
113

Verifying Concurrent Multicopy Search Structures

NISARG PATEL, New York University, USA

SIDDHARTH KRISHNA,Microsoft Research, UK

DENNIS SHASHA, New York University, USA

THOMAS WIES, New York University, USA

Multicopy search structures such as log-structured merge (LSM) trees are optimized for high insert/up-
date/delete (collectively known as upsert) performance. In such data structures, an upsert on key 𝑘 , which
adds (𝑘, 𝑣) where 𝑣 can be a value or a tombstone, is added to the root node even if 𝑘 is already present in
other nodes. Thus there may be multiple copies of 𝑘 in the search structure. A search on 𝑘 aims to return the
value associated with the most recent upsert. We present a general framework for verifying linearizability of
concurrent multicopy search structures that abstracts from the underlying representation of the data structure
in memory, enabling proof-reuse across diverse implementations. Based on our framework, we propose
template algorithms for (a) LSM structures forming arbitrary directed acyclic graphs and (b) differential file
structures, and formally verify these templates in the concurrent separation logic Iris. We also instantiate the
LSM template to obtain the first verified concurrent in-memory LSM tree implementation.

CCS Concepts: • Theory of computation → Logic and verification; Separation logic; Shared memory

algorithms.

Additional Key Words and Phrases: template-based verification, concurrent data structures, log-structured
merge trees, flow framework, separation logic

ACM Reference Format:

Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies. 2021. Verifying Concurrent Multicopy
Search Structures. Proc. ACM Program. Lang. 5, OOPSLA, Article 113 (October 2021), 32 pages. https://doi.org/
10.1145/3485490

1 INTRODUCTION

Krishna et al. [2020a] demonstrated how to simplify the verification of concurrent search structure
algorithms by abstracting implementations of diverse data structures such as B-trees, lists, and
hash tables into templates that can be verified once and for all. The template algorithms considered
in [Krishna et al. 2020a; Shasha and Goodman 1988] handle only search structures that perform all
operations on keys in-place. That is, an operation on key 𝑘 searches for the unique node containing
𝑘 in the structure and then performs any necessary modifications on that node. Since every key
occurs at most once in the data structure at any given moment, we refer to these structures as
single-copy (search) structures.

Single-copy structures achieve high performance for reads. However, some applications, such as
event logging, require high write performance, possibly at the cost of decreased read speed and
increased memory overhead. This demand is met by data structures that store upserts (inserts,
deletes or updates) to a key 𝑘 out-of-place at a new node instead of overwriting a previous copy of

Authors’ addresses: Nisarg Patel, New York University, USA, nisarg@nyu.edu; Siddharth Krishna, Microsoft Research,
Cambridge, UK, siddharth@cs.nyu.edu; Dennis Shasha, New York University, USA, shasha@cims.nyu.edu; Thomas Wies,
New York University, USA, wies@cs.nyu.edu.

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/10-ART113
https://doi.org/10.1145/3485490

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485490
https://doi.org/10.1145/3485490
https://doi.org/10.1145/3485490


113:2 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

𝑘 that was already present in some other node. Performing out-of-place upserts can be done in
constant time (e.g., always at the head of a list). A consequence of this design is that the same key
𝑘 can now be present multiple times simultaneously in the data structure. Hence, we refer to these
structures as multicopy (search) structures.

Examples of multicopy structures include the differential file structure [Severance and Lohman
1976], log-structured merge (LSM) tree [O’Neil et al. 1996], and the Bw-tree [Levandoski et al.
2013]. These concurrent data structures are widely used in practice, including in state-of-the-art
database systems such as Apache Cassandra [Apache Software Foundation 2021] and Google
LevelDB [Google 2021].
Like the verification method proposed by Krishna et al. [2020a], we aim to prove that the

concurrent search structure of interest is linearizable [Herlihy and Tygar 1987], i.e., each of its
operations appears to take effect atomically at a linearization point and behaves according to a
sequential specification. For multicopy structures, the sequential specification is that of a (partial)
mathematical map that maps a key to the last value that was upserted for that key. The framework
proposed in [Krishna et al. 2020a; Shasha and Goodman 1988] does not extend to multicopy
structures as it critically relies on the fact that every key is present in at most one node of the
data structure at a time. Moreover, searches in multicopy structures exhibit dynamic non-local
linearization points (i.e., the linearization point of a search is determined by and may be present
during the execution of concurrently executing upserts). This introduces a technical challenge that
is not addressed by this prior work. We discuss further related work in ğ9.

Contributions. This paper presents a framework for constructing linearizability proofs of concur-
rent multicopy structures with the goal of enabling proof reuse across data structures. Figure 1
provides an overview of our work. The paper starts by describing the basic intuition behind the
correctness proof of any multicopy structure (ğ2). We then derive an abstract notion of multicopy
structures similar to the abstract single-copy structures in the edgeset framework [Shasha and
Goodman 1988] (ğ3). By introducing this intermediate abstraction level ("Template Level" in the
figure) at which we can verify concurrent multicopy structure template algorithms, we aid proof
reuse in two ways. First, the template algorithms abstract from the concrete representation of the
data structure, allowing their proofs to be reused across diverse template instantiations. Second, the
specification against which the templates are verified ("Search Recency") admits simpler lineariz-
ability proofs than the standard client-level specification of a search structure. The proof relating
the client-level and template-level specification (ğ4) can be reused across all templates.
We demonstrate our framework by developing and verifying concurrent multicopy templates

for (a) LSM structures and (b) differential file structures. The LSM template applies to existing LSM
trees as well as to structures that form arbitrary directed acyclic graphs (DAGs) (ğ5, ğ6, and ğ7).
The template and its proof support implementations based on different heap representations such
as lists, arrays, and B-link trees. Verifying an instantiation of one of the two templates for a specific
implementation involves only sequential reasoning about node-level operations.
We have mechanized both the proof relating client-level and template-level specifications as

well as the verification of our template algorithms in the Coq-based interactive proof mode of the
concurrent separation logic Iris [Jung et al. 2018; Krebbers et al. 2018, 2017]. Similar to [Krishna
et al. 2020a], our formalization uses the flow framework [Krishna et al. 2018, 2020b] to enable local
reasoning about inductive invariants of a general multicopy structure graph. In order to obtain a
concrete multicopy structure, we have instantiated the node-level operations assumed by the LSM
template for the LSM tree and verified their implementations in the automated separation logic
verifier GRASShopper [Piskac et al. 2014] (ğ8). The result is the first formally-verified concurrent
in-memory LSM tree implementation.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



Verifying Concurrent Multicopy Search Structures 113:3

Client code

Map ADT

assumes

Search
Recency

Node-level
Specifications

refines

MCS
Template

satisfies

as
su

m
es

MCS 
Implementation
(e.g. LSM tree)

satisfies

Client Level Template Level Representation Level

S
p
ec

ifi
ca

ti
on

L
ay

er
Im

p
le

m
en

ta
ti
on

L
ay

er

Fig. 1. The structure of our verification effort. MCS stands for multicopy structure.

2 MOTIVATION AND OVERVIEW

From a client’s perspective, a multicopy structure implements a partial mathematical map𝑀 : KS ⇀

V of keys 𝑘 ∈ KS to values 𝑣 ∈ V. We refer to 𝑀 as the logical contents of the structure. The data
structure supports insertions and deletions of key/value pairs on 𝑀 and searches for the value
𝑀 (𝑘) associated with a given key 𝑘 .

The insert and delete operations are implemented by a single generic operation referred to as an
upsert. The sequential specification of upsert is as follows. The operation takes a key-value pair
(𝑘, 𝑣) and updates𝑀 to𝑀 [𝑘 ↣ 𝑣], associating 𝑘 with the given value 𝑣 . To delete a key 𝑘 from the
structure, one upserts the pair (𝑘,□) where □ is a dedicated tombstone value used to indicate that 𝑘
has been deleted. The sequential specification of a search for a key 𝑘 is then as expected: it returns
𝑀 (𝑘) if𝑀 is defined for 𝑘 and □ otherwise.
Multicopy structures are commonly used in scenarios where the nodes representing the data

structure’s logical contents𝑀 are spread over multiple media such as memory, solid-state drives,
and hard disk drives. Each node therefore contains its own data structure that is designed for the
particular characteristics of the underlying medium, typically an unsorted array at the root to allow
upserts to perform fast appends and a classical single-copy search structure (e.g., a hash structure
or arrays with bloom filters) for non-root nodes. The non-root nodes are typically read-only, so
concurrency at the node level is not an issue. In this paper, we consider the multicopy data structure
as a graph of nodes. We study template algorithms on that graph.

2.1 A Library Analogy to Multicopy Search Structures

To train your intuition about multicopy structures, consider a library of books in which new editions
of the same book arrive over time. Thus the first edition of book 𝑘 can enter and later the second
edition, then the third and so on. A patron of this library who enters the library at time 𝑡 and is
looking for book 𝑘 should find an edition that is either current at time 𝑡 or one that arrives in the
library after 𝑡 . We call this normative property search recency.

Now suppose the library is organized as a sequence of rooms. All new books are put in the first
room (near the entrance). When a new edition 𝑣 of a book arrives in the first room, any previous
editions of that book in that room are thrown out. When the first room becomes full, the books
in that room are moved to the second room. If a previous edition of some book is already in the
second room, that previous edition is thrown out. When the second room becomes full, its books
are moved to the third room using the same throwing out rule, and so on. This procedure maintains

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



113:4 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

(𝑘2, 𝑑)𝑟

(𝑘1,□)

(𝑘2, 𝑏)
𝑛1

(𝑘2, 𝑎)

(𝑘3, 𝑐)
𝑛2

(𝑘1, 𝑐)

(𝑘3, 𝑏)
𝑛3

memory

disk

(a) 𝑟

(𝑘1,□)

(𝑘2, 𝑑)
𝑛1

(𝑘2, 𝑎)

(𝑘3, 𝑐)
𝑛2

(𝑘1, 𝑐)

(𝑘3, 𝑏)
𝑛3

(b) (𝑘2, 𝑑)𝑟

𝑛1

(𝑘1,□)

(𝑘2, 𝑏)

(𝑘3, 𝑐)

𝑛2

(𝑘1, 𝑐)

(𝑘3, 𝑏)
𝑛3

(c)

Fig. 2. (a) High-level structure of an LSM tree. (b) LSM tree obtained from (a) after flushing node 𝑟 to disk.

(c) LSM tree obtained (a) after compacting nodes 𝑛1 and 𝑛2.

the time-ordering invariant that the editions of the same book are ordered from most recent (at or
nearer to the first room) to least recent (farther away from the first room) in the sequence of rooms.

A patron’s search for 𝑘 starting at time 𝑡 begins in the first room. If the search finds any edition
of 𝑘 in that room, the patron takes a photocopy of that edition. If not, the search proceeds to the
second room and so on.
Now suppose that the latest edition at time 𝑡 is edition 𝑣 and there is a previous edition 𝑣 ′.

Because of the time-ordering invariant and the fact that the search begins at the first room, the
search will encounter 𝑣 before it encounters 𝑣 ′. The search may also encounter an even newer
edition of 𝑘 , but will never encounter an older one before returning. That establishes the search
recency property.

Any concurrent execution of inserts and searches is equivalent to a serial execution in which (i)
each insert is placed in its relative order of entering the root node with respect to other inserts
and (iia) a search 𝑠 is placed after the insert whose edition 𝑠 copies if that insert occurred after 𝑠
began or (iib) a search 𝑠 is placed at the point when 𝑠 began, if the edition that 𝑠 copies was inserted
before 𝑠 began (or if 𝑠 returns no edition at all).
Because the searches satisfy the search recency property, the concurrent execution is lineariz-

able [Herlihy and Wing 1990], which is our ultimate correctness goal.
Note that the analogy as written has treated only inserts and searches. However, updates and

deletions can be implemented as inserts: an update to book 𝑘 can be implemented as the insertion
of a new edition; a delete of book 𝑘 can be implemented as the insertion of an edition whose value
is a łtombstonež which is an indication that book 𝑘 has been deleted.

2.2 Log-Structured Merge Trees

A prominent example of a multicopy structure is the LSM tree, which closely corresponds to the
library analogy described above. The data structure consists of a root node 𝑟 stored in memory
(the first room in the library), and a linked list of nodes 𝑛1, 𝑛2, . . . , 𝑛𝑙 stored on disk (the remaining
rooms). Figure 2 (a) shows an example.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



Verifying Concurrent Multicopy Search Structures 113:5

The LSM tree operations essentially behave as outlined in the library analogy. The upsert
operation takes place at the root node 𝑟 . A search for a key 𝑘 traverses the list starting from the
root node and retrieves the value associated with the first copy of 𝑘 that is encountered. If the
retrieved value is □ or if no entry for 𝑘 has been found after traversing the entire list, then the
search determines that 𝑘 is not present in the data structure. Otherwise, it returns the retrieved
value. For instance, a search for key 𝑘1 on the LSM tree depicted in Figure 2 (a) would determine
that this key is not present since the retrieved value is □ from node 𝑛1. Similarly, 𝑘4 is not present
since there is no entry for this key. On the other hand, a search for 𝑘2 would return 𝑑 and a search
for 𝑘3 would return 𝑐 .

To prevent the root node from growing too large, the LSM tree performs flushing. As the name
suggests, the flushing operation flushes the data from the root node to the disk by moving its
contents to the first disk node. Figure 2 (b) shows the LSM tree obtained from Figure 2 (a) after
flushing the contents of 𝑟 to the disk node 𝑛1.

Similar to flushing, a compaction operation moves data from full nodes on disk to their successor.
In case there is no successor, then a new node is created at the end of the structure. During the
merge, if a key is present in both nodes, then the most recent (closer-to-the-root) copy is kept,
while older copies are discarded. Figure 2 (c) shows the LSM tree obtained from Figure 2 (a) after
compacting nodes 𝑛1 and 𝑛2. Here, the copy of 𝑘2 in 𝑛2 has been discarded. In practice, the length
of the data structure is bounded by letting the size of newly created nodes grow exponentially.

The net effect of all these operations is that the data structure satisfies the time-ordering invariant
and searches achieve search recency.
The LSM tree can be tuned by implementing workload- and hardware-specific data structures

at the node level. In addition, research has been directed towards optimizing the layout of nodes
and developing different strategies for the maintenance operations used to reorganize these data
structures. This has resulted in a variety of implementations today (e.g. [Dayan and Idreos 2018; Luo
and Carey 2020; Raju et al. 2017; Thonangi and Yang 2017; Wu et al. 2015]). Despite the differences
between these implementations, they generally follow the same high-level algorithms for the core
search structure operations.
We construct template algorithms for concurrent multicopy structures from the high-level

descriptions of their operations and then prove the correctness of these operations. Notably our
LSM DAG template generalizes the LSM tree so that the outer data structure can be a DAG rather
than just a list. A number of existing LSM structures are based on trees (e.g. [Sears and Ramakrishnan
2012; Wu et al. 2015]). Practical implementations of tree-based concurrent search structures often
have additional pointer structures layered on top of the tree that make them DAGs. For instance,
many implementations use the link technique to increase performance. Here, when a maintenance
operation relocates a key 𝑘 from one node to another, it adds a pointer linking the two nodes, which
ensures that 𝑘 remains reachable via the old search path. A concurrent thread searching for 𝑘 that
arrives at the old node can then follow the link, avoiding a restart of the search from the root. Our
verified templates can be instantiated to lock-based implementations of this technique.

3 MULTICOPY SEARCH STRUCTURE FRAMEWORK

We build our formal framework of multicopy structures on the concurrent separation logic Iris [Jung
et al. 2018]. A detailed introduction to Iris is beyond the scope of this paper. We therefore introduce
only the relevant features of the logic as we use them.

3.1 Multicopy Search Structures

We abstract away from the data organization within the nodes, and treat the data structure as
consisting of nodes in a mathematical directed acyclic graph.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



113:6 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

𝑘1 ⊥

𝑘2 (𝑑, 7)
𝑘3 ⊥

𝑟

𝑘1 (□, 6)
𝑘2 (𝑏, 5)
𝑘3 ⊥

𝑛1

𝑘1 ⊥

𝑘2 (𝑎, 3)
𝑘3 (𝑐, 4)

𝑛2

𝑘1 (𝑐, 2)
𝑘2 ⊥

𝑘3 (𝑏, 1)

𝑛3

Fig. 3. Abstract multicopy data structure graph for the LSM tree in Figure 2 (a).

