut-
liply both sides by X−1, or postmultiply both sides by X−1, to obtain

X−1AX = Λ and A = XΛX−1,

the eigenvalue decomposition or spectral decomposition of A. We say that
X defines a similarity transformation that diagonalizes A, displaying its
eigenvalues in the diagonal matrix Λ. However, if the eigenvalues are not
distinct, this may not be possible. For example, the Jordan block

J =

[
0 1
0 0

]
has eigenvalues λ1 = λ2 = 0, and there is only one linearly independent
eigenvector, namely x = [1 0]T , or any scalar multiple of this vector. We
say that J is not diagonalizable.

If A is real symmetric (A = AT ) then all eigenvalues are real and, regard-
less of whether they are distinct or not, there is always a set of n eigenvec-
tors, say qj, j = 1, . . . , n, which are not only linearly independent, but also
orthonormal, that is, with qTi qj = 0 if i 6= j and qTi qi = 1.4 So, the matrix

Q = [q1, . . . , qn]

2This was an open question for centuries that was finally resolved in the 19th century.
3Suppose Ax = λx, Ay = µy, with λ 6= µ, and y = αx, with α 6= 0. Then A(αx) =

µ(αx), so Ax = µx, which is not possible since Ax = λx and λ 6= µ. This argument can
be extended to show that the set of all n eigenvectors is linearly independent.

4The proof that the eigenvalues must be real when A = AT is not difficult but we
do not give it here. However, let’s show why eigenvectors for distinct eigenvalues of
A = AT must be orthogonal. Suppose Ax = λx, Ay = µy, with λ 6= µ. Then (1)
yTAx = yT (λx) = λyTx and (2) xTAy = xT (µy) = µxT y. Also, (3) the scalar yTAx =
(yTAx)T = xTAT y = xTAy. Combining (1), (2) and (3), we have λyTx = µxT y = µyTx,
so, since λ 6= µ, we must have yTx = 0, i.e., x and y are orthogonal. This argument can
be extended to show that there are n mutually orthogonal eigenvectors when A = AT .
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is an orthogonal matrix with inverse QT . We have

AQ = QΛ, where Λ = diag(λ1, . . . , λn),

the diagonal matrix of eigenvalues, and hence

QTAQ = Λ and A = QΛQT .

Thus, Q defines an orthogonal similarity transformation that diagonalizes
A.5 Orthogonal matrices have very nice properties and lead to numerical
algorithms with optimal stability properties.

In general, when A is nonsymmetric, it does not have orthogonal eigenvec-
tors. However, there is a very nice property called the Schur decomposition.6

Assuming A is real, the Schur decomposition is

A = QUQT

where Q is orthogonal and U is quasi-upper triangular, which means upper
triangular except that there may be 2×2 blocks along the diagonal, with one
subdiagonal entry per block. Each real eigenvalue appears on the diagonal
of U , as a 1× 1 block, and each complex conjugate pair of eigenvalues of A
consists of the eigenvalues of a 2 × 2 diagonal block. The columns of Q are
called Schur vectors, but these are generally not eigenvectors.7 This prop-
erty is exploited by algorithms for computing eigenvalues of nonsymmetric
matrices.8

The main Matlab function for computing eigenvalues is eig. See also
functions roots and schur.

Basic information on eigenvalues is also described in Chapter 4 of Ascher
and Greif (p. 69–73, p. 77 and p. 79).

5The same property holds for complex Hermitian matrices (A = A∗, where the su-
perscript ∗ denotes complex conjugate transpose), and in fact for all normal matrices
(satisfying AA∗ = A∗A): then the qi are complex and we must write q∗i qj = 0 if i 6= j and
q∗i qi = 1 and we say that Q is unitary instead of orthogonal, with Q−1 = Q∗.

6The proof of this is more complicated but can be found in many books, such as the
one by Trefethen and Bau.

