
Synthesis of Compact Strategies
for Coordination Programs

Kedar Namjoshi
Nokia Bell Labs

Nisarg Patel
New York University

Motivation

2

If This Then That

Apple Shortcuts

Motivation

3

G(at-home ⇒ X light-on)

{l}

true

 {} {l}

 ¬a a

 a

 ¬a

compact

Multi-robot Setting

r1:goto(basement) || r2:goto(basement)
4

Motivation

r1:goto(basement) || r2:goto(basement)

5

G(at-home ⇒ X light-on)

G(at-home ⇒ X light-on) &&
G(!at-home ⇒ X !light-on)

r1:goto(basement) && !r2:goto(basement)
|| !r1:goto(basement) && r2:goto(basement)

Unnatural

Non-compositional

Our contribution

● Bringing attention to compactness, and its formalization.

● Specification transformation (C) to enforce compactness.
○ Theorem: φ is compactly realizable iff C(φ) is realizable.

● Prototype tool that offers:
○ Compact Realizability of an LTL specification.
○ Compactness Test for a model of an LTL specification.

6

Compactness with Existing Techniques

● Classical approach: through connection between programs,
strategies and tree automata.

● Bounded Synthesis: produces the smallest machine satisfying the
specification.

● Quantitative Synthesis: Aims to produce a program with minimum
worst-case or average-case cost.

7

{b}

true

G(a ⇒ X b)

 {} {b}

 !a a

 a

 !a

9

{b}

true

 a !a a !a

{b} {b} {b} {b}
...

 a !a a !a

{b} {} {b} {}
...

w w’

 {} {b}

 !a a

 a

 !a

G(a ⇒ X b)

10

{b}

true

 a !a a !a

{b} {b} {b} {b}
...

 a !a a !a

{b} {} {b} {}
...

w w’“better than”

 {} {b}

 !a a

 a

 !a

G(a ⇒ X b)

Compactness

11

● For input sequence i = i0, i1, ... , output sequence o = o0, o1, ...,
An i/o - word w = (i, o).

● (i, o) ≺ (i’, o’) iff i = i’ and
 o < o’ , < is transitive, irreflexive.

Compactness

12

● For input sequence i = i0, i1, ... , output sequence o = o0, o1, ...,
An i/o - word w = (i, o).

● (i, o) ≺ (i’, o’) iff i = i’ and
 o < o’ , < is transitive, irreflexive.

● Point-wise subset
● Point-wise cardinality
● #Bit-flips
● . . .

P is compact iff for all inputs i,
there is no w ∈ L st. w ≺ (i, P(i)).

G(a ⇒ X b)

{b}

true

 a !a a !a

{b} {b} {b} {b}
...

w’

P is compact iff for all inputs i,
there is no w ∈ L st. w ≺ (i, P(i)).

G(a ⇒ X b)

 a !a a !a

{b} {} {b} {}
...

w

{b}

true

 a !a a !a

{b} {b} {b} {b}
...

w’

Not compactG(a ⇒ X b)

P is compact iff for all inputs i,
there is no w ∈ L st. w ≺ (i, P(i)).

Compactness

16

● For input sequence i = i0, i1, ... , output sequence o = o0, o1, ...,
An i/o - word w = (i, 0).

● (i, 0) ≺ (i’, o’) iff i = i’ and
 o < o’ , < is transitive, irreflexive.

● min(L, ≺) = { w | w ∈ L and not(∃ w’. w’ ∈ L and w’ ≺ w) }

Compactness

17

● For input sequence i = i0, i1, ... , output sequence o = o0, o1, ...,
An i/o - word w = (i, 0).

● (i, 0) ≺ (i’, o’) iff i = i’ and
 o < o’ , < is transitive, irreflexive.

● min(L, ≺) = { w | w ∈ L and not(∃ w’. w’ ∈ L and w’ ≺ w) }

Central Theorem: L is compactly realizable iff
min(L, ≺) is realizable.

Recipe for a compact program

18

● Synthesis pipeline:

LTL φ Automaton
for φ

Parity
Game

Winning
strategy

Recipe for a compact program

19

● Synthesis pipeline:

● Compact synthesis pipeline:

LTL φ Automaton
for φ

Parity
Game

Winning
strategy

LTL φ

Automaton
for φ

Parity
Game

Winning
strategy

Automaton
for min(φ)

Recipe for a compact program

20

● Synthesis pipeline:

● Compact synthesis pipeline:

LTL φ Automaton
for φ

Parity
Game

Winning
strategy

LTL φ

Automaton
for φ

Parity
Game

Winning
strategy

Automaton
for min(φ)

Exponential blowup

Realizability ⇏ Compact Realizability

21

● Consider GF(b) with pointwise subset ordering.

...

Realizability ⇏ Compact Realizability

22

● Consider GF(b) with pointwise subset ordering.

...

...

Realizability ⇏ Compact Realizability

23

● Consider GF(b) with pointwise subset ordering.

...

...

...
...

Realizability ⇏ Compact Realizability

24

● Consider GF(b) with pointwise subset ordering.

...

...

...
...

G(b ∨ Xb ∨ XXb): compactly
realizable

Approximate Compactness (pointwise orderings)

25

● Synthesis pipeline:

LTL φ Automaton
for φ

Parity
Game

Winning
strategy

Approximation via automata

min(φ) ⊆ apx(φ) ⊆
φ

Approximation via automata

26

q

i/o1

i/o2

o1 < o2

q’

Approximate Compactness (pointwise orderings)

27

● Synthesis pipeline:

LTL φ Automaton
for φ

Parity
Game

Winning
strategy

Approximation via automata

min(φ) ⊆ apx(φ) ⊆
φ

Approximation via games

“minimal choice at each step”

Approximation via games

28

(i, o2)

o1 < o2

q1 q2

(i, o1)

q0

Prototype tool

29

Tools: Spot, Owl, Strix, NuSMV

Evaluation

30

● Evaluated on 246 realizable specifications from the SYNTCOMP
benchmarks.

● Performance compared to standard synthesis?
○ Within 10 mins:

■ Compact synthesis can solve 50% specifications
■ Standard synthesis can solve 94%.

● Do approximate constructions produce compact strategies?
○ 42% specifications are compact
○ As time-efficient as standard synthesis

Summary

31

● Desirable to synthesize compact programs; especially where actions
have consequences.

● Formalization of compactness parameterized by a preference order.

● Developed notions of “approximate compactness”.

● Prototype tool that offers:
○ Compact Synthesis
○ Approximate Compact Synthesis
○ Compactness Test

Summary

32

● Desired program: correct + compact
+ fault-tolerant + time-efficient + …

● (?) Relation to the Frame Problem: how to automatically determine
scope of an action.
○ Solution to Frame Problem: scope as small as possible

E.g. Circumscription [McCarthy 1980]
○ Compactness: necessary actions as few as possible.

Thank you!

33

Backup slides

34

{a}

 a

Compactness vs Avg. case Quantitative Synthesis

I = {0} O = {a, b}
L = ({a, b} ∪ {a})(0 ⋅ {a, b})*

 0
{a, b}

 a

 0
{a, b}{a, b}