Since copies of a single key 𝑘 can be present in different nodes simultaneously, we need a
mechanism to differentiate between these copies. To that end, we augment each entry (𝑘, 𝑣) stored
in a node with the unique timestamp 𝑡 identifying the point in time when (𝑘, 𝑣) was upserted:
(𝑘, (𝑣, 𝑡)). The timestamp plays the role of the book edition in the library analogy from the last
section. For example in Figure 3, (𝑘3, 𝑐) was upserted after (𝑘2, 𝑎), which was upserted after (𝑘3, 𝑏).
To generate these timestamps, we use a single global clock, which we initialize to 1. Note that the
timestamp associated with an upserted value is auxiliary, or ghost, data that we use in our proofs to
track the temporal ordering of the copies present in the structure at any point. Implementations do
not need to explicitly store this timestamp information.
Formally, let KS be the set of all keys and V a set of values with a dedicated tombstone value

□ ∈ V. A multicopy (search) structure is a directed acyclic graph 𝐺 = (𝑁, 𝐸) with nodes 𝑁 and
edges 𝐸 ⊆ 𝑁 × 𝑁 . We assume that there is a dedicated root node 𝑟 ∈ 𝑁 which uniquely identifies
the structure. Each node 𝑛 of the graph is labeled by its contents 𝐶𝑛 : KS ⇀ V × N, which is a
partial map from keys to pairs of values and timestamps. For a node 𝑛 and its contents 𝐶𝑛 , we
say (𝑘, (𝑣, 𝑡)) is in the contents of 𝑛 if 𝐶𝑛 (𝑘) = (𝑣, 𝑡). We denote the absence of an entry for a
key 𝑘 in 𝑛 by 𝐶𝑛 (𝑘) = ⊥ and let dom(𝐶𝑛) ≔ {𝑘 | 𝐶𝑛 (𝑘) ≠ ⊥}. We further write val(𝐶𝑛) : KS ⇀ V

for the partial function that strips off the timestamp information from the contents of a node,
val(𝐶𝑛) ≔ 𝜆𝑘. (∃𝑣 .𝐶𝑛 (𝑘) = (𝑣, _) ? 𝑣 : ⊥).

For each edge (𝑛, 𝑛′) ∈ 𝐸 in the graph, the edgeset es(𝑛, 𝑛′) is the set of keys 𝑘 for which an
operation arriving at a node 𝑛 would traverse (𝑛, 𝑛′) if 𝑘 ∉ dom(𝐶𝑛). We require that the edgesets
of all outgoing edges of a node 𝑛 are pairwise disjoint. Figure 3 shows a potential abstract multicopy
structure graph consistent with the LSM tree depicted in Figure 2 (a). Here, all edges have edgeset
KS.

3.2 Client-Level Specification

Our goal is to prove the linearizability of concurrent multicopy structure templates with respect to
their desired sequential client-level specification. As discussed earlier, the sequential specification
is that of a map ADT, i.e., the logical contents of the data structure is a mathematical map from keys
to values,𝑀 : KS → V. The map𝑀 associates every key 𝑘 with the most recently upserted value 𝑣
for 𝑘 , respectively, □ if 𝑘 has not yet been upserted:

𝑀 (𝑘) ≔

{
𝑣 if ∃𝑛 𝑡 . 𝐶𝑛 (𝑘) = (𝑣, 𝑡) ∧ 𝑡 = max {𝑡 ′ | ∃𝑛′ 𝑣 ′. 𝐶𝑛′ (𝑘) = (𝑣 ′, 𝑡 ′)}

□ otherwise

We call𝑀 (𝑘) the logical value of key 𝑘 .
Linearizability of a data structure is defined in terms of the concurrent execution histories of the

data structure’s operations [Herlihy and Tygar 1987; Herlihy and Wing 1990]. Hoare logics like Iris
emphasize proof decomposition, which means, in particular, that they strive to reason only about a
single data structure operation at a time. It is therefore difficult to specify linearizability directly in
such logics. Instead, we specify the intended behavior of each data structure operation in terms of
an atomic triple [da Rocha Pinto et al. 2014; Frumin et al. 2018; Jacobs and Piessens 2011; Jung et al.
2020, 2015]. Atomic triples can be thought of as the concurrent counterparts of sequential Hoare

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



Verifying Concurrent Multicopy Search Structures 113:7

triples. They formalize the intuition that a linearizable operation appears to take effect atomically
at a single point in time, the operation’s linearization point.
More precisely, an atomic triple

〈
®𝑥 . 𝑃

〉
𝑒
〈
𝑣 . 𝑄

〉
is made up of a precondition 𝑃 , which may

refer to the variables ®𝑥 , a postcondition 𝑄 , which relates the variables ®𝑥 and the return value 𝑣 ,
and a program 𝑒 . The triple states that 𝑒 may assume that for each of its atomic steps up to its
linearization point, the shared state satisfies 𝑃 for possibly different values of ®𝑥 in each step. At
the linearization point, 𝑒 then changes the shared state to one that satisfies 𝑄 in one atomic step.
Afterwards, 𝑒 no longer access resources in 𝑃 or 𝑄 . Intuitively, concurrently executing threads may
interfere with 𝑒 by modifying the shared state but they are required to maintain 𝑃 as an invariant.
Now suppose that MCS(𝑟, 𝑀) is a representation predicate that provides the client view of a

multicopy structure with root 𝑟 , abstracting its shared state by the logical contents 𝑀 . We then
require that the search and upsertmethods respect the following client-level atomic specifications:

〈
𝑀.MCS(𝑟, 𝑀)

〉
upsert 𝑟 𝑘 𝑣

〈
MCS(𝑟, 𝑀 [𝑘 ↣ 𝑣])

〉
(1)

〈
𝑀.MCS(𝑟, 𝑀)

〉
search 𝑟 𝑘

〈
𝑣 . MCS(𝑟, 𝑀) ∗𝑀 (𝑘) = 𝑣

〉
(2)

The specification of upsert updates the logical value of 𝑘 to 𝑣 . Thus upsert performs the łinsertž of
the library analogy. The search specification states that search returns the logical value𝑀 (𝑘) = 𝑣
of its query key 𝑘 .

3.3 Template-Level Specification: Search Recency

The verification of multicopy structures requires reasoning about the dynamic non-local lineariza-
tion points of search, which are determined by the concurrently executing upserts. We want to
avoid having to do this reasoning each time we verify a new template for a multicopy structure
implementation. Our strategy is to provide an alternative template-level specification that uses a
more detailed abstraction of the computation history rather than just the logical contents. This
alternative specification will then have fixed local linearization points, simplifying the verification.
We say that search satisfies search recency if each concurrent invocation search 𝑟 𝑘 either

returns the logical value associated with 𝑘 at the point when the search started, or any other copy
of 𝑘 that was upserted between the search’s start time and the search’s end time.

We will show that if searches satisfy search recency and upserts take effect in a single atomic
step that changes the logical contents𝑀 according to (1), then the multicopy structure is linearizable.

We start by defining the upsert history 𝐻 ⊆ KS × (V ×N) of a multicopy data structure as the set
of all copies (𝑘, (𝑣, 𝑡)) that have been upserted thus far. In particular, we require that any multicopy
structure will maintain the following predicates concerning 𝐻 and the global clock 𝑡 :

HInit(𝐻 ) ≔ ∀𝑘. (𝑘, (□, 0)) ∈ 𝐻

HUnique(𝐻 ) ≔ ∀𝑘 𝑡 ′ 𝑣1 𝑣2. (𝑘, (𝑣1, 𝑡
′)) ∈ 𝐻 ∧ (𝑘, (𝑣2, 𝑡

′)) ∈ 𝐻 ⇒ 𝑣1 = 𝑣2

HClock(𝑡, 𝐻 ) ≔ ∀(𝑘, (_, 𝑡 ′)) ∈ 𝐻. 𝑡 ′ < 𝑡

The predicate HUnique(𝐻 ) ensures that we can lift the total order 𝑡1 ⩽ 𝑡2 on timestamps to a total
order (𝑣1, 𝑡1) ⩽ (𝑣2, 𝑡2) on the pairs of values and timestamps occurring in𝐻 . The lifted order simply
ignores the value component. Together with HInit(𝐻 ), this ensures that the following function is
well-defined:

𝐻 ≔ 𝜆𝑘. max {(𝑣, 𝑡) | (𝑘, (𝑣, 𝑡)) ∈ 𝐻 } .

The latest copy of a key will always be contained in some node 𝑛 of the data structure. If the data
structure implementation maintains the additional invariant, 𝐻 ⊇

⋃
𝑛∈𝑁 𝐶𝑛 , then this guarantees

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



113:8 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

that 𝐻 is consistent with the logical contents𝑀 , i.e., for all keys 𝑘 , 𝐻 (𝑘) = (𝑀 (𝑘), _). Finally, the
predicate HClock(𝑡, 𝐻 ) guarantees that HUnique(𝐻 ) is preserved when a new entry (𝑘, (𝑣, 𝑡)) is
added to 𝐻 for the current value of the global clock 𝑡 .
Assume that, similar to MCS(𝑟, 𝑀), we are given a template-level representation predicate

MCS(𝑟, 𝑡, 𝐻 ) that abstracts the state of a multicopy structure by its upsert history𝐻 and the current
value 𝑡 of the global clock. The desired template-level specification of upsert in terms of the new
abstraction is simply:

〈
𝑡 𝐻 . MCS(𝑟, 𝑡, 𝐻 )

〉
upsert 𝑟 𝑘 𝑣

〈
MCS(𝑟, 𝑡 + 1, 𝐻 ∪ (𝑘, (𝑣, 𝑡)))

〉
(3)

It states that upsert advances the value of the global clock from 𝑡 to 𝑡 + 1 and adds a new copy
(𝑘, (𝑣, 𝑡)) to the upsert history 𝐻 .
The postcondition of search needs to express two properties. First, we must necessarily have

(𝑘, (𝑣, 𝑡 ′)) ∈ 𝐻 , where 𝑣 is the value returned by search, 𝑡 ′ is 𝑣 ’s associated timestamp, and 𝐻 is
the value of the upsert history at the linearization point. Moreover, let 𝐻0 be the value of the upsert
history at the start of the search and define (𝑣0, 𝑡0) ≔ 𝐻0 (𝑘). Then either 𝑣 is the logical value of 𝑘
at that point (i.e. 𝑣 = 𝑣0) or 𝑡 ′ is the timestamp of an upsert for 𝑘 that happened after the search
started, i.e., 𝑡0 < 𝑡 ′. This is equivalent to demanding that for all 𝑡 ′0 and 𝑣

′ such that (𝑘, (𝑣 ′, 𝑡 ′0)) ∈ 𝐻0,
the returned timestamp 𝑡 ′ satisfies 𝑡 ′0 ⩽ 𝑡

′. We define the auxiliary abstract predicate SR(𝑘, 𝑣, 𝑡) to
mean that (𝑘, (𝑣, 𝑡)) ∈ 𝐻 for the value 𝐻 of the upsert history at the time point when the predicate
is evaluated.1 Using this predicate, the template-level specification of search is then expressed as
follows:

∀𝑣 ′0 𝑡
′
0. SR(𝑘, 𝑣

′
0, 𝑡

′
0) −∗〈

𝑡 𝐻 . MCS(𝑟, 𝑡, 𝐻 )
〉
search 𝑟 𝑘

〈
𝑣 . ∃𝑡 ′.MCS(𝑟, 𝑡, 𝐻 ) ∗ 𝑡 ′0 ⩽ 𝑡

′ ∗ (𝑘, (𝑣, 𝑡 ′)) ∈𝐻
〉 (4)

Here, we use the magic wand connective −∗ to express that the auxiliary local precondition
SR(𝑘, 𝑣 ′0, 𝑡

′
0) must be satisfied at the time point when search is invoked.

In the next section, we deal with the complexity of non-local dynamic linearization points of
searches once and for all by proving that any multicopy structure that satisfies the template-level
specification also satisfies the desired client-level specification. To prove the correctness of a given
concurrent multicopy structure, it then suffices to show that upsert satisfies its corresponding
template-level specification (3) and search satisfies (4). When proving the validity of the template-
level atomic triple of search for a particular implementation (or template), one can now always
commit the atomic triple (i.e., declare a linearization point) at the point when the return value 𝑣 of
the search is determined, i.e., when (𝑘, (𝑣, 𝑡 ′)) ∈ 𝐻 is established. This linearization point is now
independent of concurrently executing upserts.

4 RELATING THE CLIENT-LEVEL AND TEMPLATE-LEVEL SPECIFICATIONS

We next prove that any concurrent execution of upsert and search operations that satisfy the
template-level specifications (3) and (4) can be linearized to an equivalent sequential execution
that satisfies the client-level specifications. Intuitively, this can be done by letting the upserts in
the equivalent sequential execution occur in the same order as their atomic commit points in the
concurrent execution, and by letting each search 𝑟 𝑘 occur at the earliest time after the timestamp
𝑡 ′ associated with the returned value 𝑣 of 𝑘 . That is, if 𝑣 = 𝑣0 (recall that (𝑣0, 𝑡0) = 𝐻 (𝑘) where 𝐻 is
the upsert history at the start of the search on 𝑘), then the search occurs right after it was invoked
in the concurrent execution. Otherwise we must have 𝑡 ′ > 𝑡0 and the search occurs after the upsert
at time 𝑡 ′. The fact that such an upsert must exist follows from the template-level specifications.

1In ğ4.2 we will express SR(𝑘, 𝑣, 𝑡 ) using appropriate Iris ghost state that keeps track of the upsert history.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



Verifying Concurrent Multicopy Search Structures 113:9

The intuitive proof argument above relies on explicit reasoning about execution histories. Instead,
we aim for a thread-modular proof that reasons about individual searches and upserts in isolation,
so that we can mechanize the proof in a Hoare logic like Iris. The proof we present below takes
inspiration from that of the RDCSS data structure by Jung et al. [2020].

4.1 Challenges and Proof Outline

Iris prophecies [Jung et al. 2020], based on the idea first introduced by Abadi and Lamport [1988],
allow a thread to predict what will happen in the future. In particular, one can use prophecies to
predict future events in order to reason about non-fixed linearization points [Vafeiadis 2008; Zhang
et al. 2012]. In our case, a thread executing search can use a prophecy to predict, at the beginning
of the search, the value 𝑣 that it will eventually return. In a thread-modular correctness proof, one
can then decide on how to linearize the operation based on the predicted value.

The linearization point of a search operation occurs when an instruction of a concurrent upsert
is executed. One can view this as a form of helping [Liang and Feng 2013]: when an upsert operation
commits and adds (𝑘, (𝑣, 𝑡 ′)) to the upsert history 𝐻 , it also commits all the (unboundedly many)
concurrently executing search operations for 𝑘 that will return 𝑣 . We encode this helping protocol
in the predicateMCS(𝑟, 𝑀) that captures the shared (ghost) state of the data structure, by taking
advantage of Iris’s support for higher-order ghost state.

At a high level, the proof then works as follows. We augment search with auxiliary ghost code
that creates and resolves the relevant prophecies. We do this by defining the wrapper function
search given in Figure 4. The right side shows the specifications of the two functions related to
manipulating (one-shot) prophecies in Iris. The function NewProph returns a fresh prophecy 𝑝 that
predicts the value 𝑣𝑝 . This fact is captured by the resource Proph(𝑝, 𝑣𝑝 ) in the postcondition of the
Hoare triple specifying NewProph. The resource Proph(𝑝, 𝑣𝑝 ) can be owned by a thread as well as
transferred between threads via shared resources such as the representation predicateMCS(𝑟, 𝑡, 𝐻 )
(as is usual in concurrent separation logics). The resource is also exclusive, meaning it cannot be
duplicated.
The function search uses NewProph to create two prophecies, which it binds to tid and 𝑝 . The

prophecy 𝑝 predicts the value 𝑣 that will eventually be returned by search. The value tid predicted
by the second prophecy will be used later as a unique identifier of the thread performing the search
when we encode the helping protocol, taking advantage of the fact that each prophecy returned by
NewProph is fresh. Freshness of prophecies also ensures that each prophecy can be resolved only
once, which is done using Resolve 𝑝 to 𝑣 . This operation consumes the resource Proph(𝑝, 𝑣𝑝 ) and

yields the proposition 𝑣𝑝 = 𝑣 . It is used on line 5 of search to express that the value predicted by 𝑝
is indeed the value 𝑣 returned by search.
If 𝑣 is equal to the current logical value 𝑣0 of 𝑘 at the start of search, then the proof commits

the client-level atomic triple right away. If instead 𝑣0 ≠ 𝑣 , then the proof registers the thread’s
client-level atomic triple in the shared predicateMCS(𝑟, 𝑀). The registered atomic triple serves
as an obligation to commit the atomic triple. This obligation will be discharged by the upsert

operation adding (𝑘, (𝑣, 𝑡 ′)) to 𝐻 . The proof of search then uses the template-level specification of
search to conclude that it can collect the committed triple from the shared predicate after search
has returned.
Relating the high-level and low-level specification of upsert is straightforward. However, the

proof of upsert also needs to do its part of the helping protocol by scanning over all the searches
that are currently registered in the shared predicate MCS(𝑟, 𝑀) and committing those that return
the copy of 𝑘 added by the upsert.
In the remainder of this section we explain this helping proof in more detail.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



113:10 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

1 let search 𝑟 𝑘 =

2 let tid = NewProph in

3 let 𝑝 = NewProph in

4 let 𝑣 = search 𝑟 𝑘 in

5 Resolve 𝑝 to 𝑣; 𝑣

one-shot-prophecy-creation{
True

}
NewProph

{
𝑝. ∃𝑣𝑝 . Proph(𝑝, 𝑣𝑝 )

}

one-shot-prophecy-resolution{
Proph(𝑝, 𝑣𝑝 )

}
Resolve 𝑝 to 𝑣

{
𝑣𝑝 = 𝑣

}

Fig. 4. Wrapper augmenting search with prophecy-related ghost code, whose specification is on the right.

