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Abstract. In multi-agent settings, such as IoT and robotics, it is nec-
essary to coordinate the actions of independent agents to achieve a joint
behavior. While it is often easy to specify the desired behavior, pro-
gramming the necessary coordination can be difficult. This makes coor-
dination an attractive target for automated program synthesis; however,
current methods may produce strategies that issue useless actions. This
paper develops theory and methods to synthesize coordination strate-
gies that are guaranteed not to initiate unnecessary actions. We refer to
such strategies as being “compact.” We formalize the intuitive notion
of compactness, show that existing methods do not guarantee compact-
ness, and propose a solution. The solution transforms a given temporal
logic specification using automata-theoretic constructions to incorporate
a notion of minimality. The central result is that the winning strategies
for the transformed specification are precisely the compact strategies for
the original. One can therefore apply known synthesis methods to pro-
duce compact strategies. We report on prototype implementations that
synthesize compact strategies for temporal logic specifications and for
specifications of multi-robot coordination.

1 Introduction

Imagine a future home where devices are network-controllable and the control
program is synthesized from requirements. Suppose that the homeowner asks
for the living-room lights to be turned on when it gets dark. To meet this re-
quirement, a control program must necessarily coordinate the on/off state of the
lights with readings from an illumination sensor.

This specification may be expressed more precisely in linear-time tempo-
ral logic (LTL) as G(dark ⇒ X light-on).3 Here “dark” is a proposition that
represents a reading from the sensor, and is therefore an input to the control
program, while “light-on” is a proposition that represents an action, and is there-
fore an output of the control program. Abstracting this formula to the shape
G(a ⇒ X b), the left half of Figure 1 shows the smallest state machine that

3 G and X are, respectively, the temporal always and next-time operators. Actions are
assumed instantaneous for simplicity.
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meets this specification. It represents a control program that entirely ignores the
sensor input and leaves the lights on all day! This strategy is clearly undesir-
able, although technically it does meet the specification. The machine on the
right represents the “commonsense” controller that keeps the lights on only as
long as the sensor indicates that it is dark. The two machines are equally valid
from the viewpoint of correctness. How then should we distinguish them? And
how can a synthesis method avoid generating undesirable solutions? Those are
the questions addressed in this paper.

Fig. 1. Non-compact (left) and compact (right) machines for G(a ⇒ X b). The initial
state is indicated by a thick border. Output actions are listed at each state; input
conditions are placed on the edges.

We suggest that the crucial distinguishing factor is that the left-hand machine
invokes actions that are not essential to satisfying the property. For instance, if
the input a is false now, there is no need to invoke action b in the next step. If
input a remains false, there is no need to invoke action b at all. It is vital to avoid
useless actions in the domains of IoT and robotics, where agents interact with
the physical world: there is no need to switch on a toaster when only watering
the lawn is asked for. Indeed, switching on the toaster unexpectedly may have
dangerous side effects. A reader may easily imagine other similar situations.

We refer to the policy of avoiding unnecessary actions as compactness. Strate-
gies that satisfy this property while meeting the specification are called compact.
An immediate question is whether compactness is ensured by standard synthe-
sis methods. Unfortunately, the answer is ‘no.’ Bounded synthesis [35,20], for
instance, will produce the smallest satisfying Mealy or Moore machine; in this
setting, the solution of Figure 1(i). We have validated this experimentally with
the tool BoSy [19]. Quantitative synthesis (cf. [6]) finds solutions that are worst-
case optimal, i.e., programs where the maximum cost, over all input sequences,
is the lowest possible. (Dually, programs where the worst-case reward is the
highest possible.) Letting each action invocation have unit cost, a quantitative
method cannot distinguish between the solutions shown, as both have the same
maximum cost for the input where a is always true. We make this analysis pre-
cise subsequently, and show that average-case optimality also does not always
distinguish compact from non-compact solutions. We have validated this exper-
imentally with the tool QUASY [13]. Hence, compactness cannot be defined in
quantitative terms: the synthesis of compact strategies requires new methods.
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At its core, the issue of compactness is a variation of the well-known frame
problem in logic-based AI [29]. The natural way to express the example require-
ment is as G(a ⇒ X b). However, the semantics of temporal logic allows many
satisfying interpretations; among those is the undesirable one of Figure 1(i). This
tension between the freedom of interpretation allowed in logic and the natural-
ness of a specification is at the heart of the frame problem. One approach to
achieving compactness is therefore to write a tighter specification, which per-
mits fewer interpretations; e.g., to write the stronger assertion G(a ≡ X b).
But this is not a natural choice. Moreover, reworking a specification by hand
to rule out interpretations with unnecessary actions is difficult as the process
is not compositional: i.e., one cannot rework portions of a specification sepa-
rately. The specification transformation defined here performs such a tightening
automatically, using automata-theoretic constructions.

