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Multi-robot Setting

r1:goto(basement) || r2:goto(basement)
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Non-compositional J

G(at-home = X light-on)

G(at-home = X light-on) &&
G(!at-home = X !light-on)

r1:goto(basement) || r2:goto(basement)

r1:goto(basement) && !r2:goto(basement)
|| 'r1:goto(basement) && r2:goto(basement)




Our contribution

e Bringing attention to compactness, and its formalization.

e Specification transformation () to enforce compactness.
o Theorem: ¢ is compactly realizable iff (@) is realizable.

e Prototype tool that offers:
o Compact Realizability of an LTL specification.
o Compactness Test for a model of an LTL specification.



Compactness with Existing Techniques

e C(lassical approach: through connection between programs,
strategies and tree automata.

e Bounded Synthesis: produces the smallest machine satisfying the
specification.

e Quantitative Synthesis: Aims to produce a program with minimum

worst-case or average-case cost.
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Compactness
e Forinput sequencei =10, i1, ..., output sequence o = 00, o1, ...,
Ani/o-wordw = (i, 0).

e (i,0)<(i’,0o’) iff 1i=i and
0 < 0’ , < istransitive, irreflexive.

11



Compactness

e Forinput sequencei =10, i1, ..., output sequence o = 00, o1, ...,
Ani/o-wordw = (i, 0).

e (i,0)<(i’,0o’) iff 1i=i and
0 < 0’ , < istransitive, irreflexive.
(o Point-wise subset
e Point-wise cardinality
o #Bit-flips
o ... J
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Ga = X b)

P is compact iff for all inputs i,
thereisnow € L st. w< (i, P(i)).
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Compactness
e Forinput sequencei =10, i1, ..., output sequence o = 00, o1, ...,
Ani/o-wordw = (i, 0).

e (i,0)<(’,0’) iff 1i=i and
0 < 0’ , < istransitive, irreflexive.

e min(L,X)={w|weEL andnot(3a wW.w € Landw’ <w)}
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Compactness
e Forinput sequencei =10, i1, ..., output sequence o = 00, o1, ...,
Ani/o-wordw = (i, 0).

e (i,0)<(’,0’) iff 1i=i and
0 < 0’ , < istransitive, irreflexive.

e min(L,X)={w|weEL andnot(3a wW.w € Landw’ <w)}

Central Theorem: L is compactly realizable iff
min(L, <) is realizable.
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Recipe for a compact program

e Synthesis pipeline:

Automaton W
LTL ¢ e
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|
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Recipe for a compact program

e Synthesis pipeline:

LTL o

!
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for ¢
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e Compact synthesis pipeline:
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Recipe for a compact program

e Synthesis pipeline:

LTL ¢

Automaton | { Parity |
forp | Game |

e Compact synthesis pipeline:

LTL ¢

Winning
strategy
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Realizability # Compact Realizability

e Consider GF(b) with pointwise subset ordering.
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Realizability # Compact Realizability

e Consider GF(b) with pointwise subset ordering.

22



Realizability # Compact Realizability

e Consider GF(b) with pointwise subset ordering.
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Realizability # Compact Realizability
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e Consider 6cb> with pointwise subset ordering.
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Approximate Compactness (pointwise orderings)

e Synthesis pipeline:

Automaton | Parity |
LTl ¢ forop | { Game |

4
Approximation via automataJ
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Approximation via automata
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Approximate Compactness (pointwise orderings)

e Synthesis pipeline:

LTL ¢ Automaton | { Parity | Winning }
forp | Game | strategy

( (
Approximation via automataJ Approximation via games
( . C C (
?;ln((p) < apx() < J “minimal choice at each step”J
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Approximation via games
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Prototype tool

J
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Tools: Spot, Owl, Strix, NuSMV
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Evaluation

e Evaluated on 246 realizable specifications from the SYNTCOMP
benchmarks.

e Performance compared to standard synthesis?
o Within 10 mins:
m Compact synthesis can solve 50% specifications
m Standard synthesis can solve 94%.

e Do approximate constructions produce compact strategies?
o 42% specifications are compact
o As time-efficient as standard synthesis
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Summary
e Desirable to synthesize compact programs; especially where actions
have consequences.
e Formalization of compactness parameterized by a preference order.
e Developed notions of “approximate compactness”.
e Prototype tool that offers:
o Compact Synthesis

o Approximate Compact Synthesis
o Compactness Test
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Summary

e Desired program: correct + compact
+ fault-tolerant + time-efficient + ...

e (?) Relation to the Frame Problem: how to automatically determine
scope of an action.
o Solution to Frame Problem: scope as small as possible
E.g. Circumscription [McCarthy 1980]
o Compactness: necessary actions as few as possible.
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Thank you!



Backup slides



Compactness vs Avg. case Quantitative Synthesis

I = {0} 0 = {a, b}
L = ({a, b} U {a})(0 - {a, b})"
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