4.2 Keeping Track of the Upsert History

Our thread-modular proof exploits the observation that the upsert history 𝐻 only increases over
time. Thus, assertions such as (𝑘, (𝑣, 𝑡)) ∈ 𝐻 , as used in our specification of search recency, are
stable under interference. This style of reasoning follows the classic idea of establishing lower
bounds on monotonically evolving state (see e.g. [Fahndrich and Leino 2003; Jensen and Birkedal
2012; Jones 1983]). We formalize this in Iris using user-defined ghost state.

Iris expresses ownership of ghost state by the proposition 𝑎
𝛾 which asserts ownership of a piece

𝑎 of the ghost location 𝛾 . It is the ghost analogue of the points-to predicate 𝑥 ↦→ 𝑣 in separation
logic, except that 𝑎

𝛾 asserts only that 𝛾 contains a value one of whose parts is 𝑎. This means
ghost state can be split and combined according to the rules of the camera, the algebraic structure
from which the values (like 𝑎) are drawn. Cameras generalize partial commutative monoids, which
are commonly used to give semantics to separation logics. A camera comes equipped with a set
𝑀 and a binary composition operation (·) : 𝑀 ×𝑀 → 𝑀 that form a commutative monoid. The
composition operation gives meaning to the separating conjunction of predicates that express

fragmental ownership of ghost state at a ghost location 𝛾 via the rule: 𝑎 𝛾
∗ 𝑏

𝛾
⊣⊢ 𝑎 · 𝑏

𝛾
. A

simple example of a camera is Set(𝑋 ), where 𝑋 is some set. Here, 𝑀 = 2𝑋 and (·) is set union.
Another example is the heap camera of standard separation logic, which consists of mappings from
heap locations to values that can be composed by disjoint set union.
Iris also provides generic łfunctorsž for constructing new cameras from existing ones. One

example that we will be using in our proofs is the authoritative camera Auth(𝑀), which can
be constructed from any other camera 𝑀 . It is used to model situations where threads share an
authoritative element 𝑎 of 𝑀 via a representation predicate and individual threads own fragments
𝑏 of 𝑎. We denote an authoritative element by •𝑎 and a fragment by ◦𝑏. The composition •𝑎 · ◦𝑏
expresses ownership of the authoritative element 𝑎 and, in addition, ∃𝑐. 𝑎 = 𝑏 · 𝑐 .
For instance, we use the authoritative set camera Auth(Set(KS × (V × N))) to keep track of

the upsert history 𝐻 at a ghost location 𝛾𝑠 . The proposition •𝐻
𝛾𝑠

states that 𝐻 is the current
authoritative version of the upsert history. This ghost resource is kept in the representation predicate
MCS(𝑟, 𝑡, 𝐻 ), which is shared among all threads operating on the data structure. The camera can

also express lower bounds𝐻 ′ ⊆ 𝐻 on the authoritative set𝐻 using propositions of the form ◦𝐻 ′
𝛾𝑠
.

That is, the proposition •𝐻
𝛾𝑠
∗ ◦𝐻 ′

𝛾𝑠
asserts ownership of the current upsert history 𝐻 and, in

addition, 𝐻 ′ ⊆ 𝐻 . We can then define the predicate SR(𝑘, 𝑣, 𝑡), which expresses that 𝐻 (𝑘) = (𝑣, 𝑡)

was true at some point in the past, as SR(𝑘, 𝑣, 𝑡) ≔ ◦ {(𝑘, (𝑣, 𝑡))}
𝛾𝑠
.

Iris allows frame-preserving updates of ghost state, denoted by the view shift connective⇛ . For
instance, the following rules capture some frame-preserving updates of authoritative sets:

auth-set-upd

𝐻 ⊆ 𝐻 ′

•𝐻
𝛾
⇛ •𝐻 ′

𝛾
auth-set-snap

•𝐻
𝛾
⇛ •𝐻

𝛾
∗ ◦𝐻

𝛾
auth-set-frag

◦𝐻
𝛾
∗ ◦𝐻 ′

𝛾
⇚⇛ ◦ (𝐻 ∪ 𝐻 ′)

𝛾

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



Verifying Concurrent Multicopy Search Structures 113:11

MCS(𝑟, 𝑀) ≔ ∃ 𝑡 𝐻 . MCS(𝑟, 𝑡, 𝐻 ) ∗ ∀𝑘. (𝑀 (𝑘), _)=𝐻 (𝑘)

MCS(𝑟, 𝑡, 𝐻 ) ≔ • 𝐻
𝛾𝑠

∗ HInit(𝐻 ) ∗ HUnique(𝐻 ) ∗ HClock(𝑡, 𝐻 )

∗ Invtpl (𝑡, 𝐻 ) ∗ Prothelp (𝐻 )

Prothelp (𝐻 ) ≔ ∃𝑅. • 𝑅
𝛾𝑟

∗∗
tid∈𝑅

∃𝑘 𝑣𝑝 𝑡0 Φ Tok. Proph(tid, _)
∗ State(𝐻,𝑘, 𝑣𝑝 , 𝑡0,Φ, Tok)

State(𝐻,𝑘, 𝑣𝑝 , 𝑡0,Φ, Tok) ≔ Pending(𝐻,𝑘, 𝑣𝑝 , 𝑡0,Φ) ∨ Done(𝐻,𝑘, 𝑣𝑝 , 𝑡0,Φ, Tok)

Pending(𝐻,𝑘, 𝑣𝑝 , 𝑡0,Φ) ≔ AU(Φ) ∗ (∀𝑡 . (𝑘, (𝑣𝑝 , 𝑡)) ∈ 𝐻 ⇒ 𝑡 < 𝑡0)

Done(𝐻,𝑘, 𝑣𝑝 , 𝑡0,Φ, Tok) ≔ (Φ(𝑣𝑝 ) ∨ Tok) ∗ (∃𝑡 . (𝑘, (𝑣𝑝 , 𝑡)) ∈ 𝐻 ∧ 𝑡 ⩾ 𝑡0)

Fig. 5. Definition of client-level representation predicate and invariants of helping protocol.

The rule auth-set-upd is the only way to update the authoritative element, because, intuitively,
it must maintain the validity of all lower bounds. The authoritative set camera thus implicitly
enforces the invariant that the upsert history can only increase. We use this rule to update the
authoritative version of the upsert history at the linearization point of upsert.

The rule auth-set-snap allows us to take a łsnapshotž of the current authoritative set. We use this
rule together with the rule auth-set-frag at the call to search in search to establish the thread-

local precondition SR(𝑘, 𝑣 ′0, 𝑡
′
0) of the specification (4) from the shared resource •𝐻

𝛾𝑠
. To this end,

we choose (𝑣 ′0, 𝑡
′
0) ≔ 𝐻 (𝑘), which gives us 𝐻 = 𝐻 ∪

{
(𝑘, (𝑣 ′0, 𝑡

′
0))

}
and thus ◦

{
(𝑘, (𝑣 ′0, 𝑡

′
0))

} 𝛾𝑠
.

4.3 The Helping Protocol

Before we discuss the details of our encoding of the helping protocol in terms of Iris ghost state,
let us recall the basic structure of a proof of an atomic triple

〈
𝑥 . 𝑃

〉
𝑒
〈
𝑣 . 𝑄

〉
. The proof proceeds

by proving a standard Hoare triple of the form ∀Φ.
{
AU𝑥.𝑃,𝑄 (Φ)

}
𝑒
{
𝑣 . Φ(𝑣)

}
. Here, AU𝑥.𝑃,𝑄 (Φ) is

the atomic update token, which gives us the right to use the resources in the precondition 𝑃 when
executing atomic instructions up to the linearization point. The token also records our obligation to
preserve 𝑃 up to the linearization point, where 𝑃 must be transformed to𝑄 in one atomic step. This
step consumes the update token. The universally quantified proposition Φ can be thought of as the
precondition for the continuation of the client of the atomic triple. At the linearization point, when
the atomic update token is consumed, the corresponding proof rule produces Φ(𝑣) as a receipt that
the obligation has been fulfilled. This receipt is necessary to complete the proof of the Hoare triple.
Figure 5 shows a simplified definition of MCS(𝑟, 𝑀) and the invariant that encodes the helping
protocol.2 The definitions are implicitly parameterized by a proposition Invtpl (𝑟, 𝑡, 𝐻 ), which ab-
stracts from the resources needed for proving that a specific multicopy structure template satisfies
the template-level specifications. In particular, this invariant will store the resources needed to
represent the node-level contents 𝐶𝑛 for each node 𝑛 ∈ 𝑁 . It also ties the 𝐶𝑛 to 𝐻 , capturing the
invariant 𝐻 ⊇

⋃
𝑛∈𝑁 𝐶𝑛 .

2For presentation purposes, the proof outline presented here abstracts from some technical details of the actual proof
done in Iris. For a more detailed presentation of our Iris development, we refer the interested reader to [Patel et al. 2021,
Appendix A].

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



113:12 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

The predicate MCS(𝑟, 𝑀) contains the predicate MCS(𝑟, 𝑡, 𝐻 ), used in the template-level atomic
triples, and defines 𝑀 in terms of 𝐻 . The predicate MCS(𝑟, 𝑡, 𝐻 ) owns all (ghost) resources as-

sociated with the data structure. In particular, this predicate stores the ghost resource •𝐻
𝛾𝑠
,

holding the authoritative version of the current upsert history, the abstract template-level invariant
Invtpl (𝑟, 𝑡, 𝐻 ), and the helping protocol predicate Prothelp (𝐻 ), described below. MCS(𝑟, 𝑡, 𝐻 ) also
states the three invariants HInit(𝐻 ), HUnique(𝑡, 𝐻 ), and HClock(𝐻 ) discussed earlier, which are
needed to prove the atomic triple of search.

The helping protocol predicate Prothelp contains a registry • 𝑅
𝛾𝑟

of search thread IDs that
require helping from upsert threads. For each thread ID tid in the registry, the shared state contains
Proph(tid, _) along with the state of tid, which is either Pending or Done. Pending captures an
uncommitted search, and Done describes the operation after it has been committed. Note that we
omit the annotation of the pre and postcondition from AU(Φ) as it always refers to the specification
of search in this proof.
The proof outline for search is shown in Figure 12. After creating the two prophecies tid and

𝑝 , the proof case-splits on whether the thread requires helping or not (line 9). We only consider
the helping case (i.e., (𝑣0, 𝑡0) = 𝐻0 (𝑘) ∧ 𝑣0 ≠ 𝑣𝑝 ), where 𝐻0 is the initial upsert history and 𝑣𝑝 the
prophesied return value). Here, the thread registers itself with the helping protocol by replacing 𝑅
with 𝑅∪{tid} using rule auth-set-upd (line 14). To do this, it first establishes Pending(𝐻0, 𝑘, 𝑣𝑝 , 𝑡0,Φ)
by transferring its obligation to linearize to the shared state, captured by the update token AU(Φ).
The condition ∀𝑡 .(𝑘, (𝑣𝑝 , 𝑡)) ∈ 𝐻0 ⇒ 𝑡 < 𝑡0 follows from 𝑣0 ≠ 𝑣𝑝 , the definition of 𝐻0, and the
invariant HUnique(𝐻0). The thread also a creates a fresh non-duplicable token Tok that it will later
trade in for the receipt Φ(𝑣𝑝 ).

Let us briefly switch to the role played by the upsert that updates the logical value of 𝑘 to 𝑣𝑝 at
some time 𝑡 ⩾ 𝑡0. When this upsert reaches its linearization point, our proof uses rule auth-set-upd
to update the upsert history from 𝐻 to 𝐻 ∪

{
(𝑘, (𝑣𝑝 , 𝑡))

}
, as required by the postcondition of (3),

and also increments the global clock from 𝑡 to 𝑡 + 1. We must then show that MCS(𝑟, 𝑡 + 1, 𝐻 ∪{
(𝑘, (𝑣𝑝 , 𝑡))

}
) holds after these ghost updates, which requires us to prove Prothelp (𝐻∪

{
(𝑘, (𝑣𝑝 , 𝑡))

}
)

assuming Prothelp (𝐻 ) was true before the update. In particular, any search thread that was in a
Pending state State(𝐻,𝑘, 𝑣𝑝 , 𝑡0,Φ, Tok) and thus waiting to be helped by this upsert needs to be
committed. It can do this because the postcondition of these triples are satisfied after 𝐻 has been
updated. The proof then transfers the receipts Φ(𝑣𝑝 ) back to the shared representation predicate,
yielding new states Done(𝐻 ∪

{
(𝑘, (𝑣𝑝 , 𝑡))

}
, 𝑘, 𝑣𝑝 , 𝑡0,Φ, Tok) for each of these threads.

Coming back to the proof of the search that needed helping, after the call to search on line 16,
we know from the postcondition of (4) that we must have (𝑘, (𝑣, 𝑡 ′)) ∈ 𝐻 for some 𝑡 ′ such that
𝑡 ′ ⩾ 𝑡0 where 𝐻 is the new upsert history at this point. Moreover, after resolving the prophecy on
line 18 we know 𝑣𝑝 = 𝑣 and therefore (𝑘, (𝑣𝑝 , 𝑡

′)) ∈ 𝐻 . From the invariant, we can then conclude
that the thread must be in a Done state. Since the thread owns the unique token Tok, it trades it in
to obtain Φ(𝑣), which lets it complete the proof of its atomic triple specification (4).

5 THE LSM DAG TEMPLATE

This section presents a general template for multicopy structures that generalizes the LSM (log-
structured merge) tree discussed in ğ2.2. We prove linearizability of the template by verifying
that all operations satisfy the template-level atomic triples (ğ3.3). The template and the proof
parameterize over the implementation of the single-copy data structures used at the node-level.
Instantiating the template for a specific implementation involves only sequential reasoning about
the implementation-specific node-level operations.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



Verifying Concurrent Multicopy Search Structures 113:13

1

〈
𝑀. MCS(𝑟, 𝑀)

〉

2 let search 𝑟 𝑘 =

3
{
AU(Φ)

}

4 let tid = NewProph in

5 let 𝑝 = NewProph in

6
{
AU(Φ) ∗ Proph(tid, _) ∗ Proph(𝑝, 𝑣𝑝 )

}

7
{
AU(Φ) ∗ Proph(tid, _) ∗ Proph(𝑝, 𝑣𝑝 ) ∗MCS(𝑟, 𝑡, 𝐻0)

}

8

{
AU(Φ) ∗ Proph(tid, _) ∗ Proph(𝑝, 𝑣𝑝 ) ∗ ◦ 𝐻0

𝛾𝑠
∗ (𝑣0, 𝑡0)=𝐻0 (𝑘) ∗ SR(𝑘, 𝑣0, 𝑡0)

}

9 (* Case analysis on 𝑣𝑝 = 𝑣0, 𝑣𝑝 ≠ 𝑣0: only showing 𝑣𝑝 ≠ 𝑣0 *)

10
{
AU(Φ) ∗ Proph(tid, _) ∗ Proph(𝑝, 𝑣𝑝 ) ∗ (𝑣0, 𝑡0)=𝐻0 (𝑘) ∗ SR(𝑘, 𝑣0, 𝑡0) ∗ 𝑣𝑝 ≠𝑣0 ∗ . . .

