Synthesis of Compact Strategies
for Coordination Programs

Kedar Namjoshi Nisarg Patel
Nokia Bell Labs New York University

NYU

NIOKIA Bell Labs

Motivation

If ™ then ‘3

Upload your screenshots to Dropbox

If then If This Then That

Turn on your lights when you're near home

if (€ then

Automatically set your latest Instagram Ap p l.e Sh (0] rtCUts

as your wallpaper

— ——

Motivation

if ¢ then B

Turn on your lights when you're near home

G(at-home = X light-on) (compactJ
true ~a a
a
{2} {1}

Multi-robot Setting

r1:goto(basement) || r2:goto(basement)

Vs

Motivation UnnaturalJ

7

Non-compositional J

G(at-home = X light-on)

G(at-home = X light-on) &&
G(!at-home = X !light-on)

r1:goto(basement) || r2:goto(basement)

r1:goto(basement) && !r2:goto(basement)
|| 'r1:goto(basement) && r2:goto(basement)

Our contribution

e Bringing attention to compactness, and its formalization.

e Specification transformation () to enforce compactness.
o Theorem: ¢ is compactly realizable iff (@) is realizable.

e Prototype tool that offers:
o Compact Realizability of an LTL specification.
o Compactness Test for a model of an LTL specification.

Compactness with Existing Techniques

e C(lassical approach: through connection between programs,
strategies and tree automata.

e Bounded Synthesis: produces the smallest machine satisfying the
specification.

e Quantitative Synthesis: Aims to produce a program with minimum

worst-case or average-case cost.
true -a

1}

G(a = X b)

{b}

true

1}

{b}

{}

{b}

{}

G(a = X b)

{b}

true

{b}

{b}

la
a
{ la
a la 2 la
{b} {3 {b} | {3
wW

G(a = X b)

{b}

“better than”

<

true

a

{b}

{b}

10

Compactness
e Forinput sequencei =10, i1, ..., output sequence o = 00, o1, ...,
Ani/o-wordw = (i, 0).

e (i,0)<(i’,0o’) iff 1i=i and
0 < 0’ , < istransitive, irreflexive.

11

Compactness

e Forinput sequencei =10, i1, ..., output sequence o = 00, o1, ...,
Ani/o-wordw = (i, 0).

e (i,0)<(i’,0o’) iff 1i=i and
0 < 0’ , < istransitive, irreflexive.
(o Point-wise subset
e Point-wise cardinality
o #Bit-flips
o ... J

12

Ga = X b)

P is compact iff for all inputs i,
thereisnow € L st. w< (i, P(i)).

Ga = X b)

true
P is compact iff for all inputs i, '
thereisnow € L st. w< (i, P(i)).

{b} {b} {b} {b}

)

W

Ga = X b)

x (Not compact J

true
P is compact iff for all inputs i, '
thereisnow € L st. w< (i, P(i)).

) la a la :) la a la

{b} {} {b} {3 {b} {b} {b} {b}

Y, w’

Compactness
e Forinput sequencei =10, i1, ..., output sequence o = 00, o1, ...,
Ani/o-wordw = (i, 0).

e (i,0)<(’,0’) iff 1i=i and
0 < 0’ , < istransitive, irreflexive.

e min(L,X)={w|weEL andnot(3a wW.w € Landw’ <w)}

16

Compactness
e Forinput sequencei =10, i1, ..., output sequence o = 00, o1, ...,
Ani/o-wordw = (i, 0).

e (i,0)<(’,0’) iff 1i=i and
0 < 0’ , < istransitive, irreflexive.

e min(L,X)={w|weEL andnot(3a wW.w € Landw’ <w)}

Central Theorem: L is compactly realizable iff
min(L, <) is realizable.

17

Recipe for a compact program

e Synthesis pipeline:

Automaton W
LTL ¢ e

{

Parity |

Game |

Winning
strategy

|

18

Recipe for a compact program

e Synthesis pipeline:

LTL o

!

Automaton W

for ¢

)

e Compact synthesis pipeline:

LTL o

(B

for ¢

{

Parity |

Game |

Automaton

Automaton
for min(p)

-

Winning
strategy

|

[Parity
Game

Winning
strategy

|

19

Recipe for a compact program

e Synthesis pipeline:

LTL ¢

Automaton | { Parity |
forp | Game |

e Compact synthesis pipeline:

LTL ¢

Winning
strategy

|

(Exponential blowupJ [Parity
Game

for ¢

Automaton Automaton

for min(p)

Winning
strategy

|

20

Realizability # Compact Realizability

e Consider GF(b) with pointwise subset ordering.

21

Realizability # Compact Realizability

e Consider GF(b) with pointwise subset ordering.

22

Realizability # Compact Realizability

e Consider GF(b) with pointwise subset ordering.

23

Realizability # Compact Realizability

| 1‘&9]‘;’79]’\]D]

A UALALLIAN AV

e Consider 6cb> with pointwise subset ordering.

24

Approximate Compactness (pointwise orderings)

e Synthesis pipeline:

Automaton | Parity |
LTl ¢ forop | { Game |

4
Approximation via automataJ

‘min(p) S apx(p) S J
@

Winning
strategy

|

25

Approximation via automata

1/01

&

ol < 02

26

Approximate Compactness (pointwise orderings)

e Synthesis pipeline:

LTL ¢ Automaton | { Parity | Winning }
forp | Game | strategy

((
Approximation via automataJ Approximation via games
(. C C (
?;ln((p) < apx() < J “minimal choice at each step”J

27

Approximation via games

28

Prototype tool

J

]

NBA fOI’] determinize \[DPA for] synthesize\(Apx Compact
L), <) J L (L), <) J | strategy for f
determinize &
NBA for] complement [DPA for] synthesize (Compact
—~min(L(f), <) J L min(L(f), <) J | strategy for f
\ (Is M compact
modelcheck(M = Re fModel(f)) L forf?

J

Tools: Spot, Owl, Strix, NuSMV

29

Evaluation

e Evaluated on 246 realizable specifications from the SYNTCOMP
benchmarks.

e Performance compared to standard synthesis?
o Within 10 mins:
m Compact synthesis can solve 50% specifications
m Standard synthesis can solve 94%.

e Do approximate constructions produce compact strategies?
o 42% specifications are compact
o As time-efficient as standard synthesis

30

Summary
e Desirable to synthesize compact programs; especially where actions
have consequences.
e Formalization of compactness parameterized by a preference order.
e Developed notions of “approximate compactness”.
e Prototype tool that offers:
o Compact Synthesis

o Approximate Compact Synthesis
o Compactness Test

31

Summary

e Desired program: correct + compact
+ fault-tolerant + time-efficient + ...

e (?) Relation to the Frame Problem: how to automatically determine
scope of an action.
o Solution to Frame Problem: scope as small as possible
E.g. Circumscription [McCarthy 1980]
o Compactness: necessary actions as few as possible.

32

Thank you!

Backup slides

Compactness vs Avg. case Quantitative Synthesis

I = {0} 0 = {a, b}
L = ({a, b} U {a})(0 - {a, b})"

a a

N N
DERT IR TER T