The motivating application of compactness is to the synthesis of centralized
coordination programs. As formalized in [3], in a coordination problem, a group
of independent agents, denoted A1, . . . , An, are guided by an additional synthe-
sized agent, C, so that their joint behavior meets a temporal specification ϕ.
That work describes a specification transformation from ϕ to ϕ′ that incorpo-
rates asynchronous agent behavior and other constraints. This transformation,
however, does not guarantee compactness. We take the transformed problem as
the starting point for our investigations, and consider the more general question
of how to generate a compact solution for a given temporal specification.

We begin by proposing a mathematical definition of the compactness prop-
erty. Generalizing from the example, one can consider a strategy to be compact if
for each input sequence, the sequence of actions produced as output (1) meets the
specification and (2) cannot be further improved. We formalize the second no-
tion as minimality with respect to a supplied “better than” preference relation
between two output sequences. This formulation is closely related to formal-
izations of commonsense reasoning, in particular the notion of circumscription
introduced by McCarthy in [28].

For coordination problems, a natural preference relation is based on the sub-
set ordering on sets of actions. We say that sequence y is better than sequence
x if (1) in each step, the actions issued in y are a subset of the actions issued by
x and (2) for at least one step, the actions in y are a strict subset of the actions
in x. The smallest compact strategy for G(a ⇒ X b) under this preference rela-
tion issues action b precisely when input a is true at the prior step. Otherwise,
there is a point where a is false but b is issued at the next step. Removing this
occurrence of b produces a better sequence that also satisfies the property. This
is precisely the strategy defined by the machine in Fig. 1(ii). Alternative prefer-
ence relations may order sets of actions by size, or order sequences of actions by
the substring relation. One may also compare infinite action sequences by cost
(limit average or discounted sum) using comparator automata [2]. The choice of
preference relation is driven by the application domain. To accommodate various
options, compactness is parameterized by the preference relation.
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Technically, a temporal specification ϕ can be viewed as a language L, a set
of infinite words over a joint input-output alphabet. For a preference relation
≺ over infinite words, it is natural to formulate the language min(L,≺) that
contains only the minimal words in L with respect to the preference relation.
The central theoretical result in this paper is that there is a compact strategy
satisfying L if, and only if, there is a strategy satisfying min(L,≺). This theorem
reduces the question of synthesizing compact strategies to a standard synthe-
sis question, making it possible to use existing synthesis algorithms to produce
compact strategies. We give sufficient conditions under which min(L,≺) is reg-
ular when L is a regular language, and show how to effectively construct a finite
automaton for the minimal language and for its complement, from either an au-
tomaton or an LTL formula for L. The constructed automata can also be used to
model-check whether a given control program defines a compact strategy. More-
over, the transformation makes it possible to modularly apply quantitative or
other criteria for synthesis from min(L,≺); for instance, to synthesize compact
strategies that minimize program size or worst-case execution time.

We have implemented these constructions and used them to synthesize com-
pact strategies for LTL specifications and for a class of specifications that arise
in multi-robot coordination. Experiments show that compact strategies exist for
many specifications and can be effectively computed, albeit with some added
overhead. We also experiment with approximation methods which are simpler
and avoid potential worst-case exponential blowups in the general construction.

In our view, the main contributions of this work are in bringing attention
to the need for compactness in program synthesis; showing its independence
from existing criteria; giving a precise formulation in terms of minimality; and
in designing and implementing algorithms to synthesize compact strategies.

2 Background

Automata A finite automaton is a tuple (Q,Σ, Q̂, δ, F ) where Q is a set of
states ; Σ is a set of letters, an alphabet ; Q̂ is a non-empty set of initial states;
δ ⊆ Q×Σ ×Q is a transition relation ; and F is a non-empty set of final states.

A word over Σ is a (possibly empty) sequence of letters from Σ. For a word
w, its length |w| is the number of letters in w if w is finite and ω if w is infinite.
We assume the standard definition of a run of the automaton on a word. If w is
finite, a run on w is accepting if the last state of the run is in F ; if w is infinite, a
run is accepting by the Büchi condition if a state in F occurs on the run infinitely
often. The language of an automaton is the set of words for which there exists
an accepting run. One typically distinguishes between the finite-word language
and the infinite-word language of an automaton. An automaton is deterministic
if there is exactly one initial state and for every q and a, there is at most one q′

such that (q, a, q′) is in δ.
We use the standard abbreviations DFA, NFA and NBA for a deterministic

automaton, a nondeterministic automaton over finite words, and a nondetermin-
istic Büchi automaton over infinite words respectively.
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LTL Linear Temporal Logic (LTL) is a logic defined over a set of atomic propo-
sitions, AP . The logic has the following minimal grammar, where p ∈ AP :

f := p | f1 ∧ f2 | ¬f1 | X f1 | f1 U f2

The satisfaction relation is defined over infinite words where each letter is a
subset of AP . It has the form w, i |= f for a word w and a natural number i, and is
given by structural induction on formulas. We omit the standard definition. The
language of a formula is the set of words that satisfy it. Standard constructions
compile an LTL formula to an NBA that accepts the same language (cf. [18,39]),
possibly incurring an exponential blowup.