}

11
{
. . . ∗ AU(Φ) ∗ Proph(tid, _) ∗ (∀𝑡 . (𝑘, (𝑣𝑝 , 𝑡)) ∈ 𝐻0 ⇒ 𝑡 < 𝑡0)

}

12
{
. . . ∗ Proph(tid, _) ∗ Pending(𝐻0, 𝑘, 𝑣𝑝, 𝑡0,Φ) ∗ Tok

}

13

{
. . . ∗ • 𝑅

𝛾𝑟
∗ tid ∉ 𝑅 ∗ State(𝐻0, 𝑘, 𝑣𝑝 , 𝑡0,Φ, Tok) ∗ Tok

}

14 (* Ghost update: • 𝑅
𝛾𝑟
⇛ • 𝑅 ∪ {tid}

𝛾𝑟
*)

15

{
Proph(𝑝, 𝑣𝑝 ) ∗ Tok ∗ ◦ {𝑡𝑖𝑑}

𝛾𝑟
∗ SR(𝑘, 𝑣0, 𝑡0) ∗ 𝑣𝑝 ≠𝑣0 ∗MCS(𝑟, 𝑡, 𝐻 )

}

16 let 𝑣 = search 𝑟 𝑘 in

17

{
Proph(𝑝, 𝑣𝑝 ) ∗ Tok ∗ ◦ {𝑡𝑖𝑑}

𝛾𝑟
∗ 𝑣𝑝 ≠𝑣0 ∗MCS(𝑟, 𝑡, 𝐻 ) ∗ 𝑡0 ⩽ 𝑡

′ ∗ (𝑘, (𝑣, 𝑡 ′)) ∈ 𝐻
}

18 Resolve 𝑝 to 𝑣;

19

{
Tok ∗ ◦ {tid}

𝛾𝑟
∗ 𝑣 ≠𝑣0 ∗MCS(𝑟, 𝑡, 𝐻 ) ∗ 𝑡0 ⩽ 𝑡

′ ∗ (𝑘, (𝑣, 𝑡 ′)) ∈ 𝐻
}

20

{
· · · ∗ Tok ∗ ◦ {tid}

𝛾𝑟
∗ 𝑣 ≠𝑣0 ∗ 𝑡0 ⩽ 𝑡

′ ∗ (𝑘, (𝑣, 𝑡 ′)) ∈ 𝐻 ∗ State(𝐻,𝑘, 𝑣, 𝑡0,Φ, Tok)
}

21

{
· · · ∗ Tok ∗ ◦ {tid}

𝛾𝑟
∗ 𝑡0 ⩽ 𝑡

′ ∗ (𝑘, (𝑣, 𝑡 ′)) ∈ 𝐻 ∗ Done(𝐻,𝑘, 𝑣, 𝑡0,Φ, Tok)
}

22

{
· · · ∗ Tok ∗ ◦ {tid}

𝛾𝑟
∗ 𝑡0 ⩽ 𝑡

′ ∗ (𝑘, (𝑣, 𝑡 ′)) ∈ 𝐻 ∗ (Φ(𝑣) ∨ Tok)
}

23

{
· · · ∗ Φ(𝑣) ∗ ◦ {tid}

𝛾𝑟
∗ 𝑡0 ⩽ 𝑡

′ ∗ (𝑘, (𝑣, 𝑡 ′)) ∈ 𝐻 ∗ (Φ(𝑣) ∨ Tok)
}

24

{
· · · ∗ Φ(𝑣) ∗ ◦ {tid}

𝛾𝑟
∗ Done(𝐻,𝑘, 𝑣, 𝑡0,Φ, Tok)

}

25
{
Φ(𝑣) ∗MCS(𝑟, 𝑡, 𝐻 )

}

26

{
MCS(𝑟, 𝑀) ∗𝑀 (𝑘) = 𝑣

}

27 𝑣

28

〈
𝑣 .MCS(𝑟, 𝑀) ∗𝑀 (𝑘) = 𝑣

〉

Fig. 6. Outline for the proof of the client-level specification for search.

We split the template into two parts. The first part is a template for search and upsert that works
on general multicopy structures, i.e., arbitrary DAGs with locally disjoint edgesets. The second
part (discussed in ğ7) is a template for a maintenance operation that generalizes the compaction
mechanism found in existing list-based LSM tree implementations to tree-like multicopy structures.
Figure 7 shows the code of the template for the core multicopy operations. The operations

search and upsert closely follow the high-level description of these operations on the LSM tree
(ğ2.2). The operations are defined in terms of implementation-specific helper functions findNext,
addContents, and inContents.
The search operation calls the recursive function traverse on the root node. traverse 𝑟 𝑛 𝑘

first locks the node 𝑛 and uses the helper function inContents 𝑟 𝑛 𝑘 to check if a copy of key 𝑘

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



113:14 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

1 let rec traverse 𝑟 𝑛 𝑘 =

2 lockNode 𝑛;

3 match inContents 𝑟 𝑛 𝑘 with

4 | Some 𝑣 -> unlockNode 𝑛; 𝑣

5 | None ->

6 match findNext 𝑟 𝑛 𝑘 with

7 | Some 𝑛′ ->

8 unlockNode 𝑛;

9 traverse 𝑟 𝑛′ 𝑘

10 | None -> unlockNode 𝑛; □

11

12 let search 𝑟 𝑘 = traverse 𝑟 𝑟 𝑘

13 let rec upsert 𝑟 𝑘 𝑣 =

14 lockNode 𝑟;

15 let res = addContents 𝑟 𝑘 𝑣 in

16 if res then

17 unlockNode 𝑟

18 else begin

19 unlockNode 𝑟;

20 upsert 𝑟 𝑘 𝑣

21 end

Fig. 7. The general template for multicopy operations search and upsert. The template can be instantiated by

providing implementations of helper functions inContents, findNext, and addContents. inContents 𝑟 𝑛 𝑘

returns Some 𝑣 if (𝑣, 𝑡 ′) = 𝐶𝑛 (𝑘) for some 𝑡 ′, and None otherwise. findNext 𝑟 𝑛 𝑘 returns Some𝑛′ if 𝑛′ is the

unique node such that 𝑘 ∈ es(𝑛, 𝑛′), and None otherwise. addContents 𝑟 𝑘 𝑣 updates the contents of 𝑟 by

setting the value associated with key 𝑘 to 𝑣 . The return value of addContents is a Boolean which indicates

whether the insertion was successful (e.g., if 𝑟 is full, insertion may fail leaving 𝑟 ’s contents unchanged).

is contained in 𝑛. If a copy of 𝑘 is found, then its associated value 𝑣 is returned after unlocking
𝑛. Otherwise, traverse uses the helper function findNext to determine the unique successor 𝑛′

of the given node 𝑛 and query key 𝑘 (i.e., the node 𝑛′ satisfying 𝑘 ∈ es(𝑛, 𝑛′)). If such a successor
𝑛′ exists, traverse recurses on 𝑛′. Otherwise, traverse concludes that there is no copy of 𝑘 in
the data structure and returns □. Note that this algorithm uses fine-grained concurrency, as the
thread executing the search holds at most one lock at any point (and no locks at the points when
traverse is called recursively).
The upsert 𝑟 𝑘 𝑣 operation locks the root node and adds a new copy of the key 𝑘 with value

𝑣 to the contents of the root node using addContents. addContents 𝑟 𝑘 𝑣 adds the pair (𝑘, 𝑣) to
the root node when it succeeds. upsert terminates by unlocking the root node. The addContents
function may however fail if the root node is full. In this case upsert calls itself recursively3.

6 VERIFYING THE TEMPLATE

We next discuss the correctness proof of the template operations. We will focus on the high-level
proof ideas and key invariants and defer the detailed proof outline and encoding of the invariants
in Iris to [Patel et al. 2021, Appendix A].

6.1 High-Level Proof Outline

Proof of search. We start with the proof of search. Recall that search recency is the affirmation
that if 𝑡0 is the logical timestamp of 𝑘 at the point when search 𝑟 𝑘 is invoked, then the operation
returns 𝑣 such that (𝑘, (𝑣, 𝑡 ′)) ∈ 𝐻 and 𝑡 ′ ⩾ 𝑡0. Since the value 𝑣 of 𝑘 retrieved by search comes
from some node in the structure, we must examine the relationship between the upsert history 𝐻
of the data structure and the physical contents 𝐶𝑛 of the nodes 𝑛 visited as the search progresses.
We do this by identifying the main invariants needed for proving search recency for arbitrary
multicopy structures.

3For simplicity of presentation, we assume that a separate maintenance thread flushes the root if it is full to ensure that
upserts eventually make progress.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



Verifying Concurrent Multicopy Search Structures 113:15

We refer to the spatial ordering of the copies (𝑘, (𝑣, 𝑡)) stored in a multicopy structure as the
ordering in which those copies are reached when traversing the data structure graph starting from
the root node. Our first observation is that the spatial ordering is consistent with the temporal
ordering in which the copies have been upserted. We referred to this property as the time-ordering
invariant in our library analogy in ğ2.1: the farther from the root a search is, the older the copies it
finds are. Therefore, if a search 𝑟 𝑘 traverses the data structure without interference from other
threads and returns the first copy of 𝑘 that it finds, then it is guaranteed to return the logical value
of 𝑘 at the start of the search.

We formalize this observation in terms of the contents-in-reach of a node. The contents-in-reach
of a node 𝑛 is the partial function 𝐶ir (𝑛) : KS ⇀ V × N defined recursively over the graph of the
multicopy structure as follows:

𝐶ir (𝑛) (𝑘) ≔





𝐶𝑛 (𝑘) if 𝑘 ∈ dom(𝐶𝑛)

𝐶ir (𝑛
′) (𝑘) else if ∃𝑛′. 𝑘 ∈ es(𝑛, 𝑛′)

⊥ otherwise

(5)

Note that𝐶ir (𝑛) is well-defined because the graph is acyclic and the edgesets labeling the outgoing
edges of every node 𝑛 are disjoint. We further define ts(𝐶ir (𝑛) (𝑘)) = 𝑡 if 𝐶ir (𝑛) (𝑘) = (_, 𝑡) and
ts(𝐶ir (𝑛) (𝑘)) = 0 if 𝑘 ∉ dom(𝐶ir (𝑛)).

For example, in themulticopy structure depicted in Figure 3, we have𝐶ir (𝑟 ) = {𝑘1↣ (□, 6), 𝑘2↣
(𝑑, 7), 𝑘3↣ (𝑐, 4)} and 𝐶ir (𝑛3) = 𝐶𝑛3 .
The observation that interference-free searches will find the current logical timestamp of their

query key is then captured by the following invariant:

Invariant 1 The logical contents of the multicopy structure is the contents-in-reach of its root
node: 𝐻 = 𝐶ir (𝑟 ).

In order to account for concurrent threads interfering with the search, we prove the condition
𝑡0 ≤ 𝑡 ′ for the timestamp 𝑡 ′ associated with the value returned by the search. Intuitively, this is
true because the contents-in-reach of a node 𝑛 can be affected only by upserts or maintenance
operations, both of which only increase the timestamps associated with every key of any given
node: upserts insert new copies into the root node and maintenance operations move recent copies
down in the structure, possibly replacing older copies. This observation is formally captured by the
following invariant:

Invariant 2 The contents-in-reach of every node only increases. That is, for every node 𝑛 and key
𝑘 , if ts(𝐶ir (𝑛) (𝑘)) = 𝑡 at some point in time and ts(𝐶ir (𝑛) (𝑘)) = 𝑡

′ at any later point in time, then
𝑡 ≤ 𝑡 ′.

Finally, in order to prove the condition (𝑘, (𝑣, 𝑡 ′)) ∈ 𝐻 of search recency, we need one additional
property:

Invariant 3 All copies present in the multicopy structure have been upserted at some point in the
past. That is, for all nodes 𝑛, 𝐶𝑛 ⊆ 𝐻 .

Now let us consider an execution of search on a operation key 𝑘 . In addition to the above three
general invariants, we need an inductive invariant for the traversal performed by the search: we
require as a precondition for traverse 𝑟 𝑛 𝑘 that ts(𝐶ir (𝑛) (𝑘)) ⩾ 𝑡0 where 𝑡0 is the timestamp of
the logical value 𝑣0 of 𝑘 at the point when search was invoked. To see that this property holds
initially for the call to traverse 𝑟 𝑟 𝑘 in search, let 𝐻0 be the logical contents at the time point
when search was invoked. The precondition SR(𝑘, 𝑣0, 𝑡0) implies ts(𝐻0 (𝑘)) ⩾ 𝑡0, which, combined
with Invariant 1 implies that we must have had ts(𝐶ir (𝑟 ) (𝑘)) ⩾ 𝑡0 at this point. Since ts(𝐶ir (𝑟 ) (𝑘))
only increases over time because of Invariant 2, we can conclude that ts(𝐶ir (𝑟 ) (𝑘)) ⩾ 𝑡0 when

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



113:16 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

traverse is called. We next show that the traversal invariant is maintained by traverse and is
sufficient to prove search recency.
Consider a call to traverse 𝑟 𝑛 𝑘 such that ts(𝐶ir (𝑛) (𝑘)) ⩾ 𝑡0 holds initially. We must show

that the call returns 𝑣 such that (𝑘, (𝑣, 𝑡 ′)) ∈ 𝐻 and 𝑡 ′ ⩾ 𝑡0 for some 𝑡 ′. We know that the call to
inContents on line 3 returns either Some 𝑣 such that (𝑣, 𝑡 ′) = 𝐶𝑛 (𝑘) or None if 𝐶𝑛 (𝑘) = ⊥. Let us
first consider the case where inContents returns Some 𝑣 . In this case, traverse returns 𝑣 on line 4.
By definition of 𝐶ir (𝑛) we have 𝐶ir (𝑛) (𝑘) = 𝐶𝑛 (𝑘). Hence, we have ts(𝐶ir (𝑛) (𝑘)) = 𝑡 ′ and the
precondition ts(𝐶ir (𝑛) (𝑘)) ⩾ 𝑡0, together with Invariant 2, implies 𝑡 ′ ⩾ 𝑡0. Moreover, Invariant 3
guarantees (𝑘, (𝑣, 𝑡 ′)) ∈ 𝐻 .
Now consider the case where inContents returns None. Here, 𝑘 ∉ dom𝐶𝑛 (𝑘), indicating that

no copy has been found for 𝑘 in 𝑛. In this case, traverse calls findNext to obtain the successor
node of 𝑛 and 𝑘 . In the case where the successor 𝑛′ exists (line 7), we know that 𝑘 ∈ es(𝑛, 𝑛′)
must hold. Hence, by definition of contents-in-reach we must have 𝐶ir (𝑛) (𝑘) = 𝐶ir (𝑛

′) (𝑘). From
ts𝐶ir (𝑛) (𝑘) ⩾ 𝑡0 and Invariant 2, we can then conclude ts(𝐶ir (𝑛

′) (𝑘)) ⩾ 𝑡0, i.e. that the precondition
for the recursive call to traverse on line 9 is satisfied and search recency follows by induction.

On the other hand, if 𝑛 does not have any next node, then traverse returns □ (line 10), indicating
that 𝑘 has not yet been upserted at all so far (i.e., has never appeared in the structure). In this
case, by definition of contents-in-reach we must have 𝐶ir (𝑛) (𝑘) = ⊥. Invariant 2 then guarantees
ts(𝐶ir𝑛𝑘) = 0 = 𝑡0. The invariant HInit(𝐻 ) on the upsert history then gives us (𝑘, (□, 0)) ∈ 𝐻 .
Hence, search recency holds in this case for 𝑡 ′ = 0.

Proof of upsert. In order to prove the logically atomic specification (11) of upsert, we must
identify an atomic step where the clock 𝑡 is incremented and the upsert history 𝐻 is updated.
Intuitively, this atomic step is when the lock on the root node is released (line 17 in Figure 7) after
addContents succeeds. Note that in this case addContents changes the contents of the root node
from 𝐶𝑟 to 𝐶 ′

𝑟 = 𝐶𝑟 [𝑘 ↣ (𝑣, 𝑡)]. Hence, in the proof we need to update the ghost state for the
upsert history from 𝐻 to 𝐻 ′

= 𝐻 ∪ {(𝑘, (𝑣, 𝑡))}, reflecting that a new copy of 𝑘 has been upserted.
It then remains to show that the three key high-level invariants of multicopy structures identified
above are preserved by these updates.

First, observe that Invariant 3, which states ∀𝑛. 𝐶𝑛 ⊆ 𝐻 , is trivially maintained: only𝐶𝑟 is affected
by the upsert and the new copy (𝑘, (𝑣, 𝑡)) is included in 𝐻 ′. Similarly, we can easily show that
Invariant 2 is maintained: 𝐶ir (𝑛) remains the same for all nodes 𝑛 ≠ 𝑟 and for the root node it
increases, provided Invariant 1 is also maintained.
Thus, the interesting case is Invariant 1. Proving that this invariant is maintained amounts to

showing that 𝐻 ′(𝑘) = (𝑣, 𝑡). This step critically relies on the following additional observation:

Invariant 4 All timestamps in 𝐻 are smaller than the current time of the global clock 𝑡 .

