
Intro to Computer Science
CSCI-UA-0101

String’s built-in methods
Using methods to manipulate Strings
Readings:
Chapter 6 from the liang book and chapter 4 in "Think Java, Second Edition"

Prof. Sana Odeh
sana@nyu.edu

https://books.trinket.io/thinkjava2/chapter9.html
https://books.trinket.io/thinkjava2/index.html

• I’ll post a sample midterm exam this Thursday so you can practice from. Try to work in groups to set
study together

• I will do a review next Tuesday

• Make sure to do all the readings (books and and focus on lectures material)

• Topics include every thing we cover this week

• Practice all of the examples from class (focus on class examples and homework) and try to also do
examples from both books

• Format:

• True/false questions

• Multiple choice

• 1 complete program

• One method

• You will Not get help from books, web, notes, tools, resource, or anyone else on earth – you will fail
the course if you cheat. You with get no help from no one or any resource.

Good luck

Midterm exam 10/27 during class
Not online, no books or computers. You will write into a booklet. You with get no help from no one
or any resource.

3

Uniform Modeling Language (UML) representing String Class Methods
– will study more in the next few weeks

is a universal visual chart representing a class/blue print for the object data type
This UML represents the String class properties and methods for each class
This is always helpful to find what are the properties and methods for each class

Class Name

Properties of the object: type

Methods of the object(argument): return value type

UML is a diagram that has three rows; each row represents specific info
about the class; class name, class properties and class methods

- Means private method or property (can be access only within same class
+ means public method or property; can be accessed from any class

• String is an object reference Data type
String is a class/blueprint
which defines properties and methods (behaviors) for that
object
Every string created/ instantiated from that class is an object
which inherits properties and methods from that class

String data type

Classes and objects
(more on this in the next few weeks)
class: A program entity that represents either:

1. A program / module, or

2. A type of objects.

• A class is a blueprint or template for constructing objects.

• Example: The Person class (type) is a template for
creating many person(s) objects (windows).

• Java has 1000s of classes. Later (Ch.8) we will write our own.

object: An entity that combines data and behavior.

• object-oriented programming (OOP): Programs that perform their behavior as interactions between objects.

Objects

object: An entity that contains data and behavior.

• data: variables inside the object

• behavior: methods inside the object

• You interact with the methods;
the data is hidden in the object.

Constructing (creating) an object:

Type objectName = new Type(parameters);

Calling an object's method:

objectName.methodName(parameters);

7

The String is an Object Data Type
Class is a blueprint that defines object data (properties) and behavior(
methods) when you create/instantiate the object from a class

String is actually a predefined class in the Java library just like the
System class and Scanner class.

The String type is not a primitive type. It is known as a reference type.

Any Java class can be used as a reference type for a variable.

Reference data types will be thoroughly discussed in Chapter 9,
“Objects and Classes.”

For the time being, you just need to know how to declare a String variable, how to
assign a string to the variable, how to concatenate strings, and to perform simple
operations for strings.

Advance String instantiation of declaration of an object- we will learn more about
this notation when we study OOP after a few weeks:

String message = new String(); // instantiating or creating an object from a class

8

The String Data Type (an object reference)

An object reference means that the class
data type (blue print) defines the data
(properties) and behavior (methods) for the
objects created/instantiated from that class.

We will spend a lot of time in the 2nd part of
the semester to discuss OOP classes and
objects.

For now, just remember that the String
class has defined many important methods
to define strings and its objects.

9

The String Data Type
String is a class which instantiates/creates an object reference Data Type

The char type only represents one character and also it’s a primitive type or a literal – just one value in a
memory location.

A String data type is an object reference and can store zero or as many characters from the keyboard. To
represent a string of characters, use the data type called String. For example,

String message = "Welcome to Java";

String is actually a predefined class in the Java library just like the System class and Scanner class.

The String type is not a primitive type. It is known as a reference type (object).

Any Java class can be used as a reference type for a variable.

Reference data types will be thoroughly discussed in Chapter 9, “Objects and Classes.”

For the time being, you just need to know how to declare a String variable, how to assign a string to the
variable, how to concatenate strings, and to perform simple operations for strings.

Advance String instantiation of declaration of an object- we will learn more about this notation when we
study OOP after a few weeks:

String message = new String();

String Interning or intern
• String Interning is a method of storing only one copy of each distinct String Value, which must be immutable.