Programs as Transition Systems A program is represented by its state transition
system. This is a Moore machine, defined as a tuple (S, Ŝ, I, O,R, o) where S is
a set of states, Ŝ is a non-empty set of initial states; I is a set of input values;
O is a set of output values; R ⊆ S × I × S is the transition relation, which must
be total on I; and o : S → O is the output mapping. An execution of this system
is an unbounded alternating sequence of states and inputs, and takes the form
s0, a0, s1, a1, . . ., such that for each i, the triple (si, ai, si+1) is in the transition
relation. A computation is an execution of this form where s0 is an initial state.

Input-Output Words An input-output word (i/o word for short) is a pair of se-
quences (a, b) where a is a sequence of inputs, b is a sequence of outputs, and |b| =
1 + |a|. The input-output word induced by a program execution s0, a0, s1, a1, . . .
is the pair (a, b) with b = o(s0), o(s1), . . .. We sometimes write an i/o word in
the linear format b0, a0, b1, a1, . . . for clarity. It is also common (cf. [32]) to view
an infinite i/o word (a, b) in the “zipped” form a ./ b = (a0, b0), (a1, b1), . . .. For
a temporal property ϕ defined over input and output predicates and program
M , the program M satisfies ϕ, written M |= ϕ, if the zipped input-output word
of every computation of M satisfies ϕ. Each atomic proposition is a function in
I ×O → Bool; an i/o pair (a, b) induces the set of propositions {p | p(a, b)}.

Games and Strategies A strategy is a function from finite sequences of inputs
to outputs, represented as σ : I∗ → O. For an infinite input sequence a =
a0, a1, . . ., the strategy σ induces the infinite output sequence denoted σ(a), given
by σ(ε), σ(a0), σ(a0, a1), . . .. A play for input a is the i/o word (a, b = σ(a)). We
sometimes abuse this notation and use σ(a) to refer to the play induced by a.
A play is winning for a temporal property ϕ if it satisfies this property when
viewed as a zipped i/o word. A strategy σ is winning for ϕ if for every input a,
the play on a is winning for ϕ.

The realizability question is: given a property ϕ, determine whether there
exists a program satisfying ϕ. The synthesis question is: given a property ϕ that
is realizable, construct a program that satisfies ϕ. A strategy σ induces a deter-
ministic program with an infinite state space, denoted P (σ) = (S, Ŝ, I, O,R, o).
The state space S is the set of finite input sequences I∗, the initial state is ε,
the output label for state x is σ(x) and the transition relation R is given by
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{(x, a, xa) | x ∈ I∗, a ∈ I}. This is in fact an infinite complete tree over I
(sometimes called a “fulltree”) where each node is labeled by an output value. A
labeled fulltree, in turn, corresponds to a strategy and a deterministic program.

Synthesis Methods for Temporal Properties There is an extensive literature on
methods to synthesize programs from LTL specifications (cf. [34,32,31,26] and
tools that implement various algorithms (cf. [33,8,17,27,35,20]), all based on the
conversion from LTL formulas to equivalent automata.

The classical approach to realizability of temporal properties (which we only
sketch here, cf. [34,32]) is via the connection between programs, strategies, and
labeled fulltrees. If a property ϕ is realizable, there is a deterministic program M
satisfying ϕ. This program may also be seen as a strategy and a fulltree. From
a deterministic word automaton with the same language as ϕ, one constructs
a tree automaton that accepts precisely the fulltrees that satisfy ϕ. Now ϕ is
realizable if and only if the language of this tree automaton is non-empty. For
properties in LTL, this procedure can be carried out in 2EXPTIME in the length
of the formula ϕ; the problem is 2EXPTIME-complete [32]. A winning strategy
can be extracted as a finite state, deterministic reactive program from the tree
automaton, thanks to the finite-model property of temporal logic. This approach
is implemented in the tool Strix [30].

Two other approaches have been developed. One is to limit the logic: the
GR(1) fragment expresses many useful properties, has a lower complexity (DEX-
PTIME), and can be implemented easily using symbolic (BDD-based) meth-
ods [31]. This is implemented in several tools [33,8,17,27]. The bounded synthesis
method applies to full LTL and is iterative in nature. By placing bounds on
the size of the intended program and the ranking argument for formula satis-
faction, one obtains a simpler safety game, which can be solved using symbolic
methods [26,35,20]. The approach is implemented in [11,19].

We use two of the approaches described above in this work. The classical
approach is used to determine compact realizability of an arbitrary LTL formula,
while GR(1) approach is used in the multi-robot setting.

3 Compactness

We formulate compactness for temporal specifications, investigate its properties,
and show how to synthesize a compact strategy through a specification transfor-
mation. We consider specifications on infinite words for simplicity and to match
the semantics of temporal logic.

A relation ≺O over the set of infinite output words is a preference relation if
its transitive closure ≺+

O is irreflexive. We informally say that word b is better
than b′ if b ≺+

O b′ holds. As the transitive closure is irreflexive, it is not possible
for a word to be better than itself, matching intuition. This relation is extended
to input-output words as follows. An i/o word (a, b) is better than an i/o word
(a′, b′) if (1) the input sequences a and a′ are identical, and (2) b ≺+

O b′. The first
condition ensures that comparable words have the same input sequence, which

Synthesis of Compact Strategies for Coordination Programs 51



is important as we are ultimately interested in the i/o words that are generated
as plays of strategies.