This invariant implies that 𝐻 ′(𝑘) = max(𝐻 (𝑘), (𝑣, 𝑡)) = (𝑣, 𝑡), which proves the desired property.
We note that Invariant 4 is maintained because the global clock is incremented when 𝐻 is updated
to 𝐻 ′, and, as we describe below, while 𝑟 is locked.

In the remainder of this section, we discuss the key technical issue when formalizing the above
proof in a separation logic like Iris.

6.2 Iris Invariant

The Iris proof must capture the key invariants identified in the proof outline given above in terms
of appropriate ghost state constructions. We start by addressing the key technical issue that arises
when formalizing the above proof in a separation logic like Iris: contents-in-reach is a recursive
function defined over an arbitrary DAG of unbounded size. This makes it difficult to obtain a simple
local proof that involves reasoning only about the bounded number of modified nodes in the graph.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



Verifying Concurrent Multicopy Search Structures 113:17

The recursive and global nature of contents-in-reach mean that modifying even a single edge in
the graph can potentially change the contents-in-reach of an unbounded number of nodes (for
example, deleting an edge (𝑛1, 𝑛2) can change 𝐶ir (𝑛) for all 𝑛 that can reach 𝑛1). A straightforward
attempt to prove that a template algorithm preserves Invariant 2 would thus need to reason about
the entire graph after every modification (for example, by performing an explicit induction over
the full graph). We solve this challenge using the flow framework [Krishna et al. 2020b].

Encoding Contents-in-Reach using Flows. The flow framework enables separation-logic-style
reasoning about recursive functions on graphs. Certain restrictions apply. The function must be
of the form fl : 𝑁 → 𝑀 where 𝑁 is the set of nodes of the graph and (𝑀, +, 0) is a commutative
cancellative monoid, called the flow domain. Further, fl must satisfy the flow equation:

∀𝑛 ∈ 𝑁 . fl(𝑛) = in(𝑛) +
∑︁

𝑛′∈𝑁

e(𝑛′, 𝑛) (fl(𝑛′)) (FlowEqn)

Intuitively, this equation states that fl can be computed by assigning every node an initial value
according to the inflow function in : 𝑁 → 𝑀 and then propagating these values along the edges
of the graph using the edge function e : 𝑁 × 𝑁 → 𝑀 → 𝑀 to reach a fixpoint. At each node 𝑛,
the values propagated from predecessor nodes 𝑛′ are aggregated using the monoid operation +. A
function fl that satisfies the flow equation is called a flow and a graph equipped with a flow is a
flow graph. The flow framework then enables us to reason compositionally about invariants of flow
graphs expressed as node-local conditions that depend on a node’s flow.
If we can define the contents-in-reach in terms of a flow, then we can use the notion of a flow

interface to prove locally that an update to the graph does not change the flow of any nodes
outside the modified region. The flow interface of a region consists of its outflow and inflow,
maps that intuitively capture the contribution of this region to the flow of the rest of the world
and the contribution of the outside world to this region’s flow, respectively. If the interface of a
modified region is preserved, then the framework guarantees that the flow of the rest of the graph
is unchanged. Thus, our proofs need to prove only that Invariant 2 is preserved for a bounded set
of affected nodes.

Technically, this kind of reasoning is enabled by the separation algebra structure of flow graphs
(in particular the definition of flow graph composition), which extends the composition of partial
graphs in standard separation logic so that the frame rule also preserves flow values of nodes in
the frame. Instead of performing an explicit induction over the entire graph structure to prove that
contents-in-reach values continue to satisfy desired invariants, the necessary induction is hidden
away inside the definition of flow graph composition (for more details see [Krishna et al. 2020b]).
Note that since search does not modify the multicopy structure, it trivially maintains the flow
interface of the nodes it operates on, and hence any flow-based invariants.
Equation (5) defines contents-in-reach in a bottom-up fashion, starting from the leaves of the

multicopy structure graph. That is, the computation proceeds backwards with respect to the
direction of the graph’s edges. This makes a direct encoding of contents-in-reach in terms of a flow
difficult because the flow equation describes computations that proceed in the forward direction.

We side-step this problem by tracking auxiliary ghost information in the data structure invariant
for each node 𝑛 in the form of a function 𝑄𝑛 : KS ⇀ V × N. If these ghost values satisfy

𝑄𝑛 = 𝜆𝑘.

{
𝐶ir (𝑛

′) (𝑘) if ∃𝑛′. 𝑘 ∈ es(𝑛, 𝑛′)

⊥ otherwise
(6)

and we additionally define

𝐵𝑛 ≔ 𝜆𝑘. (𝑘 ∈ dom(𝐶𝑛 (𝑘)) ? 𝐶𝑛 (𝑘) : 𝑄𝑛 (𝑘))

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



113:18 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

then 𝐶ir (𝑛) = 𝐵𝑛 . The idea is that each node stores 𝑄𝑛 so that node-local invariants can use it to
talk about𝐶ir (𝑛). We then use a flow to propagate the purported values𝑄𝑛 forward in the graph to
ensure that they indeed satisfy (6). Note that while an upsert or maintenance operations on 𝑛 may
change 𝐵𝑛 , it preserves 𝑄𝑛 . That is, operations do not affect the contents-in-reach of downstream
nodes, allowing local reasoning about the modification of the contents of 𝑛.

In what follows, let us fix a multicopy structure over nodes 𝑁 and some valuations of the partial
functions 𝑄𝑛 . The flow domain𝑀 for our encoding of contents-in-reach consists of multisets of
key/value-timestamp pairs𝑀 ≔ KS × (V × N) → N with multiset union as the monoid operation.
The edge function induced by the multicopy structure is defined as follows:

e(𝑛, 𝑛′) (_) ≔ 𝜒 ({(𝑘,𝑄𝑛 (𝑘)) | 𝑘 ∈ es(𝑛, 𝑛′) ∧ 𝑘 ∈ dom(𝑄𝑛)}) (7)

Here, 𝜒 takes a set to its corresponding multiset. Additionally, we let the function in map every
node to the empty multiset. With the definitions of e and in in place, there exists a unique flow fl

that satisfies (FlowEqn). Now, if every node 𝑛 in the resulting flow graph satisfies the following
two predicates

𝜙1 (𝑛) ≔ ∀𝑘. 𝑄𝑛 (𝑘) = ⊥ ∨ (∃𝑛′. 𝑘 ∈ es(𝑛, 𝑛′)) (8)

𝜙2 (𝑛) ≔ ∀𝑘 𝑝. fl(𝑛) (𝑘, 𝑝) > 0 ⇒ 𝐵𝑛 (𝑘) = 𝑝 (9)

then 𝐵𝑛 = 𝐶ir (𝑛). Note that the predicates 𝜙1 and 𝜙2 depend only on 𝑛’s own flow and its local
ghost state (i.e., 𝑄𝑛 , 𝐶𝑛 and the outgoing edgesets es(𝑛, _)).

Encoding the Invariants in Iris. We can now define the template-specific invariant Invtpl (𝑟, 𝑡, 𝐻 ) for
the LSM DAG template, which is assumed by the representation predicateMCS(Invtpl, Prot) (𝑟, 𝑡, 𝐻 )
defined in Figure 5. We denote this invariant by InvLSM and it is defined as follows:

InvLSM (𝑟, 𝑡, 𝐻 ) ≔ ∃𝑁 . G(𝑟, 𝑡, 𝐻, 𝑁 ) ∗∗
𝑛∈𝑁

∃𝑏𝑛𝐶𝑛 𝑄𝑛 . L(𝑏𝑛, 𝑛,NL (𝑟, 𝑛,𝐶𝑛, 𝑄𝑛))
∗ NS (𝑟, 𝑛,𝐶𝑛, 𝑄𝑛, 𝐻 )

The existentially quantified variable 𝑁 denotes the set of nodes of the multicopy structure. The
invariant itself consists of two parts. The predicate G(𝑟, 𝑡, 𝐻, 𝑁 ) states certain invariants about
its parameters and contains global ghost resources storing the values 𝑡 and 𝑁 . The second part is
an iterated separating conjunction stating ownership of the node-local resources associated with
every node 𝑛 ∈ 𝑁 .
The resources associated with each node 𝑛 are split between two predicates. The predicate

NS (𝑟, 𝑛,𝐶𝑛, 𝑄𝑛, 𝐻 ) holds those resources associated with 𝑛 that can be accessed by any thread
operating on the data structure regardless of whether 𝑛 is locked or not. In particular, it contains
the two predicates 𝜙1 (𝑛) and 𝜙2 (𝑛) needed for our encoding of contents-in-reach. The second
predicate NL (𝑟, 𝑛,𝐶𝑛, 𝑄𝑛) contains all resources that are accessible only to a thread that currently
holds the lock on 𝑛. Ownership of node-local ghost state such as 𝑄𝑛 is shared between the two
predicates. This ensures that a thread may update the values of these resources only when it holds
𝑛’s lock. Moreover, every thread can assume that the constraints imposed on these values by NS

are true, even at times when the thread does not hold the lock.
NL (𝑟, 𝑛,𝐶𝑛, 𝑄𝑛) includes node(𝑟, 𝑛, es(𝑛, ·), val(𝐶𝑛)), which is a predicate that encapsulates all

resources specific to the implementation of the node-specific data structure abstracted by node
𝑛. In particular, this predicate owns the resources associated with the physical representation of
the data structure and ties them to the abstract ghost state representing the high-level multicopy
structure: the node’s physical contents val(𝐶𝑛) (i.e., 𝐶𝑛 without timestamps) and the edgesets of its
outgoing edges es(𝑛, ·). Our template proof is parametric in the definition of node and depends
only on the following two assumptions that each implementation used to instantiate the template

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



Verifying Concurrent Multicopy Search Structures 113:19

1
〈
𝑏 𝑅. L(𝑏, 𝑛, 𝑅)

〉
lockNode 𝑛

〈
L(true, 𝑛, 𝑅) ∗ 𝑅

〉

2
〈
𝑅. L(true, 𝑛, 𝑅) ∗ 𝑅

〉
unlockNode 𝑛

〈
L(false, 𝑛, 𝑅)

〉

3
{
node(𝑟, 𝑛, es,𝑉𝑛)

}
inContents 𝑛 𝑘

{
𝑥 . node(𝑟, 𝑛, es,𝑉𝑛) ∗ 𝑥 = (𝑘 ∈ dom(𝑉𝑛) ? Some(𝑉𝑛 (𝑘)) : None)

}

4
{
node(𝑟, 𝑛, es,𝑉𝑛)

}
findNext 𝑛 𝑘

{
𝑥 . node(𝑟, 𝑛, es,𝑉𝑛) ∗ 𝑥 =

(
∃𝑛′. 𝑘 ∈ es(𝑛′) ? Some(𝑛′) : None

)}

5
{
node(𝑟, 𝑟, es,𝑉𝑟 )

}
addContents 𝑟 𝑘 𝑣

{
𝑏. node(𝑟, 𝑟, es,𝑉 ′

𝑟 ) ∗𝑉
′
𝑟 = (𝑏 ? 𝑉𝑟 [𝑘 ↣ 𝑣] : 𝑉𝑟 )

}

Fig. 8. Specifications of helper functions used by search and upsert.

must satisfy. First, we require that node is not duplicable:

node(𝑟, 𝑛, es,𝑉𝑛) ∗ node(𝑟
′, 𝑛, es′,𝑉 ′

𝑛 ) ⊢ False

Moreover, node must guarantee disjoint edgesets:

node(𝑟, 𝑛, es,𝑉𝑛) ⊢ ∀𝑛1 𝑛2. 𝑛1 = 𝑛2 ∨ es(𝑛1) ∩ es(𝑛2) = ∅

The predicate L(𝑏, 𝑛, 𝑅𝑛) captures the abstract state of 𝑛’s lock and is used to specify the protocol
providing exclusive access to the resource𝑅𝑛 protected by the lock via the helper functions lockNode
and unlockNode. The Boolean 𝑏 indicates whether the lock is (un)locked. The specifications of
the helper functions used by search and upsert, given in terms of the predicates L(𝑏, 𝑛, 𝑅𝑛) and
node(𝑟, 𝑛, es,𝑉𝑛) are shown in Figure 8. We discuss further details in [Patel et al. 2021, Appendix A].

7 MULTICOPY MAINTENANCE OPERATIONS

We next show that we can extend our multicopy structure template in ğ5 with a generic maintenance
operation without substantially increasing the proof complexity. The basic idea of our proofs here
is that for every timestamped copy of key 𝑘 , denoted as the pair (𝑘, (𝑣, 𝑡)), every maintenance
operation either does not change the distance of (𝑘, (𝑣, 𝑡)) to the root or increases it while preserving
an edgeset-guided path to (𝑘, (𝑣, 𝑡)). Using these two facts, we can prove that all the structure
invariants are also preserved.

7.1 Maintenance template

For the maintenance template, we consider a generalization of the compaction operation found in
LSM tree implementations such as LevelDB [Google 2021] and Apache Cassandra [Apache Software
Foundation 2021; Jonathan Ellis 2011]. While those implementations work on lists for the high-level
multicopy structure, our maintenance template supports arbitrary tree-like multicopy structures.
The code is shown in Figure 9. The template uses the helper function atCapacity 𝑟 𝑛 to test
whether the size of 𝑛 (i.e., the number of non-⊥ entries in 𝑛’s contents) exceeds an implementation-
specific threshold. If not, then the operation simply terminates. In case 𝑛 is at capacity, the function
chooseNext is used to determine the node to which the contents of 𝑛 can be merged. If the contents
of 𝑛 can be merged to successor𝑚 of 𝑛, then chooseNext returns Some𝑚. In case no such successor
exists, then it returns None. If chooseNext returns Some𝑚, then the contents of 𝑛 are merged to𝑚.
By merge, we mean that some copies of keys are transferred from 𝑛 to𝑚, possibly replacing older
copies in𝑚. The merge is performed by the helper function mergeContents. It must ensure that
all keys 𝑘 merged from 𝐶𝑛 to 𝐶𝑚 satisfy 𝑘 ∈ es(𝑛,𝑚).

On the other hand, if chooseNext returns None, then a new node is allocated using the function
allocNode. The new node is then added to the data structure using the helper function insertNode.
Here, the new edgeset es(𝑛,𝑚) must be disjoint from all edgesets for the other successors𝑚′ of 𝑛.
Afterwards, the contents of 𝑛 are merged to𝑚 as before. Note that the maintenance template never
removes nodes from the structure. In practice, the depth of the structure is bounded by letting the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



113:20 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

1 let rec compact 𝑟 𝑛 =

2 lockNode 𝑛;

3 if atCapacity 𝑟 𝑛 then begin

4 match chooseNext 𝑟 𝑛 with

5 | Some 𝑚 ->

6 lockNode 𝑚;

7 mergeContents 𝑟 𝑛 𝑚;

8 unlockNode 𝑛;

9 unlockNode 𝑚;

10 compact 𝑟 𝑚

11 | None ->

12 let 𝑚 = allocNode () in

13 insertNode 𝑟 𝑛 𝑚;

14 mergeContents 𝑟 𝑛 𝑚;

15 unlockNode 𝑛;

16 unlockNode 𝑚;

17 compact 𝑟 𝑚

18 end

19 else

20 unlock 𝑛

𝑘1 7
𝑘2 5
𝑘3 6
𝑘4 8

𝑛

𝑘1 3
𝑘2 ⊥

𝑘3 ⊥

𝑘4 4

𝑘1 2
𝑘2 1
𝑘3 ⊥

𝑘4 ⊥

KS {𝑘1, 𝑘2}

𝑘1 ⊥

𝑘2 ⊥

𝑘3 ⊥

𝑘4 ⊥

𝑛

𝑘1 7
𝑘2 5
𝑘3 6
𝑘4 8

𝑚

𝑘1 2
𝑘2 1
𝑘3 ⊥

𝑘4 ⊥

KS {𝑘1, 𝑘2}

𝑘1 ⊥

𝑘2 ⊥

𝑘3 ⊥

𝑘4 ⊥

𝑘1 7
𝑘2 5
𝑘3 ⊥

𝑘4 ⊥

𝑛

𝑘1 2
𝑘2 1
𝑘3 ⊥

𝑘4 ⊥

𝑘1 ⊥

𝑘2 ⊥

𝑘3 6
𝑘4 8

𝑚

KS {𝑘1, 𝑘2}

{𝑘3, 𝑘4}

Fig. 9. Maintenance template for tree-like multicopy structures. The template can be instantiated by providing

implementations of helper functions atCapacity, chooseNext, mergeContents, allocNode, and insertNode.

atCapacity 𝑟 𝑛 returns a Boolean value indicating whether node 𝑛 has reached its capacity. The helper func-

tion chooseNext 𝑟 𝑛 returns Some𝑚 if there exists a successor𝑚 of 𝑛 in the data structure into which 𝑛 should

be compacted, and None in case 𝑛 cannot be compacted into any of its successors. mergeContents 𝑟 𝑛𝑚 (par-

tially) merges the contents of𝑛 into𝑚. Finally, allocNode is used to allocate a new node and insertNode 𝑟 𝑛𝑚

inserts node𝑚 into the data structure as a successor of 𝑛. The right hand side shows a possible execution of

compact. Edges are labeled with their edgesets. The nodes 𝑛 and𝑚 in each iteration are marked in blue. For

simplicity, we here assume that the values are identical to their associated timestamps and only show the

timestamps.

capacity of nodes grow exponentially with the depth. The right hand side of Figure 9 shows the
intermediate states of a potential execution of the compact operation.