By applying String.intern() on a couple of strings will ensure that all strings having the same contents share
the same memory.

• For example, if a name ‘Amy’ appears 100 times, by interning you ensure only one ‘Amy’ is actually

allocated memory.

• intern() method : In Java, when we perform any operation using intern() method, it returns a canonical
representation for the string object. A pool is managed by String class.

•When the intern() method is executed then it checks whether the String equals to this String Object is in the
pool or not.

•If it is available, then the string from the pool is returned. Otherwise, this String object is added to the pool and
a reference to this String object is returned.

•It follows that for any two strings s and t, s.intern() == t.intern() is true if and only if s.equals(t) is true.

It is advised to use equals(), not ==, to compare two strings. This is because == operator compares memory
locations, while equals() method compares the content stored in two objects.

Example of Comparing memory location and
content with a string
// Java program to illustrate

// intern() method

public class GFG {

public static void main(String[] args) {

// S1 refers to Object in the Heap Area

String s1 = new String("GFG");

// S2 refers to Object in SCP Area

String s2 = s1.intern(); // Line-2

// Comparing memory locations

// s2 is in SCP

System.out.println(s1 == s2);

// Comparing only values

System.out.println(s1.equals(s2));

// S3 refers to Object in the SCP Area
String s3 = "GFG"; // Line-3

System.out.println(s2 == s3);
}

}

12

Strings input
Scanner input = new Scanner(System.in);

System.out.print("Enter three words separated by spaces: ");

String s1 = input.next();

String s2 = input.next();

String s3 = input.next();

System.out.println("s1 is " + s1);

System.out.println("s2 is " + s2);

System.out.println("s3 is " + s3);

13

String Concatenation

String s3 = s1.concat(s2); or String s3 = s1 + s2;

// Three strings are concatenated

String message = "Welcome " + "to " + "Java";

// String Chapter is concatenated with number 2

String s = "Chapter" + 2; // s becomes Chapter2

// String Supplement is concatenated with character B

String s1 = "Supplement" + 'B'; // s1 becomes SupplementB

14

String defined methods
Class String defined many methods to manipulate string

a method is a special function that is defined with
respect to a particular object.

The syntax is
<object>.<method>(<parameters>)

>>> dna = “ACGT”;

>>> dna.replace(“T”, “C”);

15

Simple Methods for String Objects
Strings are objects in Java.

The methods in the preceding table can only be invoked
from a specific string instance. For this reason, these
methods are called instance methods.

referenceVariable.methodName(arguments).

16

Simple Methods for String Objects

Method Description
 Returns the number of characters in this string.

Returns the character at the specified index from this string.
Returns a new string that concatenates this string with string s1.
Returns a new string with all letters in uppercase.
Returns a new string with all letters in lowercase.
Returns a new string with whitespace characters trimmed on both sides.

length()
charAt(index)
concat(s1)
toUpperCase()
toLowerCase()
trim()

split() splits string on a specific delimited character such as space or , or :
it returns an array (similar to a list)

replace() replaces one character with another

17

Methods for String class (String Data type) that manipulates a one
character in a String (String data type)

Method Description

isDigit(ch) Returns true if the specified character is a digit.
isLetter(ch) Returns true if the specified character is a letter.
isLetterOfDigit(ch) Returns true if the specified character is a letter or digit.
isLowerCase(ch) Returns true if the specified character is a lowercase letter.
isUpperCase(ch) Returns true if the specified character is an uppercase letter.
toLowerCase(ch) Returns the lowercase of the specified character.
toUpperCase(ch) Returns the uppercase of the specified character.

18

Getting String Length
String message = "Java";
System.out.println("The length of " + message + " is "
+ message.length());

19

Getting Characters from a String
charAt() method

String message = "Welcome to Java";
System.out.println("The first character in message is "

+ message.charAt(0));

20

Reading a string from the Console
Then assigning one character from the string to a char

Scanner input = new Scanner(System.in);

System.out.print("Enter a sentence: ");

String s = input.nextLine();

char ch = s.charAt(0);
System.out.println("The first character of the sentence that you entered is " + ch);

Extracting one character (Type char) from a string using charAT(index)
method which is on of the String’s methods

You should use charAt(index) to parse the character from user input (String)

Index is the integer representing the position of the character in the string or its index

For example:

char c;

String line;

System.out.println("Enter a string.");

String line = in.nextLine();

System.out.println("Your string is " + line);

letter = cAsString.charAt(0);

Will grab the first character from the user's input.