Definition 1 (Compact Strategy). A strategy σ is compact for an i/o lan-
guage L if (1) σ is a winning strategy for L and (2) for every input sequence a,
there is no i/o word (a, b′) such that (a, b′) satisfies L and (a, b′) is better than
the i/o word (a, b = σ(a)) that is produced as the play of σ on input a.

The first condition ensures that σ is a valid strategy for L; the second that
a compact strategy produces the “best possible” output for each input. We say
that a language L is compactly realizable if it has a compact strategy.

Theorem 1. A language L is realizable if it is compactly realizable. The con-
verse does not hold.

Proof. From right-to-left, consider a compact strategy σ for L. From the defini-
tion, σ is a winning strategy for L, hence L is realizable.

The converse does not hold. Let the input set I = {0, 1} and the output set
O = {c, d} with the output preference ordering c < d extended point-wise to
output words. Let the specification L consist of sequences of the form c(0c)ω

and d({0, 1}d)ω. This is realizable. No winning strategy can produce c on ε as
there can be no win on input 1ω. The single winning strategy produces d on
every input sequence, including ε. But this strategy is not compact: for input 0ω

it generates d(0d)ω, but there is the better word c(0c)ω in L. ut

Standard realizability is monotone: if L′ ⊆ L and program M satisfies L′,
then M also satisfies L. However, compact realizability is neither monotone nor
anti-monotone (proof in the full version). As is the case with deduction systems
for commonsense reasoning (cf. [37]), non-monotonicity is a consequence of the
formulation in terms of minimality.

The simple example from the Introduction is easily extended to a collection
of N “if-condition-then-action” requirements. The IFTTT service (https://ifttt.
com) or Apple Shortcuts implement these operationally, using an event-driven
rule engine. However, from the viewpoint of temporal logic and synthesis, the
results can be unexpected, as we have seen. The N requirements in LTL have
the shape (

∧
i : G(a(i) ⇒ X b(i))). The smallest model is one with a single

state, issuing all the b actions unconditionally. This is clearly unintended. The
intended model, which is compact, has 2N states, one for each subset of the b
actions. Thus, the gap between the smallest non-compact and compact models
can be exponential in the length of the specification.

We now show the main theorem that links compact and standard realizability
through a specification transformation.

Definition 2 (minimal language). For a language L over alphabet Σ and a
preference relation ≺ on Σ-words, the minimal elements of L form the language

min(L,≺) = {x | x ∈ L ∧ ¬(∃y : y ∈ L ∧ y ≺+ x)}

I.e., a word x is in min(L,≺) if it belongs to L and there is no word y in L that
is transitively better than x.

K. S. Namjoshi and N. Patel52

https://ifttt.com
https://ifttt.com


Theorem 2. Language L is compactly realizable if and only if min(L,≺) is
realizable.

Proof. (Left-to-right) Let σ be a strategy that compactly realizes L. Consider
any input sequence a. The output b = σ(a) produced by the strategy is such that
there is no word in L that is better than (a, b), by the definition of compactness.
Hence, (a, b) is in min(L,≺). As this holds for each input sequence, σ is a winning
strategy for min(L,≺).

(Right-to-left) Let σ be a winning strategy for min(L,≺). For any input
sequence a and its corresponding output b = σ(a), the word x = (a, b) must
satisfy min(L,≺). By the definition of min, we have that (1) x also satisfies L.
Moreover, (2) there is no i/o word y that is better than x and also satisfies L.
From (1) and (2), σ is a compact strategy for L. ut

3.1 Effective Minimality Constructions for LTL

Theorem 2 implies that one can reduce compact realizability to standard realiz-
ability. Given a temporal specification ϕ, we transform its language L(ϕ) to the
language C(ϕ) = min(L(ϕ),≺). Starting from an LTL formula f , we give two
constructions: one for the minimal language C(f), the other for its complement.
The constructions assume that the relation ≺+ can be expressed as an NBA,
which is the case for the preference order defined in the Introduction.

The first construction directly follows Definition 2. The left-hand term (x ∈
L(f)) is fulfilled by the standard conversion from LTL formula f to an NBA
Af . For the right-hand term, we use the same NBA Af , now re-defined over
y, for the y ∈ L(f) term; intersect this with the NBA for ≺+; then project
onto x and complement to obtain an NBA for the right-hand conjunct. The
intersection of these two NBAs provides an NBA for C(f). These steps may result
a worst-case double exponential blowup in the size of f : the first exponential is
in the construction of Af ; the second is in the complementation step. A similar
construction applies if the specification is given directly as an NBA.