7.2 High-level proof of compact

The verification framework presented in ğ3 can be easily extended to accommodate anymaintenance
operation on multicopy structures that does not change the data structure’s abstract state. That is,
we need to prove that compact satisfies the following atomic triple:

〈
𝑡 𝐻 . MCS(𝑟, 𝑡, 𝐻 )

〉
compact 𝑟

〈
MCS(𝑟, 𝑡, 𝐻 )

〉

This specification says that compact logically takes effect in a single atomic step, and at this step
the abstract state of the data structure does not change. We prove that compact satisfies this
specification relative to the specifications of the implementation-specific helper functions shown in
Figure 10. The postcondition of mergeContents is given with respect to an (existentially quantified)
set of keys 𝐾 that are merged from 𝑉𝑛 to 𝑉𝑚 , resulting in new content sets 𝑉 ′

𝑛 and 𝑉 ′
𝑚 . The new

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



Verifying Concurrent Multicopy Search Structures 113:21

1
{
node(𝑟, 𝑛, es𝑛,𝑉𝑛)

}
atCapacity 𝑟 𝑛

{
𝑏. node(𝑟, 𝑛, es𝑛,𝑉𝑛)

}

2

3
{
node(𝑟, 𝑛, es𝑛,𝑉𝑛)

}

4 chooseNext 𝑟 𝑛

5
{
𝑣 . node(𝑟, 𝑛, es𝑛,𝑉𝑛) ∗ (𝑣 = Some(𝑚) ∗ es𝑛 (𝑚) ≠ ∅ ∨ 𝑣 = None ∗ needsNewNode(𝑟, 𝑛, es𝑛,𝑉𝑛))

}

6

7
{
True

}
allocNode 𝑟

{
𝑚. node(𝑟,𝑚, (𝜆𝑛′. ∅), ∅)

}

8

9
{
node(𝑟, 𝑛, es𝑛,𝑉𝑛) ∗ needsNewNode(𝑟, 𝑛, es𝑛,𝑉𝑛) ∗ node(𝑟,𝑚, (𝜆𝑛

′. ∅), ∅)
}

10 insertNode 𝑟 𝑛 𝑚

11
{
node(𝑟, 𝑛, es′𝑛,𝑉𝑛) ∗ node(𝑟,𝑚, (𝜆𝑛

′. ∅), ∅) ∗ es′𝑛 = es𝑛 [𝑚↣ es′𝑛 (𝑚)] ∗ es′𝑛 (𝑚) ≠ ∅
}

12

13
{
node(𝑟, 𝑛, es𝑛,𝑉𝑛) ∗ node(𝑟,𝑚, es𝑚,𝑉𝑚) ∗ es𝑛 (𝑚) ≠ ∅

}

14 mergeContents 𝑟 𝑛 𝑚

15
{
node(𝑟, 𝑛, es𝑛,𝑉

′
𝑛) ∗ node(𝑟,𝑚, es𝑚,𝑉

′
𝑚) ∗𝑉 ′

𝑛 =mergeLeft (𝐾,𝑉𝑛, Es,𝑉𝑚) ∗𝑉 ′
𝑚 =mergeRight (𝐾,𝑉𝑛, Es,𝑉𝑚)

}

Fig. 10. Specifications of helper functions used by compact.

contents are determined by the functions mergeLeft and mergeRight which are defined as follows:

mergeLeft (𝐾,𝑉𝑛, Es,𝑉𝑚) ≔ 𝜆𝑘. (𝑘 ∈ 𝐾 ∩ dom(𝑉𝑛) ∩ Es ? ⊥ : 𝑉𝑛 (𝑘))

mergeRight (𝐾,𝑉𝑛, Es,𝑉𝑚) ≔ 𝜆𝑘. (𝑘 ∈ 𝐾 ∩ dom(𝑉𝑛) ∩ Es ? 𝑉𝑛 (𝑘) : 𝑉𝑚 (𝑘))

Technically, the linearization point of the operation occurs when all locks are released, just before
the function terminates. However, the interesting part of the proof is to show that the changes to
the physical contents of nodes 𝑛 and𝑚 performed by each call to mergeContents at line 7 preserve
the abstract state of the structure as well as the invariants. In particular, the changes to 𝐶𝑛 and
𝐶𝑚 also affect the contents-in-reach of𝑚. We need to argue that this is a local effect that does not
propagate further in the data structure, as we did in our proof of upsert.

Auxiliary invariants. When proving the correctness of compact, we face two technical challenges.
The first challenge arises when establishing that compact changes the contents of the nodes involved
in such a way that the high-level invariants are maintained. In particular, we must reestablish
Invariant 2, which states that the contents-in-reach of each node can only increase over time.
Compaction replaces downstream copies of keys with upstream copies. Thus, in order to maintain
Invariant 2, we need the additional auxiliary invariant that the timestamps of keys in the contents
of nodes can only decrease as we move away from the root:

Invariant 5 The (timestamp) contents of a node is not smaller than the contents-in-reach of
its successor. That is, for all keys 𝑘 and nodes 𝑛 and 𝑚, if 𝑘 ∈ es(𝑛,𝑚) and 𝐶𝑛 (𝑘) ≠ ⊥ then
ts(𝐶ir (𝑚) (𝑘)) ⩽ ts(𝐶𝑛 (𝑘)).

We can capture Invariant 5 in our data structure invariant MCS(𝑟, 𝑡, 𝐻 ) by adding the following
predicate as an additional conjunct to the predicate NS (𝑟, 𝑛,𝐶𝑛, 𝐵𝑛):

𝜙3 (𝑛) ≔ ∀𝑘. ts(𝑄𝑛 (𝑘)) ⩽ ts(𝐵𝑛 (𝑘)) (10)

The second challenge is that the maintenance template generates only tree-like structures. This
implies that at any time there is at most one path from the root to each node in the structure.
We will see that this invariant is critical for maintaining Invariant 5. However, the data structure
invariant presented thus far allows for arbitrary DAGs.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



113:22 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

𝑘1 5
𝑘2 6

𝑛

𝑘1 3
𝑘2 4

𝑝

𝑘1 2
𝑘2 1

𝑚

{𝑘1}

{𝑘1, 𝑘2}{𝑘2}

(1)

𝑘1 5
𝑘2 ⊥

𝑛

𝑘1 3
𝑘2 4

𝑝

𝑘1 2
𝑘2 6

𝑚

{𝑘1}

{𝑘1, 𝑘2}{𝑘2}

(2)

𝑘1 ⊥

𝑘2 ⊥

𝑛

𝑘1 5
𝑘2 4

𝑝

𝑘1 2
𝑘2 6

𝑚

{𝑘1}

{𝑘1, 𝑘2}{𝑘2}

(3)

𝑘1 ⊥

𝑘2 ⊥

𝑛

𝑘1 ⊥

𝑘2 ⊥

𝑝

𝑘1 5
𝑘2 4

𝑚

{𝑘1}

{𝑘1, 𝑘2}{𝑘2}

(4)

Fig. 11. Possible execution of the compact operation on a DAG. Edges are labeled with their edgesets. The

nodes undergoing compaction in each iteration are marked in blue.

To motivate this issue further, consider the multicopy structure in step (1) of Figure 11. The
logical contents of this structure (i.e. the contents-in-reach of 𝑛) is {𝑘1↣ (5, 5), 𝑘2↣ (6, 6)}.
The structure in step (2) shows the result obtained after executing compact 𝑟 𝑛 to completion

where 𝑛 has been considered to be at capacity and the successor𝑚 has been chosen for the merge,
resulting in (𝑘2, (6, 6)) being moved from 𝑛 to𝑚. Note that at this point the logical contents of the
data structure is still {𝑘1↣ (5, 5), 𝑘2↣ (6, 6)} as in the original structure. However, the structure
now violates Invariant 5 for nodes 𝑝 and𝑚 since ts(𝐵𝑚 (𝑘2)) > ts(𝐶𝑝 (𝑘2)).
Suppose that now a new compaction starts at 𝑛 that still considers 𝑛 at capacity and chooses 𝑝

for the merge. The merge then moves the copy (𝑘1, (5, 5)) from 𝑛 to 𝑝 . The graph in step (3) depicts
the resulting structure. The compaction then continues with 𝑝 , which is also determined to be
at capacity. Node𝑚 is chosen for the merge, resulting in (𝑘1, (5, 5)) and (𝑘2, (4, 4)) being moved
from 𝑝 to𝑚. At this point, the second compaction terminates. The final graph in step (4) shows the
structure obtained at this point. Observe that the logical contents is now {𝑘1↣ (5, 5), 𝑘2↣ (4, 4)}.
Thus, this execution violates the specification of compact, which states that the logical contents
must be preserved. In fact, a timestamp in the contents-in-reach of 𝑛 has decreased, which violates
Invariant 2.

We observe that although compact will create only tree-like structures, we can prove its correct-
ness using a weaker invariant that does not rule out non-tree DAGs, but instead focuses on how
compact interferes with concurrent search operations. This weaker invariant relies on the fact
that for every key 𝑘 in the contents of a node 𝑛, there exists a unique search path from the root 𝑟
to 𝑛 for 𝑘 . That is, if we project the graph to only those nodes reachable from the root via edges
(𝑛,𝑚) that satisfy 𝑘 ∈ es(𝑛,𝑚), then this projected graph is a list. Using this weaker invariant we
can capture implementations based on B-link trees or skip lists which are DAGs but have unique
search paths.
To this end, we recall from [Shasha and Goodman 1988] the notion of the inset of a node 𝑛,

ins(𝑛), which is the set of keys 𝑘 such that there exists a (possibly empty) path from the root 𝑟 to 𝑛,
and 𝑘 is in the edgeset of all edges along that path. That is, since a search for a key 𝑘 traverses only
those edges (𝑛,𝑚) in the graph that have 𝑘 in their edgeset, the search traverses (and accesses the
contents of) only those nodes 𝑛 such that 𝑘 ∈ ins(𝑛). Now observe that compact, in turn, moves
new copies of a key 𝑘 downward in the graph only along edges that have 𝑘 in their edgeset. The
following invariant is a consequence of these observations and the definition of contents-in-reach:

Invariant 6 A key is in the contents-in-reach of a node only if it is also in the node’s inset. That
is, dom(𝐶ir (𝑛)) ⊆ ins(𝑛).

This invariant rules out the problematic structure in step (1) of Figure 11 because we have 𝑘2 ∈
dom(𝐶ir (𝑝)) but 𝑘2 ∉ ins(𝑝) = {𝑘1}.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



Verifying Concurrent Multicopy Search Structures 113:23

Invariant 6 alone is not enough to ensure that Invariant 5 is preserved. For example, consider the
structure obtained from (1) of Figure 11 by changing the edgeset of the edge (𝑛, 𝑝) to {𝑘1, 𝑘2}. This
modified structure satisfies Invariant 6 but allows the same problematic execution ending in the
violation of Invariant 5 that we outlined earlier. However, observe that in the modified structure
𝑘2 ∈ es(𝑛, 𝑝) ∩ es(𝑛,𝑚), which violates the property that all edgesets leaving a node are disjoint.
We have already captured this property in our data structure invariant (as an assumption on the
implementation-specific predicate node(𝑟, 𝑛, es,𝐶𝑛)). However, in our formal proof we need to
rule out the possibility that a search for 𝑘 can reach a node𝑚 via two incoming edgesets es(𝑛,𝑚)
and es(𝑝,𝑚). Proving that disjoint outgoing edgesets imply unique search paths involves global
inductive reasoning about the paths in the multicopy structure. To do this using only local reasoning,
we will instead rely on an inductive consequence of locally disjoint outgoing edgesets, which we
capture explicitly as an additional auxiliary invariant (and which we will enforce using flows):

Invariant 7 The distinct immediate predecessors of any node𝑛 have disjoint insets. More precisely,
for all distinct nodes 𝑛, 𝑝 ,𝑚, and keys 𝑘 , if 𝑘 ∈ es(𝑛,𝑚) ∩ es(𝑝,𝑚) then 𝑘 ∉ ins(𝑛) ∩ ins(𝑝).

Note that changing the edgeset of (𝑛, 𝑝) in Figure 11 to {𝑘1, 𝑘2} would violate Invariant 7 because
the resulting structure would satisfy 𝑘2 ∈ es(𝑛,𝑚) ∩ es(𝑝,𝑚) and 𝑘2 ∈ ins(𝑛) ∩ ins(𝑝).
In order to capture invariants 6 and 7 inMCS(𝑟, 𝑡, 𝐻 ), we introduce an additional flow that we

use to encode the inset of each node. The encoding of insets in terms of a flow follows [Krishna
et al. 2020a]. That is, the underlying flow domain is multisets of keys𝑀 = KS → N and the actual
calculation of the insets is captured by (FlowEqn) if we define:

e(𝑛, 𝑛′) ≔ 𝜆𝑚.𝑚 ∩ es(𝑛, 𝑛′) in(𝑛) ≔ 𝜒 (𝑛 = 𝑟 ? KS : ∅)

If flins is a flow that satisfies (FlowEqn) for these definitions of e and in, then for any node 𝑛 that
is reachable from 𝑟 , flins (𝑛) (𝑘) > 0 iff 𝑘 ∈ ins(𝑛). Invariants 6 and 7 are then captured by the
following two predicates, which we add to NS:

𝜙4 (𝑛) ≔ ∀𝑘. 𝑘 ∈ dom(𝐵𝑛) ⇒ flins (𝑛) (𝑘) > 0 𝜙5 (𝑛) ≔ ∀𝑘. flins (𝑛) (𝑘) ⩽ 1

Note that 𝜙5 captures Invariant 7 as a property of each individual node 𝑛 by taking advantage of
the fact that the multiset flins (𝑛) explicitly represents all of the contributions made to the inset of 𝑛
by 𝑛’s predecessor nodes.

We briefly explain why we can still prove the correctness of search and upsertwith the updated
data structure invariant. First note that search does not modify the contents, edgesets, or any other
ghost resources of any node. So the additional conjuncts in the invariant are trivially maintained.
Now let us consider the operation upsert 𝑟 𝑘 𝑣 . Since upsert does not change the edgesets of

any nodes, the resources and constraints related to the inset flow are trivially maintained, with the
exception of 𝜙4 (𝑟 ): after the upsert we have 𝑘 ∈ dom(𝐵𝑟 ) which may not have been true before.
However, from in(𝑟 ) (𝑘) = 1, the flow equation, and the fact that the flow domain is positive, it
follows that we must have flins (𝑟 ) (𝑘) > 0 (i.e., 𝑘 ∈ ins(𝑟 ) = KS). Hence, 𝜙4 (𝑟 ) is preserved as well.

8 PROOF MECHANIZATION

We illustrate the proof methodology presented in this paper by verifying that the multicopy
template algorithm (ğ5, ğ6, and ğ7) satisfies search recency. We then instantiate the template
to an LSM-like implementation to demonstrate an application of the template. Our proof effort
(summarized in Table 1) also contains a mechanically-checked proof that search recency refines the
Map ADT specification (ğ4). We further verify a two-node multicopy structure template that can
be instantiated to differential file (DF) structure implementations [Severance and Lohman 1976].
We include this template in our artifact to demonstrate the reuse of the helping proof and because
it has a simpler invariant. Though, we provide no implementation for the two-node template. The

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



113:24 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

Table 1. Summary of templates and instantiations verified in Iris/Coq and GRASShopper. For each algorithm

or library, we show the number of lines of code, lines of proof annotation (including specification), total

number of lines, and the proof-checking/verification time in seconds.