Extracting one character (Type char) from a string using charAT(index)
method which is on of the String’s methods

Scanner in = new Scanner(System.in);

System.out.println("Enter a string.");

String line = in.nextLine(); // input a string from the keyboard

System.out.println("Your string is " + line);

// extract the first character from the string at index/position 0
// using charAt() method which is one of the Strings methods

// allowing you to extract one character from the String at a specific index

char letter1 = line.charAt(0); // extract the first character
System.out.println("Your character at index 0 is: " + letter1);

// extract the 3rd character from the string at index/position 3

char letter2 = line.charAt(3); // extract the 3rd character

System.out.println("Your character at index 0 is: " + letter2);

in.close();

}

23

Length method
returns the length of the string

!!"#$%&'$&'($%"#)(

*+,-".'.-/(('-0#)$12($%"#)'

3'

*+,-".'($/$".'4&"5'6/"#78$%"#)9:'/%)(;'

3'

8$%"#)'('<'=/,.50>?@'

"#$'-0#'<'(A-0#)$17;@'

8B($06A&+$A*%"#$-#7(A.1/%C$7D;';@

8B($06A&+$A*%"#$-#7-0#;@

8B($06A&+$A*%"#$-#7(A.1/%C$7-0#EF;';@

G'

G

Method length
return the length
of the string s
which is 6

Output:
a
6

What would this print???

24

Obtaining Substrings

Method Description
 Returns this string’s substring that begins with the character at the specified

beginIndex and extends to the end of the string, as shown in Figure 4.2.

Returns this string’s substring that begins at the specified beginIndex and
extends to the character at index endIndex – 1, as shown in Figure 9.6.
Note that the character at endIndex is not part of the substring.

substring(beginIndex)

substring(beginIndex,
endIndex)

25

Obtaining Substrings

Method Description
 Returns this string’s substring that begins with the character at the specified

beginIndex and extends to the end of the string, as shown in Figure 4.2.

Returns this string’s substring that begins at the specified beginIndex and
extends to the character at index endIndex – 1, as shown in Figure 9.6.
Note that the character at endIndex is not part of the substring.

substring(beginIndex)

substring(beginIndex,
endIndex)

26

string.replace() method- a very important method
The replace() method searches a string for a specified character, and returns a new string where the
specified character(s) are replaced.
replace – replaces one charcter (first argument with the 2nd argument)

public class Main {
public static void main(String[] args) {

String myStr = "Hello";
System.out.println(myStr.replace('l', 'p’));

}
}

What’s the result of this program?

public class Main {
public static void main(String[] args) {

String myStr = "Hello";
myStr = myStr.replace('e', 'p');
System.out.println(myStr);

}
}

What’s the result of this 2nd version?

27

string.split() method- a very important method
It’s one of the Methods for String Objects
split returns an array which is similar to lists in python- more on this later

public class StringMethods {
public static void main(String[] args) {

String myStr = "Hello";
myStr = myStr.replace('l', 'p');
System.out.println(myStr);
String animals = "cat mouse camel";
System.out.println(animals);

String animal []= animals.split(" ");
System.out.println(animal); // array is similar to list but all array has to be same type;
// this prints the address of array stored in memory
//using java foreach loop to – print an array element with each iteration of the loop
for(String word : animal){

System.out.println(word);
}

// using index to iterate through the array; array length here is a property and not a method
for(int i = 0; i< animal.length; i++){

System.out.println(animal[i]);

} }}

28

Comparing Strings- you can’t use == to test for equality between two strings
You need to use the following methods:

Method Description
 Returns true if this string is equal to string s1.