The second construction produces an NBA for the complement of the minimal
language, with “only” a worst-case single exponential blowup. The complement
of C(f) is (from the definition) {x | x 6∈ L(f) ∨ (∃y : y ∈ L(f) ∧ y ≺+ x)}.
For an LTL formula f , one constructs NBAs Af and A¬f for the LTL formulas
f and ¬f , respectively. An NBA for (∃y : y ∈ L(f) ∧ y ≺+ x) is obtained as in
the first construction by omitting the final complementation step. The union of
this NBA with the NBA for A¬f gives an NBA for the complement of C(f).

The NBA for the complement of C(f) can be used to model-check whether
a given strategy is compact. It can also be used to synthesize machines using
bounded synthesis, which requires an NBA for the complement of the specifi-
cation property. The worst-case blowups are unavoidable: that follows from a
lower-bound result by Birget [5] and a simpler but less general result of ours,
discussed in the full version of this paper.
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3.2 Relationship to Quantitative Synthesis

The formulation of compactness is in terms of a qualitative notion of minimality.
A natural question is the relationship to methods for synthesis with quanti-
tative objectives; in particular, methods for producing programs with optimal
worst-case or average-case behavior [6,13]. Expanding on the argument in the
Introduction, we establish that worst-case optimality cannot always distinguish
between compact and non-compact solutions to a given specification.

In quantitative formulations, the synthesis game is formulated so that each
transition has an associated reward. The reward of an infinite computation is
defined using standard cumulative metrics such as mean-payoff (the limit of
average rewards over successively longer prefixes) or discounted sum (the sum
of rewards over the computation discounted geometrically, i.e., the k’th reward
contributes a factor dk, where d ∈ (0, 1) is the discount factor). The objective is
to find a winning strategy with maximum worst-case reward, where the worst-
case reward is the minimum reward over all inputs. In the stochastic form of
the game, an additional probabilistic player “Nature” is introduced, and the
objective is to find a winning strategy with the maximum average-case reward,
where the average is the expectation taken over the induced probability space.
Precise definitions of these concepts can be found in [6].

Worst-case optimality We return to the example discussed in the Introduction.
There, we had assumed for simplicity that each action set is assigned a cost that
is its cardinality. However, the reasoning carries over to any cost function that is
monotonic with respect to set inclusion: i.e., if A ⊂ B then cost(A) < cost(B).
Intuitively, monotonicity captures the preference for choosing a smaller set of
output actions. Consider the mean-payoff cost of an infinite execution where
the input a is always true. For the non-compact program in Figure 1(i), it is
obvious that the limit of the average cost is cost({b}). That is also the case for
the compact program in Figure 1(ii): the fact that the initial cost is cost(∅) is
swamped in the limit. This is the worst case input for both programs by the
monotonicity of the cost function. The best case for the program on the right is
when the input a is almost everywhere false. Thus, worst-case optimality cannot
distinguish between the two programs for any monotonic cost function.

Average-case optimality We now show that average-case optimality also cannot
always distinguish between compact and non-compact strategies. The general
principle is that if a strategy is non-compact only for a finite prefix of a compu-
tation, its average-case cost in the limit will be the same as the cost of a strategy
which performs in a compact manner throughout.

Consider the input set I = {0, 1}. Suppose that inputs are chosen uniformly
at random. The output set O is the set of subsets of the action set A = {a, b}.
Let the specification be the following: the initial choice of output set is either {a}
or A; all subsequent outputs must be A. There are only two winning strategies,
which differ only in their choice of initial output (either {a} or A); both produce
output A subsequently regardless of the input. Assuming unit cost per output
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action, the average cost of a run of length n is thus (1 + 2(n− 1))/n for the first
strategy and 2 for the second. In the limit, both strategies have average cost 2,
although the first is compact, while the second is not. This argument also applies
for an arbitrary but monotone cost function.

In our view, quantitative measures are best suited to modeling the real cost
of actions rather than to modeling a preference ordering. The two may, however,
be combined to good effect. As compactness is ensured with a specification trans-
formation, one can modularly apply quantitative synthesis to the transformed
specification min(L,≺) to obtain strategies that are compact and also optimal
with respect to a cost metric.

3.3 Approximating Compactness

The worst-case exponential blowups can make it difficult to produce compact
strategies. Moreover, Theorem 1 asserts that there are specifications that are
realizable but have no compact strategies. For both reasons, we describe methods
by which one can approximate the compactness criterion.

Approximately Minimal Languages The first method is to tighten the lan-
guage L to L′ that lies between L and min(L,≺); we call L′ approximately
minimal for L. We synthesize a program satisfying L′. Given an NBA A for L
over alphabet I ×O, we construct an NBA Â whose language is approximately
minimal for L. This construction applies only to a class of preference relations
that are induced pointwise by a partial order ≤ on individual letters of the
output set O.

For infinite i/o words w = (a, b) and w′ = (a′, b′), define w ≺p w′ iff (1)
for all i, ai = a′i (inputs are identical) and bi ≤ b′i, and (2) there is some i for
which bi < b′i. We say that w �p w

′ if w ≺p w
′ or w = w′. The ordering ≺p is

transitive and regular. It is easy to construct an automaton accepting ≺p, which
checks condition (1) at each position of the zipped word w ./ w′, and accepts
only if condition (2) holds at some position on the zipped word. The subset and
cardinality preference relations introduced earlier are of this type.