Templates (Iris/Coq)

Module Code Proof Total Time

Flow Library 0 3757 3757 41
Lock Implementation 10 352 362 11
Client-level Spec 7 931 938 40
DF Template 19 914 933 90
LSM DAG Template 39 3666 3705 353
Total 75 9620 9695 535

Implementations (GRASShopper)

Module Code Proof Total Time

Array Library 191 440 631 11
LSM Implementation 207 246 453 51

Total 398 686 1084 62

artifact is available as a VM image on Zenodo4 and as source code on GitHub5. Verification time
was measured on a laptop with an Intel Core i7-8750H CPU and 16GB RAM.

The client-level and template-level proofs were performed in Iris and mechanically verified by
the Coq tool, and comprise the left half of Table 1. The flow library formalizes the meta theory of
flow interface cameras used in the template proofs. It extends the development of [Krishna et al.
2020a] with a general theory of multiset-based flow domains (about 900 lines).

Our LSM implementation is verified in the SMT-based separation logic tool GRASShopper, and
is described in the right half of the table. The implementation uses an unsorted array to store
key-timestamp pairs for the (in-memory) root node (with upserts adding to one end of the array),
and a read-only sorted array (also known as a sorted string table [Google 2021]) for the other
(on-disk) nodes. This array models the contents of a file. The implementation uses a library of
utility functions and lemmas for arrays that represent partial maps from keys to values.
We verify both the helper functions for the core search structure operations (Figure 7) as well

as those needed by the maintenance template (Figure 9). Each operation demuxes between the
code for in-memory and on-disk nodes based on the reference to the operation node. For instance,
in the case of mergeContents 𝑟 𝑛𝑚, if 𝑟 = 𝑛 then the operation flushes the in-memory node 𝑛 to
the on-disk node𝑚. Otherwise, both 𝑛 and𝑚 must be on-disk nodes, which are then compacted.
Alternatively, one could use separate implementations of each helper function for the two types
of nodes. The polymorphism could then be resolved statically by unfolding the recursion in the
template algorithms once, letting helper function calls in the unfolded iteration go to the in-memory
versions and all remaining ones to the on-disk versions.

There are two gaps in the verification that would need to be bridged to obtain a complete
end-to-end proof. First, there is currently no way to formally compose the proofs done in Iris/Coq
and GRASShopper. However, the two proofs are linked by the node-level specifications of helper
functions such as findNext at the representation level. As with prior work [Krishna et al. 2020a], we
split our verification across two tools in order to take advantage of SMT-based automated techniques
for the sequential implementation proofs which are tedious but not technically challenging. Second,
GRASShopper does not support reasoning about file access directly. We effectively model each
file as a RAM disk whose contents is mapped into memory. This is consistent with the abstract
interface for performing file accesses in the LSM tree implementation of LevelDB [Google 2021].

One specific technical challenge that we had to overcome in the Iris formalization is related to the
decoupling of the generic client-template proof from the template-implementation proofs. At the
linearization point of upsert, the proof needs to reestablish the invariant of the helping protocol.

4https://zenodo.org/record/5496104
5https://github.com/nyu-acsys/template-proofs/tree/multicopy

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.

https://zenodo.org/record/5496104
https://github.com/nyu-acsys/template-proofs/tree/multicopy


Verifying Concurrent Multicopy Search Structures 113:25

That is, each template-implementation proof needs to update the relevant ghost resources used
for encoding this invariant. We have eliminated the dependency of the template-implementation
proof on the concrete representation of the helping protocol invariant by parameterizing this part
of the proof over all possible helping protocols that can be maintained by an upsert. We discuss
this issue in more detail in [Patel et al. 2021, Appendix A.3].
A more desirable solution would be to restrict all reasoning related to the helping protocol

to the client-template proof so that the template-implementation proofs do not depend on the
helping protocol at all. Essentially, the idea would be to do the relevant ghost state updates in the
client-template level proof of upsertwhen the template-level atomic triple of upsert is committed.
Unfortunately, this idea cannot be realized with Iris’ current definition of atomic triples. Proving that
the helping protocol invariant is maintained involves the elimination of a so-called later modality.
That is, one needs to show that a physical computation step is executed at the linearization point
(e.g. a memory read or write). However, Iris’ atomic triples

〈
®𝑥 . 𝑃

〉
𝑒
〈
𝑣 . 𝑄

〉
are in some sense too

abstract, as they do not capture whether 𝑐 performs a physical computation step. More fine-grained
notions of atomic triples are a promising direction for future work.

9 RELATED WORK

Most closely related to our work is the edgeset framework for verifying single-copy structure
templates [Krishna et al. 2020a; Shasha and Goodman 1988]. The edgeset framework hinges on
the notion of the keyset of a node, which is the set of keys that are allowed in the node. That is, a
node’s contents must be a subset of its keyset. Moreover, the keysets of all nodes must be disjoint.
The contribution of Krishna et al. [2020a] is to capture these invariants by a resource algebra in Iris
and to show how keysets can be related to the search structure graph using flows to enable local
reasoning about template algorithms for single-copy structures. Note that this work [Krishna et al.
2020a; Shasha and Goodman 1988] is limited to single-copy structures since the keyset invariants
enforce that every key appears in at most one node. In multicopy structures, the same key may
appear in multiple nodes with different associated values.

Relative to [Krishna et al. 2020a; Shasha and Goodman 1988], the main technical novelties are: (i)
we identify a node-local quantity (contents-in-reach) for multicopy structures that plays a similar
role to the keyset in the single-copy case. Both the invariants that the contents-in-reach must
satisfy as well as how the contents-in-reach is encoded using flows is substantially different from
the keyset. (ii) We capture the order-preservation aspect of linearizability for multicopy structures
in the notion of search recency. (iii) We develop and verify new template algorithms for multicopy
structures.

In data structures based on RCU synchronization such as the Citrus tree [Arbel and Attiya 2014],
the same key may temporarily appear in multiple nodes. However, such structures are not necessar-
ily multicopy structures. Notably, in a Citrus tree, all copies of a key have the same associated value
even in the presence of concurrent updates. Moreover, searches have fixed linearization points.
This structure can therefore be handled, in principle, using the single-copy framework of Krishna
et al. [2020a] (by building on the formalization of the RCU semantics developed in [Gotsman et al.
2013] and the high-level proof idea for the Citrus tree of Feldman et al. [2020]).
Several other works present generic proof arguments for verifying concurrent traversals of

search structures that involve dynamic linearization points [Drachsler-Cohen et al. 2018; Feldman
et al. 2018, 2020; O’Hearn et al. 2010]. However, these approaches focus on single-copy structures
and rely on global reasoning based on graph reachability.
The idea of tracking auxiliary ghost state about a data structure’s history to simplify its lin-

earizability proof has been used in many prior works (e.g. [Bouajjani et al. 2017; Delbianco et al.
2017; Sergey et al. 2015b]). We build on these works and apply this idea to decouple the reasoning

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



113:26 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

about the non-local linearization points of searches from the verification of any specific multicopy
structure template.
We have formalized the verification of our template algorithms in Iris [Jung et al. 2018]. Our

formalization particularly benefits from Iris’s support for user-definable resource algebras, which
can capture nontrivial ghost state such as flow interfaces. However, there are a number of other
formal proof systems that provide mechanisms for structuring complex linearizability proofs,
including other concurrent separation logics [da Rocha Pinto et al. 2014; Dinsdale-Young et al.
2013; Fu et al. 2010; Gardner et al. 2014; Raad et al. 2015; Sergey et al. 2015a] as well as systems
based on classical logic [Elmas et al. 2010; Kragl and Qadeer 2018; Kragl et al. 2020]. We also
make use of Iris’s support for logically atomic triples and prophecy variables to reason modularly
about the non-local dynamic linearization points of searches. Specifically, the proof discussed in ğ4
builds on the prophecy-based Iris proof of the RDCSS data structure from [Jung et al. 2020] and
adapts it to a setting where an unbounded number of threads perform łhelpingž. The idea of using
prophecy variables to reason about non-fixed linearization points has also been explored in prior
work building on logics other than Iris [Sezgin et al. 2010; Vafeiadis 2008; Zhang et al. 2012].

Our proofs rely on both history and prophecy-based reasoning. However, we use the two ideas
separately in the two parts of the proof (client-template vs. template-implementation). It does not
seem possible to prove the client-template part without using prophecies. The reason is that we use
an atomic triple to express the client-level specification. The atomic triple needs to be committed
at the actual linearization point. If we were to use only history-based information in the proof,
then we would determine at the point when (𝑘, (𝑣, 𝑡 ′)) is found that the linearization point already
happened in the past. However, at that point, it is already too late to commit the atomic triple.
A proof that uses only history-based verification and does not rely on atomic triples is likely

possible. For instance, one alternative approaches to using atomic triples is to prove that the
template-level atomic specification contextually refines the client-level atomic specification of
multicopy structures using a relational program logic. A number of prior works have developed
such refinement-based approaches [Banerjee et al. 2016; Frumin et al. 2018, 2020], including for
settings that involve unbounded helping [Liang and Feng 2013; Turon et al. 2013]. An alternative
approach to using prophecy variables for reasoning about non-fixed linearization points is to
explicitly construct a partial order of events as the program executes, effectively representing all
the possible linearizations that are consistent with the observations made so far [Khyzha et al.
2017].

There has also been much work on obtaining fully automated proofs of linearizability by static
analysis and model checking [Abdulla et al. 2013, 2018; Amit et al. 2007; Bouajjani et al. 2013,
2015, 2017; Cerný et al. 2010; Dragoi et al. 2013; Henzinger et al. 2013; Lesani et al. 2014; Vafeiadis
2009; Zhu et al. 2015]. The proof framework presented in this paper is capable of reasoning about
implementations that are beyond the reach of current automatic techniques, via interactive (though
still machine-checked) template proofs. We hope that this framework will help to inform the design
of future automated static analyzers for concurrent programs.

Multicopy structures such as the LSM tree are often used in file and database systems to organize
data that spans multiple storage media, e.g., RAM and hard disks. Several prior projects have
considered the formal verification of file systems. SibyllFS [Ridge et al. 2015] provides formal
specifications for POSIX-based file system implementations to enable systematic testing of existing
implementations. FSCQ [Chen et al. 2015], Yggdrasil [Bornholt et al. 2016; Sigurbjarnarson et al.
2016], and DFSCQ [Chen et al. 2017] provide formally verified file system implementations that also
guarantee crash consistency. However, these implementations do not support concurrent execution
of file system operations. Our work provides a framework for reasoning about the in-memory
concurrency aspects of multicopy structures. However, we mostly abstract from issues related to

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.



Verifying Concurrent Multicopy Search Structures 113:27

the interaction with the different storage media. Notably, in our verified LSM tree implementation,
we do not model disk failure and hence do not address crash consistency.

Distributed key/value stores have to contend with copies of keys being present in multiple nodes
at a time. Several works verify consistency of operations performed on such data structures [Chordia
et al. 2013; Kaki et al. 2018; Xiong et al. 2020], including linearizability [Wang et al. 2019]. In the
distributed context, the main technical challenge arises from data replication and the ensuing
weakly consistent semantics of concurrent operations. As we consider lock-based templates, we
can assume a sequentially consistent memory model for our verification. For lock-free multicopy
structures such as the Bw-tree [Levandoski et al. 2013], weak memory consistency may be a concern.
Lock-free multicopy structures also require the development of new template algorithms, which
then need to be shown linearizable with respect to the template-level specification. However, once
this is established, linearizability with respect to the client-level specification is obtained for free. We
also believe that the high-level invariants from ğ6 are applicable towards proving the template-level
specification. For instance, each lock-free node-local list of the Bw-tree behaves like a multicopy
structure and satisfies the identified invariants.

10 CONCLUSION

This paper and the accompanying verification effort have made the following contributions: We
presented a general framework for verifying concurrent multicopy structures. The framework
introduces an intermediate abstraction layer that enables reasoning about concurrent multicopy
structures in terms of template algorithms that abstract from the data structure representation.
We constructed such a template algorithm that generalizes the log-structured merge tree to DAGs
and proved its correctness. The proof is decomposed into two parts to maximize proof reuse: (1)
a general reduction of linearizability of multicopy structures that eliminates the need to reason
about non-local linearization points; and (2) a generic proof of the template algorithm that abstracts
from the data structure’s memory representation in concrete implementations. The full proof is
formalized in the concurrent separation logic Iris and mechanized in Coq. We have also verified
an instantiation of the template algorithm to LSM trees, resulting in the first formally-verified
concurrent multicopy search structure.

ACKNOWLEDGMENTS

This work is funded in parts by the National Science Foundation under grants 1925605, 1815633,
1934388, 1840761, and 1339362. Further funding came from NYU WIRELESS and from the New
York University Abu Dhabi Center for Interacting Urban Networks (CITIES). We thank Elizabeth
Dietrich and Raphael Sofaer for their help on mechanizing the proofs of the differential file template.
We also extend our gratitude to the anonymous reviewers of OOPSLA’21 whose questions helped
us clarify the presentation. We would also like to thank the reviewers of the book [Krishna et al.
2021], specifically Maurice Herlihy, Eddie Kohler, Robbert Krebbers, K. Rustan M. Leino, and Peter
Müller, for their suggestions to improve the presentation.

REFERENCES

Martín Abadi and Leslie Lamport. 1988. The Existence of Refinement Mappings. In Proceedings of the Third Annual

Symposium on Logic in Computer Science (LICS ’88), Edinburgh, Scotland, UK, July 5-8, 1988. IEEE Computer Society,
165ś175. https://doi.org/10.1109/LICS.1988.5115

Parosh Aziz Abdulla, Frédéric Haziza, Lukás Holík, Bengt Jonsson, and Ahmed Rezine. 2013. An Integrated Specification and
Verification Technique for Highly Concurrent Data Structures. In Tools and Algorithms for the Construction and Analysis

of Systems - 19th International Conference, TACAS 2013, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7795),
Nir Piterman and Scott A. Smolka (Eds.). Springer, 324ś338. https://doi.org/10.1007/978-3-642-36742-7_23

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.

https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1007/978-3-642-36742-7_23


113:28 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

Parosh Aziz Abdulla, Bengt Jonsson, and Cong Quy Trinh. 2018. Fragment Abstraction for Concurrent Shape Analysis. In
Programming Languages and Systems - 27th European Symposium on Programming, ESOP 2018, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings

(Lecture Notes in Computer Science, Vol. 10801), Amal Ahmed (Ed.). Springer, 442ś471. https://doi.org/10.1007/978-3-319-
89884-1_16

Daphna Amit, Noam Rinetzky, Thomas W. Reps, Mooly Sagiv, and Eran Yahav. 2007. Comparison Under Abstraction for
Verifying Linearizability. In Computer Aided Verification, 19th International Conference, CAV 2007, Berlin, Germany, July

3-7, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4590), Werner Damm and Holger Hermanns (Eds.). Springer,
477ś490. https://doi.org/10.1007/978-3-540-73368-3_49

Apache Software Foundation. 2021. Apache Cassandra. https://cassandra.apache.org/. Last accessed on August 12, 2021.
Maya Arbel and Hagit Attiya. 2014. Concurrent updates with RCU: search tree as an example. In ACM Symposium on

Principles of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014, Magnús M. Halldórsson and Shlomi Dolev
(Eds.). ACM, 196ś205. https://doi.org/10.1145/2611462.2611471

Anindya Banerjee, David A. Naumann, and Mohammad Nikouei. 2016. Relational Logic with Framing and Hypotheses. In
36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2016,

December 13-15, 2016, Chennai, India (LIPIcs, Vol. 65), Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 11:1ś11:16. https://doi.org/10.4230/LIPIcs.FSTTCS.2016.11

James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy, Emina Torlak, and Xi Wang. 2016. Specifying
and Checking File System Crash-Consistency Models. In Proceedings of the Twenty-First International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS 2016, Atlanta, GA, USA, April 2-6, 2016,
Tom Conte and Yuanyuan Zhou (Eds.). ACM, 83ś98. https://doi.org/10.1145/2872362.2872406

Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. 2013. Verifying Concurrent Programs against Sequential
Specifications. In Programming Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as

Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.