7If A is complex, so the eigenvalues do not occur in complex conjugate pairs, then Q
is unitary, with Q∗Q = I, and U is an upper triangular complex matrix, with no 2 × 2
blocks.

8Including the famous QR algorithm, described in many books including Ascher and
Greif.
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2 Singular Values

Let A be an m× n real9 matrix, with m ≥ n. The key idea of the singular
value decomposition (SVD) is that multiplication by A maps the unit sphere
in Rn to a “hyper-ellipse” in Rm:

Multiplication by A takes the unit sphere in Rn to a hyper-ellipse in Rm.
From Numerical Linear Algebra by Trefethen and Bau, SIAM.

This means that there is a set vj, j = 1, . . . , n of orthonormal vectors in Rn

(the “right singular vectors”) such that

Avj = σjuj, j = 1, . . . , n

where uj, j = 1, . . . , n is a set of orthonormal vectors in Rm (the “left singular
vectors”), and σj are nonnegative real numbers (“the singular values”).10

We assume for convenience that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

So, we can write

A [v1, . . . , vn] = [u1, . . . , un] Σ̂, where Σ̂ = diag(σ1, . . . , σn).

9Everything applies to the complex case too, just by changing the transpose operations
to “complex conjugate transpose” and “orthogonal matrices” to “unitary matrices”.

10The proof of this fundamental fact is not too difficult but not trivial either. A good
reference for this is the book by Trefethen and Bau. The derivation of the SVD now
follows from this fact.
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Let V = [v1, . . . , vn] and let Û = [u1, . . . , un] (note the “hats” on U and on
Σ, but not on V ). Then we have

AV = ÛΣ̂.

Since the n columns of V have length n and form an orthonormal set, we
have that the n× n matrix V is an “orthogonal” matrix, so V −1 = V T and
we can write the “reduced” form of the singular value decomposition:

A = ÛΣ̂V T .

Matlab calls this the “economy size” SVD and it can be computed by
[Uhat,Sigmahat,V]=svd(A,0). The words “reduced” and “economy size”
are used because the matrix Û has only n columns of length m ≥ n, so it
is not square if m > n. But we can introduce a set of additional m − n
orthonormal vectors, all orthogonal to u1, . . . , un, so now we have a square
matrix

U = [u1, . . . , un, un+1, . . . , um]

that is an orthogonal matrix, so U−1 = UT . Also, define the m× n matrix

Σ =

[
Σ̂
0

]
,

where we have appended another m−n zero rows to Σ̂ to obtain Σ, a matrix
with the same dimension as A. Then we have

UΣ =
[
Û , un+1, . . . , um

] [
Σ̂
0

]
= ÛΣ̂,

so using the equation AV = ÛΣ̂ given above, we get

AV = UΣ.

Finally, using V −1 = V T , we have

A = UΣV T ,

the “full” SVD, which is computed by [U,Sigma,V]=svd(A). Note that the
reduced and full SVD are the same for square matrices (the case m = n).

Another useful way to interpret the SVD is that A can be written as the
following sum of rank-one matrices:

A =
n∑

i=1

σiuiv
T
i .
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The SVD tells us many things about a matrix. Here are some of them:

Rank. From the equation A = UΣV T , since U and V are m × m and
n×n orthogonal matrices respectively, it follows that the number of linearly
independent rows of A, and the number of linearly independent columns of
A, are the same, namely, the number of nonzero singular values of A. This
number is called the rank of A. Let’s say the rank of A is r, where n ≥ r ≥ 0.
Then we have

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.

If r = n, there are no singular values equal to zero, and we say A has “full
rank”, or “full column rank”: its columns are linearly independent, so Ax = 0
implies x = 0. (Of course the rows cannot be linearly independent if m > n).

Range. The range of A is the set of all vectors y such that y = Az for some
z ∈ Rn. Since A = UΣV T , we have Az = UΣV T z. Whatever z is, ΣV T z is
a linear combination of the first r columns of Σ, since the rest of them are
zero, so UΣV T z is a linear combination of u1, . . . , ur. So, u1, . . . ur form an
orthonormal basis for the range of A.