Given an NBA A recognizing L, the NBA Â is constructed by excluding
certain transitions of A. Specifically, a transition (q, (a1, b1), q′) of A is omitted
in Â if there is a “better” transition (q, (a2, b2), q′) in A with a1 = a2 and b2 < b1.
Automaton Â can be efficiently constructed from A by performing a single pass
over δ. The set of states, initial states and final states are identical in A and Â.

Theorem 3. For a pointwise preference order ≤ over O, L(Â) is an approxi-
mately minimal language for L.

Proof. It is easy to see that L(Â) ⊆ L(A), as an accepting run in Â is also an
accepting run in A.

For the other inclusion, let w be in min(L,≺p). Then, w is also in L. Thus,

there is an accepting run ρ for w in A. If all transitions in ρ are present in Â,
then w is also in L(Â). If not, there is a transition (q, (a1, b1), q′) at the k-th
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step of ρ (for some k) that is not present in Â. By construction, there must
be a transition (q, (a1, b2), q′) in A such that b2 < b1. Now consider the run ρ′

that is generated by swapping transition (q, (a1, b1), q′) with (q, (a1, b2), q′) at
the k-th step. This is also an accepting run, on a word w′ that is identical to w
except that it has (a1, b2) rather than (a1, b1) as its k-th entry. As w′ is in L and
w′ ≺p w, it cannot be the case that w is in min(L,≺p), a contradiction. ut

Minimal Strategies for L The second method searches greedily for compact
strategies in a game graph for L. For strategies σ and σ′, say that σ v σ′ (read as
“σ is better than σ′”) if for all input sequences a, σ(a) = σ′(a) or σ(a) ≺+ σ′(a).
I.e., the output on input a is using σ is at least as good as that using σ′. The
minimal elements according to this ordering are called minimal strategies for L.
It is easy to show that every compact strategy for L is a minimal strategy for
L. The converse does not hold.

The greedy construction applies to a game graph for L where strategies are
memoryless (e.g., if synthesis for L is a safety game or a parity game), and if the
preference order is pointwise, as defined above. The core idea is simple: compute
the set of winning positions; then nondeterministically and greedily extract a
strategy by choosing only those transitions between successive winning positions
that are output-minimal with respect to <. In the full version, it is shown that
any strategy extracted in this manner is minimal for L.

4 Evaluation

4.1 Multi-Robot Coordination

Our original motivation to investigate compactness comes from an application to
multi-robot orchestration. Due to space limitations, we describe this setting in
brief. One has available multiple, heterogeneous robots, each capable of carrying
out certain actions, some of which cannot be allowed to overlap. The goal is
to perform specified tasks by (a) assigning robots to carry out actions and (b)
sequence the actions appropriately. Tasks are described in a simple declarative
language, called Resh [12], that has been implemented and used to control groups
of mobile robots. A useful subset of Resh is given by the following grammar,
where A is the set of action names and R is a set of robot names.

S := a → R | S ⇒ S | S&S | S |S | S + S

The interpretation of these operators is in terms of a finite-word input-output
sequence. A term a → R is interpreted as “perform action a using one of the
robots in R.” For this, a control strategy chooses a robot r in R, and produces a
“(begin a on r)” output event. Action duration is not fixed: E.g., the time taken
to perform a “move to position p” action may vary as the robot maneuvers
around humans. The completion signal is a “(end a on r)” event that is an input
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to the control strategy. The other operators are interpreted as ⇒ (sequenc-
ing), & (concurrent), | (choice), and + (concurrent with both tasks starting
together). The interpretation of each operator produces a regular language.

The finite-word semantics is appropriate for robotics tasks that must be
performed to completion. The same observation motivates the use of LTLf (a
finite-word variant of LTL) in [38] to specify robotics tasks. A winning control
strategy is one that satisfies the semantics of the operators.

As action completions are uncontrolled, even a simple specification such as
a → R is unrealizable if the completion signal is never issued by an adver-
sarial environment. It is thus necessary to restrict the environment so that ev-
ery initiated action is eventually completed. This assumption must be inter-
preted over infinite words. It has the shape of a conjunction of LTL formulas
G(begin(a, r) ⇒ XF end(a, r)) over all actions a and robots r. This can be rep-
resented by a DBA which tracks the set of pending (i.e., begun but not ended)
actions. This DBA is worst-case exponential in the number of action-robot pairs,
but in practice is limited by the concurrency in the specification.

In order to match the infinite-word environment constraint, the Resh system
specification must be extended to infinite words. This is done by saying that an
infinite word w satisfies the specification if there is a prefix x of w such that
x satisfies the specification. Being a regular language, a Resh specification is
representable as a DFA; this is extended to infinite words as a DBA by replacing
the outgoing transitions of each final state with a self-loop on all inputs.