Returns true if this string is equal to string s1; it is case insensitive.
Returns an integer greater than 0, equal to 0, or less than 0 to indicate whether

this string is greater than, equal to, or less than s1.
Same as compareTo except that the comparison is case insensitive.
Returns true if this string starts with the specified prefix.
Returns true if this string ends with the specified suffix.

equals(s1)
equalsIgnoreCase(s1)
compareTo(s1)

compareToIgnoreCase(s1)
startsWith(prefix)
endsWith(suffix)

OrderTwoCities Run

29

Comparing Strings- you can’t use == to test for equality between two strings
You need to use the following methods such as equals():

The equals method

• Objects are compared using a method named equals.
Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");
String name = console.next();
if (name.equals("Barney")) {

System.out.println("I love you, you love me,");
System.out.println("We're a happy family!");

}

• Technically this is a method that returns a value of type boolean, true of equal and false if not equal.
• If you compare two strings with == this will test if they are the same object and not if the content of the string

are the same. We will learn more about == when we study more OOP in the next few weeks

30

String test methods
Comparing Strings- you can NOT use == to test for equality between two strings
You need to use the following methods:

String name = in.next();

if (name.startsWith("Prof")) {
System.out.println("When are your office hours?");

} else if (name.equalsIgnoreCase("SANA")) {
System.out.println("Let's talk about life!");

}

Method Description

equals(str) whether two strings contain the same characters

equalsIgnoreCase(str) whether two strings contain the same characters, ignoring
upper vs. lower case

startsWith(str) whether one contains other's characters at start

endsWith(str) whether one contains other's characters at end

contains(str) whether the given string is found within this one

Comparing Strings
other available string methods in java
https://docs.oracle.com/javase/8/docs/api/

public class Equal1 {
public static void main(String[] args) {

String name1 = "cat";

String name2 = "cat";

String name10 = new String("cat")
System.out.println(name1 == name2);

System.out.println(name10 == name1);

System.out.println("name1.equals(name2): " + (name1.equals(name2)));

String name5="Cat";
System.out.println("name1.equals(name2): " + (name5.equals(name2)));
System.out.println("name1.compareTo(name2): " + (name1.compareTo(name2)));
System.out.println("name1.compareTo(name2): " + (name5.compareTo(name2)));

System.out.println("name1.compareTo(name2): " + (name2.compareTo(name5)));

String name3= "cat mouse";
System.out.println("name3.indexOf(name2): " + (name3.indexOf(name2)));

String name4 = name3.substring(0, 3);

System.out.println("name4: "+ name4) }

Java Memory called the heap

true
false
name1.equals(name2): true
name5.equals(name2): false
name1.compareTo(name2): 0
name5.compareTo(name2): -32
name2.compareTo(name5): 32
name3.indexOf(name2): 0
name4: cat

Output

both string literals refer the same object
since they have the same content. In
general, you should use the string literal
notation when possible. It is easier to
read and it gives the compiler a chance
to optimize your code.

String instantiate object have
different address in memory
even if they have same content

https://docs.oracle.com/javase/8/docs/api/

32

Finding a Character or a Substring in a String
(Searching for a keyword or a character in the string)

Method Description
 Returns the index of the first occurrence of ch in the string. Returns -1 if not

matched.
Returns the index of the first occurrence of ch after fromIndex in the string.

Returns -1 if not matched.
Returns the index of the first occurrence of string s in this string. Returns -1 if

not matched.
Returns the index of the first occurrence of string s in this string after
fromIndex. Returns -1 if not matched.

Returns the index of the last occurrence of ch in the string. Returns -1 if not
matched.

Returns the index of the last occurrence of ch before fromIndex in this
string. Returns -1 if not matched.

Returns the index of the last occurrence of string s. Returns -1 if not matched.
Returns the index of the last occurrence of string s before fromIndex.

Returns -1 if not matched.

indexOf(ch)

indexOf(ch, fromIndex)

indexOf(s)

indexOf(s, fromIndex)

lastIndexOf(ch)

lastIndexOf(ch,
fromIndex)

lastIndexOf(s)
lastIndexOf(s,
fromIndex)

33

Finding a Character or a Substring in a String

int k = s.indexOf(' ');
String firstName = s.substring(0, k);
String lastName = s.substring(k + 1);

34

Conversion between Strings and Numbers
String intString= "20.5";
int intValue = Integer.parseInt(intString); // convert from String to int
double doubleValue = Double.parseDouble(doubleString); // convert from String to double

// what would be the answer?

String s = "" + intValue + doubleValue;

// what would be the answer?

String s = intValue + " " + doubleValue;

// what would be the answer?

String s = intValue + doubleValue;