Null space. The null space of A is the set of all vectors z such that Az = 0.
Since A = UΣV T , we have Az = UΣV T z. The only way this can be zero
is if z is a linear combination of vr+1, . . . , vn, since anything else will give
ΣV T z 6= 0 and therefore Az 6= 0. So, vr+1, . . . , vn form an orthonormal basis
for the null space of A.

Nearest low rank matrix. If A = UΣV T has full rank, so σn > 0, the
nearest11 rank-deficient matrix (that is, with rank less than n), or nearest
singular matrix if m = n, is obtained by replacing σn in Σ by zero, and the
nearest rank s matrix is obtained by replacing σs+1, . . . , σn by zero. Thus,
the nearest rank s matrix is

s∑
i=1

σiuiv
T
i .

The proof of this can be found in many books including Trefethen and Bau.

Two-norm. The definition of ‖A‖2 is

‖A‖2 = max
‖x‖=1

‖Ax‖ = max
‖x‖=1

‖UΣV Tx‖ = max
‖x‖=1

‖ΣV Tx‖ = max
‖y‖=1

‖Σy‖ = σ1,

11Using either the 2-norm or the Frobenius norm to define “nearest”, i.e., the matrix B
minimizing ‖A − B‖2 or ‖A − B‖F , over all rank-deficient matrices, or over all matrices
with rank s.
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where the vector norm is the 2-norm, so the matrix 2-norm of A is its largest
singular value. Another way to see the same thing is that pre- and post-
multiplication by orthogonal matrices preserves the 2-norm, so

‖A‖2 = ‖UΣV T‖2 = ‖Σ‖2 = σ1.

Inverse of a square matrix. When A is square and nonsingular, with
A = UΣV T , we have

A−1 = (UΣV T )−1 = V Σ−1UT =
n∑

i=1

1

σi
viu

T
i .

Condition number in the two-norm. When A is square and nonsingular,
its 2-norm condition number is

κ2(A) = ‖A‖2‖A−1‖2 =
σ1
σn

because the 2-norm of A is σ1 and, from the formula for the inverse given
above, the 2-norm of A−1 is ‖Σ−1‖2 = σ−1n , the largest of the reciprocals of
the singular values of A.

Pseudo-inverse of a full-rank rectangular matrix. If A = UΣV T has
full rank, its pseudo-inverse is12

A† = (ATA)−1AT .

Note that A†b is the solution of the least-squares problem

min
x
‖Ax− b‖2

(via the normal equations). If A is square and nonsingular,

A† = A−1(AT )−1AT = A−1,

the ordinary inverse, but this does not make sense if A is not square. If
A = UΣV T , we have

ATA = (UΣV T )TUΣV T = V ΣTUTUΣV T = V
[
Σ̂ 0

] [Σ̂
0

]
V T = V Σ̂2V T

12This is the “Moore-Penrose” pseudo-inverse. There are many other variants of pseudo-
inverse, but this is the one that is most commonly used.
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so

A† = (V Σ̂2V T )−1V ΣTUT = V Σ̂−2V TV
[
Σ̂ 0

] [ÛT

∗

]
= V Σ̂−1ÛT =

n∑
i=1

1

σi
viu

T
i ,

where * denotes the transpose of the matrix of columns un+1, . . . , um that we
appended to Û to get U .

Condition number of the pseudo-inverse when A has full rank. Just
as with the ordinary inverse, we can define

κ2(A) = ‖A‖2‖A†‖2 =
σ1
σn
.

Pseudo-inverse in the non-full-rank case. If A does not have full rank,
with rank r < n, then we can instead define

A† = [v1, . . . , vr] diag(σ−11 , . . . , σ−1r ) [u1, . . . , ur]
T =

r∑
i=1

1

σi
viu

T
i .

i.e., we invert the positive singular values, but not the zero singular values.