We have arrived at the final form of the synthesis question, which has the
shape E ⇒ S, where E (the environment assumptions) and S (the system
specification) are both representable as deterministic Büchi automata. That is
precisely the general form of a GR(1) specification [31]; therefore, algorithms for
GR(1) synthesis can be applied to synthesize finite-state controllers.

Implementation and Experiments. Our initial experiments in synthesis with
(E ⇒ S) occasionally produced non-compact strategies, which motivated this
exploration of compactness. We now use the modified specification E ⇒ Ŝ,
where the system portion is made approximately compact through the con-
struction in Section 3.3, which preserves the GR(1) format. This specification
produces compact strategies for all cases we have examined.

Our implementation of GR(1) synthesis uses a SAT solver, similar to the
method of [10]; we found this to be significantly faster than BDD-based meth-
ods. As there is not a well-defined set of benchmarks for robotics or Resh specifi-
cations, we generate 500 specifications at random, producing specifications with
parse-tree depth 4, biased slightly to prefer the sequencing operation (i.e., ⇒ )
over the others, as is likely to be the case in practice.

The system specification is set up to have two robots. Actions are allowed
to overlap, which implies that all specifications are realizable. Of the 500 speci-
fications, the GR(1) game graph was generated for 428 (85%) within a timeout
limit of 5 minutes for each specification. (The Resh-to-automaton construction
uses BDDs to symbolically represent output event sets, which sometimes blows
up.) All 428 game graphs are solved by the SAT-based GR(1) procedure within

Synthesis of Compact Strategies for Coordination Programs 57



a timeout of 5 minutes per game. The median solution time is 3 seconds; 90%
are solved within 30 seconds; and all are solved within 225 seconds. We also
experimented with a small hand-designed group of specifications where certain
action overlaps are forbidden, which are also resolved efficiently.

4.2 Compactness for LTL

We now describe an implementation of a compact synthesis pipeline for general
LTL specifications. Our experiments use the benchmarks from the SYNTCOMP
(2020) competition.4 In these experiments, the preference order is fixed as the
pointwise subset order. We were forced to make this arbitrary choice as there
is limited information about the origin of the benchmark problems, so we could
not tailor the ordering to the problem domain.

The goal is (1) to determine the difficulty of constructing a compact synthesis
pipeline for LTL, and (2) to gauge the practical feasibility of the compact synthe-
sis procedures. The experiments are designed to answer the following questions
that arise from (2): (Q1) What is the overhead on generating compact strategies
compared to standard synthesis? (Q2) Is the approximation procedure more ef-
ficient than exact compactness? and (Q3) How effective are the approximate
constructions at producing compact strategies?

Fig. 2. An overview of the workflow for our experiments and tool. In the figure, m̂in
refers to the approximate minimal language, while RefModel(f) refers to the reference
model for formula f .

A high-level overview of the internal structure of our tool is in Fig. 2. Our
implementation chains together several known tools: the automaton libraries
SPOT (v. 2.9.5) and Owl (v.20.06)[25], the synthesis tool Strix (v. 20.10)[30]
and the model checker NuSMV (v. 2.6.0) [14]. We also use the AIGER toolkit [4]
as well as the Syfco synthesis format converter5. We are grateful to the authors
for making these tools freely available.

4 At https://github.com/SYNTCOMP/benchmarks.
5 At https://github.com/reactive-systems/syfco

K. S. Namjoshi and N. Patel58

https://github.com/SYNTCOMP/benchmarks
https://github.com/reactive-systems/syfco


Our tool offers three main features: (1) Compact Realizability: given an
LTL formula f , determine if f is compactly realizable. This feature uses the
compactness transformation from Section 3.1 to produce an automaton for the
complement of the minimal language, which is then complemented, determinized
and synthesized using Strix; (2) Compactness Test: given an LTL formula f
and a candidate program P , determine if P is a compact program for f ; and
(3) Approximate Compact Realizability: given an LTL formula f , generate
an approximately compact strategy. Here we implement the construction of the
approximate minimal automaton from Section 3.3.

Our experiments were carried out on a Linux VM running Ubuntu 20.04 with
12 GB of memory. Naturally, we only consider synthesizing compact strategies
for specifications that are realizable 6. The results can be summarized as follows:
(A1) We compare the efficiency of compact synthesis to the standard synthe-
sis by evaluating the number of specifications that can be synthesized within a
certain time limit. We fix this time limit to be 10 minutes, and use Strix for stan-
dard synthesis. (With this limit, the entire run over the benchmarks takes several
hours.) Strix determines realizability for 396 specifications out of 421 (∼ 94%),
while our tool determines compact realizability for 213 (∼ 50%). (A2) Within
the same time limit, the approximation technique determines realizability for
398 specifications, significantly more than for exact compactness and about the
same as for standard realizability. (A3) We model-check the strategies generated
through approximate compact realizability. Model-checking for compactness re-
quires the complement minimal automaton of a specification, so we set the time
limit of 10 minutes per specification to generate this automaton. Within this
limit, our tool manages to construct the required automaton for 246 specifica-
tions. Generating approximate compact strategies for these 246 specifications,
and applying the Compactness Test on these strategies, we find that ∼ 42% of
the synthesized strategies are compact.

In addition, we tried our tool on the generalized version of the example
specification from the introduction (

∧
i : G(a(i) ⇒ X b(i))). Our tool can

synthesize a compact strategy till N = 8 fairly quickly, after which our setup
struggles to compile the original LTL formula to an NBA. On the same set of
specifications, the approximate techniques also produce a compact strategy.

The implementation process was fairly straightforward, a pleasant surprise
given the number of tools and format conversions involved. We had to patch
some tools to extend their capabilities (e.g., to allow automata as specifications)
and to implement format conversions.

In summary, compact synthesis is feasible for a substantial number of spec-
ifications. Where it is not – due either to blowups in automaton construction
or due to the gap between normal and compact realizability – one can use the
approximation procedure defined in Section 3.3 to generate strategies that are
minimal with respect to the strategy ordering.

6 We refer to the helpful classification of these benchmarks into realizable and unre-
alizable ones from https://github.com/meyerphi/syntcomp-reference/.
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5 Related Work

We discuss closely related work in synthesis and commonsense reasoning.

Qualitative Temporal Synthesis There is a considerable literature on the synthe-
sis of open reactive programs from LTL specifications, starting with the seminal
work by Pnueli and Rosner [32]. The beautiful theoretical results are made prac-
tical by the discovery of efficient algorithms for the GR(1) subclass [9,31], and
procedures for bounded synthesis [21,36], based on so-called “Safraless” proce-
dures [26]. These algorithms have been implemented in several tools,
e.g., [11,15,16,19,23,33,27]. Our work builds on this basis by transforming the
search for compact strategies to a standard synthesis question that can be han-
dled by these tools.

In the robotics domain, prior work investigates synthesis for an interpreta-
tion of LTL over finite words called LTLf [22,38,40]. Although Resh is similarly
restricted to finite-word properties, a central difference is that specifications in
LTLf (like LTL) are defined over propositions on robot and world state, and not
in terms of actions of an unknown duration.

There are many ways to choose between satisfying models: e.g., [7] designs
synthesis procedures that produce minimally vacuous models. While the formu-
lations differ, there is a common thread in the notion of minimality with respect
to an ordering over models.

Quantitative Temporal Synthesis A substantial body of work in temporal syn-
thesis is focused on quantitative objectives. These problems are represented by
games where each action has an associated cost (or, dually, reward) and the
objective is to find strategies that minimize cost (or, maximize reward) (cf. [6]).
There are several ways to formulate appropriate cost/reward functions and cor-
respondingly many ways to solve such games. One could attempt to model com-
pactness by assigning costs to actions such that if word x is better than word y
then x has the lower cost. We chose not to develop solutions along such quan-
titative lines for two main reasons: first, as the connection between cost and
preference is indirect, setting up the right cost assignments to model a desired
preference ordering is difficult; secondly, the theoretical complexity and practi-
cal difficulty of quantitative synthesis is high. Instead, we chose to tackle the
question in a qualitative manner.

As shown in Section 3, quantitative measures cannot always differentiate
between compact and non-compact solutions. Using the specification transfor-
mation developed here, the two methods can, however, be used in cooperation:
one can model the real costs of actions in a manner that is orthogonal to the
preference ordering and compute minimal-cost, compact strategies.

A recent work [1] focuses on the “quality” of satisfaction of an LTL formula
(e.g., preferring to satisfy one part of a specification over another). Synthesis is
through a reduction to a standard LTL specification; unfortunately this has a
worst-case exponential blowup.
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Non-Monotonic Reasoning. As mentioned briefly in the introduction, the com-
pactness criterion is a form of commonsense reasoning: one does not expect
synthesized solutions to include unnecessary actions. Commonsense reasoning
is exemplified by the classical frame problem, introduced in [29], which shows
that the freedom of interpretation given by logic must be restricted in order to
achieve commonsense conclusions.

It was soon recognized that such restrictions imply a non-standard notion of
deduction, which is not monotonic: adding new hypotheses can invalidate current
conclusions [37]. In [28], McCarthy suggests a formulation in terms of a circum-
scription operation: each inference is guarded with a “not(abnormal)” predicate,
and a successor state is one where the extent of this predicate is minimized—i.e.,
abnormal effects are maximally limited while avoiding inconsistencies. Logically,
this is specified in second-order logic as ϕ(A) ∧ ¬(∃B : B ⊂ A ∧ ϕ(B)), where ϕ
is the specification and A is the abnormality predicate. Readers will immediately
notice the similarity to the definition of min(L,≺).

The importance of a general preference order in place of the fixed subset re-
lation is laid out in [24]; the authors propose reasonable properties that any non-
monotonic inference relation should meet, and show that a definition in terms of
a preference ordering satisfies those properties. Our formulation of compactness
is based on similar notions of minimality over a preference ordering on words.
This is at the root of the non-monotonicity of compactness. These similarities
hint at deeper connections between compactness and non-monotonic common-
sense reasoning; we aim to investigate those in future work.
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