3 QR Decomposition

The QR decomposition (or factorization) offers some of the same features
as the SVD (see the exercises below), but it is much simpler to compute.
The reduced or economy-size QR decomposition of an m×n matrix A, with
m ≥ n, is

A = Q̂R̂

where Q̂ is an m × n matrix with n orthonormal columns of length m, so
Q̂T Q̂ = In, and R̂ is an upper triangular n × n square matrix. As with the
SVD, let us append an additional m−n orthonormal columns to the columns
of Q̂, and an additional m− n rows of zeros below R̂, giving the full version

QR =
[
Q̂, qn+1, . . . , qm

] [
R̂
0

]
= Q̂R̂ = A

where now Q is an orthogonal m × m square matrix, so QT = Q−1, and
R has the same size as A. This notation is different from the notation in
A&G, where Q is used for both versions of the factorization, which could be
confusing.
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The most well known way to compute the reduced QR factorization of a
full rank matrix A is Gram-Schmidt. Given the n columns of A, which are
vectors of length m, it first normalizes a1 by scaling it, giving q1. Then it
“orthogonalizes” the pair q1, a2 by subtracting the appropriate multiple of q1
from a2, and normalizes the result, giving q2. The details are in many books
including A&G. The “classical” version is potentially unstable but there is
an improved version called “modified Gram-Schmidt” which is stable. This
process is sometimes called “triangular orthogonalization” because the oper-
ations generating Q̂ from A amount to post-multiplying A by the triangular
matrix R̂−1, so Q̂ = AR̂−1 and hence A = Q̂R̂.

Householder reflectors provide an elegant and stable way to compute the
full QR decomposition. This may be viewed as “orthogonal triangulariza-
tion” because it amounts to pre-multiplying A by an orthogonal matrix QT ,
reducing it R, a rectangular matrix with its first n rows in triangular form
and the other m−n rows equal to zero. Thus R = QTA, and hence A = QR.
Again, details may be found in many books including A&G.

In Matlab, the full QR decomposition is computed by [Q,R]=qr(A) and
the economy-size QR decomposition is computed by [Qhat,Rhat]=qr(A,0).

QR exercises. (Not to be submitted for now, maybe later.)

1. Show that if A has full rank, meaning that Ax = 0 implies x = 0, then
R̂ is a nonsingular matrix, and that the diagonal entries of R are all
nonzero.

2. Show that if A has full rank, then q1, . . . , qn form an orthonormal basis
for the range space of A.

3. Show that if A has full rank, then qn+1, . . . , qm form an orthonormal
basis for the null space of AT (not of A: the null space of A is {0}
when A has full rank). Hence, the range space of A and the null space
of AT are orthogonal to each other.

4. Show that if A has full rank, then the pseudo-inverse of A defined above
has the simple form

A† = R̂−1Q̂T .

If A is square and nonsingular, this formula gives A−1.

5. Show that, given u with ‖u‖2 = 1, the Householder reflector P =
I−2uuT is an orthogonal matrix. Hint: multiply out P TP and observe
that the result is the identity matrix.
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Note that, unlike the SVD, the QR decomposition cannot be used directly
in the rank deficient case. For example, although R̂ having a zero on the
diagonal tells us that R̂ and hence A is rank deficient, knowing that R̂ has
two zeros on the diagonal does not tell us the rank of R̂ and hence does not
tell us the rank of A. There is a variant of QR called the “full orthogonal
decomposition” that does reveal the rank, but it is not used much because
the SVD is so convenient.

Note also that the QR factorization is easy to compute, via modified
Gram-Schmidt or Householder’s method, in a finite number of operations
which would give the exact result if there were no rounding errors. In this
sense QR is like LU. We know this is not possible for SVD or eigenvalue
computations, for the reason given on pp. 1-2 of these notes.

Another thing that QR has in common with LU is that it can exploit spar-
sity, but in this case the preferred computational method is to use Givens ro-
tations instead of Householder reflectors, since they can eliminate one nonzero
at a time.
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