Proceedings (Lecture Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer,
290ś309. https://doi.org/10.1007/978-3-642-37036-6_17

Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. 2015. On Reducing Linearizability to State Reachability.
In Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015,

Proceedings, Part II (Lecture Notes in Computer Science, Vol. 9135), Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi,
and Bettina Speckmann (Eds.). Springer, 95ś107. https://doi.org/10.1007/978-3-662-47666-6_8

Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mutluergil. 2017. Proving Linearizability Using Forward
Simulations. In Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,

2017, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 10427), Rupak Majumdar and Viktor Kuncak (Eds.).
Springer, 542ś563. https://doi.org/10.1007/978-3-319-63390-9_28

Pavol Cerný, Arjun Radhakrishna, Damien Zufferey, Swarat Chaudhuri, and Rajeev Alur. 2010. Model Checking of
Linearizability of Concurrent List Implementations. In Computer Aided Verification, 22nd International Conference, CAV

2010, Edinburgh, UK, July 15-19, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6174), Tayssir Touili, Byron
Cook, and Paul B. Jackson (Eds.). Springer, 465ś479. https://doi.org/10.1007/978-3-642-14295-6_41

Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay Mert Ileri, Adam Chlipala, M. Frans Kaashoek, and
Nickolai Zeldovich. 2017. Verifying a high-performance crash-safe file system using a tree specification. In Proceedings

of the 26th Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017. ACM, 270ś286. https:
//doi.org/10.1145/3132747.3132776

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2015. Using
Crash Hoare logic for certifying the FSCQ file system. In Proceedings of the 25th Symposium on Operating Systems

Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015, Ethan L. Miller and Steven Hand (Eds.). ACM, 18ś37.
https://doi.org/10.1145/2815400.2815402

Sagar Chordia, Sriram K. Rajamani, Kaushik Rajan, Ganesan Ramalingam, and Kapil Vaswani. 2013. Asynchronous
Resilient Linearizability. In Distributed Computing - 27th International Symposium, DISC 2013, Jerusalem, Israel, October

14-18, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 8205), Yehuda Afek (Ed.). Springer, 164ś178. https:
//doi.org/10.1007/978-3-642-41527-2_12

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data Abstraction.
In ECOOP 2014 - Object-Oriented Programming - 28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014.

Proceedings (Lecture Notes in Computer Science, Vol. 8586), Richard E. Jones (Ed.). Springer, 207ś231. https://doi.org/10.
1007/978-3-662-44202-9_9

Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-Offs for LSM-Tree Based Key-Value Stores
via Adaptive Removal of Superfluous Merging. In Proceedings of the 2018 International Conference on Management of

Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, Gautam Das, Christopher M. Jermaine, and Philip A.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.

https://doi.org/10.1007/978-3-319-89884-1_16
https://doi.org/10.1007/978-3-319-89884-1_16
https://doi.org/10.1007/978-3-540-73368-3_49
https://cassandra.apache.org/
https://doi.org/10.1145/2611462.2611471
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.11
https://doi.org/10.1145/2872362.2872406
https://doi.org/10.1007/978-3-642-37036-6_17
https://doi.org/10.1007/978-3-662-47666-6_8
https://doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1007/978-3-642-14295-6_41
https://doi.org/10.1145/3132747.3132776
https://doi.org/10.1145/3132747.3132776
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1007/978-3-642-41527-2_12
https://doi.org/10.1007/978-3-642-41527-2_12
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-662-44202-9_9


Verifying Concurrent Multicopy Search Structures 113:29

Bernstein (Eds.). ACM, 505ś520. https://doi.org/10.1145/3183713.3196927
Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2017. Concurrent Data Structures

Linked in Time. In 31st European Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona,

Spain (LIPIcs, Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 8:1ś8:30. https://doi.org/10.
4230/LIPIcs.ECOOP.2017.8

Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok Yang. 2013. Views:
compositional reasoning for concurrent programs. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, Roberto Giacobazzi and Radhia Cousot (Eds.).
ACM, 287ś300. https://doi.org/10.1145/2429069.2429104

Dana Drachsler-Cohen, Martin T. Vechev, and Eran Yahav. 2018. Practical concurrent traversals in search trees. In Proceedings
of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2018, Vienna, Austria,

February 24-28, 2018, Andreas Krall and Thomas R. Gross (Eds.). ACM, 207ś218. https://doi.org/10.1145/3178487.3178503
Cezara Dragoi, Ashutosh Gupta, and Thomas A. Henzinger. 2013. Automatic Linearizability Proofs of Concurrent Objects

with Cooperating Updates. In Computer Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg,

Russia, July 13-19, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and Helmut Veith
(Eds.). Springer, 174ś190. https://doi.org/10.1007/978-3-642-39799-8_11

Tayfun Elmas, Shaz Qadeer, Ali Sezgin, Omer Subasi, and Serdar Tasiran. 2010. Simplifying Linearizability Proofs with
Reduction and Abstraction. In Tools and Algorithms for the Construction and Analysis of Systems, 16th International

Conference, TACAS 2010, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2010,

Paphos, Cyprus, March 20-28, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6015), Javier Esparza and Rupak
Majumdar (Eds.). Springer, 296ś311. https://doi.org/10.1007/978-3-642-12002-2_25

Manuel Fahndrich and Rustan Leino. 2003. Heap Monotonic Typestate. In Proceedings of the first International Workshop on

Alias Confinement and Ownership (IWACO) (proceedings of the first international workshop on alias confinement and
ownership (iwaco) ed.). https://www.microsoft.com/en-us/research/publication/heap-monotonic-typestate/

Yotam M. Y. Feldman, Constantin Enea, Adam Morrison, Noam Rinetzky, and Sharon Shoham. 2018. Order out of Chaos:
Proving Linearizability Using Local Views. In 32nd International Symposium on Distributed Computing, DISC 2018,

New Orleans, LA, USA, October 15-19, 2018 (LIPIcs, Vol. 121), Ulrich Schmid and Josef Widder (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 23:1ś23:21. https://doi.org/10.4230/LIPIcs.DISC.2018.23

Yotam M. Y. Feldman, Artem Khyzha, Constantin Enea, Adam Morrison, Aleksandar Nanevski, Noam Rinetzky, and Sharon
Shoham. 2020. Proving highly-concurrent traversals correct. Proc. ACM Program. Lang. 4, OOPSLA (2020), 128:1ś128:29.
https://doi.org/10.1145/3428196

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: AMechanised Relational Logic for Fine-Grained Concurrency.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,

2018, Anuj Dawar and Erich Grädel (Eds.). ACM, 442ś451. https://doi.org/10.1145/3209108.3209174
Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2020. ReLoC Reloaded: A Mechanized Relational Logic for Fine-Grained

Concurrency and Logical Atomicity. CoRR abs/2006.13635 (2020). arXiv:2006.13635 https://arxiv.org/abs/2006.13635
Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010. Reasoning about Optimistic Concurrency Using a

Program Logic for History. In CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010, Paris,

France, August 31-September 3, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6269), Paul Gastin and François
Laroussinie (Eds.). Springer, 388ś402. https://doi.org/10.1007/978-3-642-15375-4_27

Philippa Gardner, Azalea Raad, Mark J. Wheelhouse, and Adam Wright. 2014. Abstract Local Reasoning for Concurrent
Libraries: Mind the Gap. In Proceedings of the 30th Conference on the Mathematical Foundations of Programming Semantics,

MFPS 2014, Ithaca, NY, USA, June 12-15, 2014 (Electronic Notes in Theoretical Computer Science, Vol. 308), Bart Jacobs,
Alexandra Silva, and Sam Staton (Eds.). Elsevier, 147ś166. https://doi.org/10.1016/j.entcs.2014.10.009

Google. 2021. LevelDB. https://github.com/google/leveldb. Last accessed on August 12, 2021.
Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. 2013. Verifying Concurrent Memory Reclamation Algorithms

with Grace. In Programming Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as

Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.

Proceedings (Lecture Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer,
249ś269. https://doi.org/10.1007/978-3-642-37036-6_15

Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. 2013. Aspect-Oriented Linearizability Proofs. In CONCUR 2013 -

Concurrency Theory - 24th International Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings

(Lecture Notes in Computer Science, Vol. 8052), Pedro R. D’Argenio and Hernán C. Melgratti (Eds.). Springer, 242ś256.
https://doi.org/10.1007/978-3-642-40184-8_18

Maurice Herlihy and J. D. Tygar. 1987. How to Make Replicated Data Secure. In Advances in Cryptology - CRYPTO ’87,

A Conference on the Theory and Applications of Cryptographic Techniques, Santa Barbara, California, USA, August 16-

20, 1987, Proceedings (Lecture Notes in Computer Science, Vol. 293), Carl Pomerance (Ed.). Springer, 379ś391. https:

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.

https://doi.org/10.1145/3183713.3196927
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1145/3178487.3178503
https://doi.org/10.1007/978-3-642-39799-8_11
https://doi.org/10.1007/978-3-642-12002-2_25
https://www.microsoft.com/en-us/research/publication/heap-monotonic-typestate/
https://doi.org/10.4230/LIPIcs.DISC.2018.23
https://doi.org/10.1145/3428196
https://doi.org/10.1145/3209108.3209174
https://arxiv.org/abs/2006.13635
https://arxiv.org/abs/2006.13635
https://doi.org/10.1007/978-3-642-15375-4_27
https://doi.org/10.1016/j.entcs.2014.10.009
https://github.com/google/leveldb
https://doi.org/10.1007/978-3-642-37036-6_15
https://doi.org/10.1007/978-3-642-40184-8_18
https://doi.org/10.1007/3-540-48184-2_33
https://doi.org/10.1007/3-540-48184-2_33


113:30 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

//doi.org/10.1007/3-540-48184-2_33
Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM Trans.

Program. Lang. Syst. 12, 3 (1990), 463ś492. https://doi.org/10.1145/78969.78972
Bart Jacobs and Frank Piessens. 2011. Expressive modular fine-grained concurrency specification. In Proceedings of the 38th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,

2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 271ś282. https://doi.org/10.1145/1926385.1926417
Jonas Braband Jensen and Lars Birkedal. 2012. Fictional Separation Logic. In Programming Languages and Systems - 21st

European Symposium on Programming, ESOP 2012, Held as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7211),
Helmut Seidl (Ed.). Springer, 377ś396. https://doi.org/10.1007/978-3-642-28869-2_19

Jonathan Ellis. 2011. Leveled Compaction in Apache Cassandra. https://www.datastax.com/blog/2011/10/leveled-compaction-
apache-cassandra. Last accessed on August 12, 2021.

Cliff B. Jones. 1983. Specification and Design of (Parallel) Programs. In Information Processing 83, Proceedings of the IFIP 9th

World Computer Congress, Paris, France, September 19-23, 1983, R. E. A. Mason (Ed.). North-Holland/IFIP, 321ś332.
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs.
2020. The future is ours: prophecy variables in separation logic. Proc. ACM Program. Lang. 4, POPL (2020), 45:1ś45:32.
https://doi.org/10.1145/3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015,
Sriram K. Rajamani and David Walker (Eds.). ACM, 637ś650. https://doi.org/10.1145/2676726.2676980

Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan. 2018. Alone together: compositional reasoning
and inference for weak isolation. Proc. ACM Program. Lang. 2, POPL (2018), 27:1ś27:34. https://doi.org/10.1145/3158115

Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew J. Parkinson. 2017. Proving Linearizability Using Partial Orders.
In Programming Languages and Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings

(Lecture Notes in Computer Science, Vol. 10201), Hongseok Yang (Ed.). Springer, 639ś667. https://doi.org/10.1007/978-3-
662-54434-1_24

Bernhard Kragl and Shaz Qadeer. 2018. Layered Concurrent Programs. In Computer Aided Verification - 30th International

Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,

Part I (Lecture Notes in Computer Science, Vol. 10981), Hana Chockler and Georg Weissenbacher (Eds.). Springer, 79ś102.
https://doi.org/10.1007/978-3-319-96145-3_5

Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. 2020. Refinement for Structured Concurrent Programs. In
Computer Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings,

Part I (Lecture Notes in Computer Science, Vol. 12224), Shuvendu K. Lahiri and Chao Wang (Eds.). Springer, 275ś298.
https://doi.org/10.1007/978-3-030-53288-8_14

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,
and Derek Dreyer. 2018. MoSeL: a general, extensible modal framework for interactive proofs in separation logic. Proc.
ACM Program. Lang. 2, ICFP (2018), 77:1ś77:30. https://doi.org/10.1145/3236772

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation logic.
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,

January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 205ś217. https://doi.org/10.1145/3009837.
3009855

Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies. 2021. Automated Verification of Concurrent Search

Structures. Morgan & Claypool Publishers. https://doi.org/10.2200/S01089ED1V01Y202104CSL013
Siddharth Krishna, Nisarg Patel, Dennis E. Shasha, and Thomas Wies. 2020a. Verifying concurrent search structure

templates. In Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and

Implementation, PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 181ś196.
https://doi.org/10.1145/3385412.3386029

Siddharth Krishna, Dennis E. Shasha, and Thomas Wies. 2018. Go with the flow: compositional abstractions for concurrent
data structures. Proc. ACM Program. Lang. 2, POPL (2018), 37:1ś37:31. https://doi.org/10.1145/3158125

Siddharth Krishna, Alexander J. Summers, and Thomas Wies. 2020b. Local Reasoning for Global Graph Properties. In
Programming Languages and Systems - 29th European Symposium on Programming, ESOP 2020, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.

https://doi.org/10.1007/3-540-48184-2_33
https://doi.org/10.1007/3-540-48184-2_33
https://doi.org/10.1007/3-540-48184-2_33
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/1926385.1926417
https://doi.org/10.1007/978-3-642-28869-2_19
https://www.datastax.com/blog/2011/10/leveled-compaction-apache-cassandra
https://www.datastax.com/blog/2011/10/leveled-compaction-apache-cassandra
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3158115
https://doi.org/10.1007/978-3-662-54434-1_24
https://doi.org/10.1007/978-3-662-54434-1_24
https://doi.org/10.1007/978-3-319-96145-3_5
https://doi.org/10.1007/978-3-030-53288-8_14
https://doi.org/10.1145/3236772
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.2200/S01089ED1V01Y202104CSL013
https://doi.org/10.1145/3385412.3386029
https://doi.org/10.1145/3158125


Verifying Concurrent Multicopy Search Structures 113:31

Notes in Computer Science, Vol. 12075), Peter Müller (Ed.). Springer, 308ś335. https://doi.org/10.1007/978-3-030-44914-8_12
Mohsen Lesani, Todd D. Millstein, and Jens Palsberg. 2014. Automatic Atomicity Verification for Clients of Concurrent Data

Structures. In Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of

Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8559), Armin Biere
and Roderick Bloem (Eds.). Springer, 550ś567. https://doi.org/10.1007/978-3-319-08867-9_37

Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree: A B-tree for new hardware platforms.
In 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, Christian S.
Jensen, Christopher M. Jermaine, and Xiaofang Zhou (Eds.). IEEE Computer Society, 302ś313. https://doi.org/10.1109/
ICDE.2013.6544834

Hongjin Liang and Xinyu Feng. 2013. Modular verification of linearizability with non-fixed linearization points. In ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013,
Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 459ś470. https://doi.org/10.1145/2491956.2462189

Chen Luo and Michael J. Carey. 2020. LSM-based storage techniques: a survey. VLDB J. 29, 1 (2020), 393ś418. https:
//doi.org/10.1007/s00778-019-00555-y

Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2010. Verifying linearizability with
hindsight. In Proceedings of the 29th Annual ACM Symposium on Principles of Distributed Computing, PODC 2010, Zurich,

Switzerland, July 25-28, 2010, Andréa W. Richa and Rachid Guerraoui (Eds.). ACM, 85ś94. https://doi.org/10.1145/1835698.
1835722

Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996. The Log-Structured Merge-Tree (LSM-Tree).
Acta Informatica 33, 4 (1996), 351ś385. https://doi.org/10.1007/s002360050048

Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies. 2021. Verifying Concurrent Multicopy Search Structures.
CoRR abs/2109.05631 (2021). arXiv:2109.05631 http://arxiv.org/abs/2109.05631

Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2014. GRASShopper - Complete Heap Verification with Mixed
Specifications. In Tools and Algorithms for the Construction and Analysis of Systems - 20th International Conference, TACAS

2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France,

April 5-13, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8413), Erika Ábrahám and Klaus Havelund (Eds.).
Springer, 124ś139. https://doi.org/10.1007/978-3-642-54862-8_9

Azalea Raad, Jules Villard, and Philippa Gardner. 2015. CoLoSL: Concurrent Local Subjective Logic. In Programming

Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes in

Computer Science, Vol. 9032), Jan Vitek (Ed.). Springer, 710ś735. https://doi.org/10.1007/978-3-662-46669-8_29
Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017. PebblesDB: Building Key-Value Stores using

Fragmented Log-Structured Merge Trees. In Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai,

China, October 28-31, 2017. ACM, 497ś514. https://doi.org/10.1145/3132747.3132765
Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil Madhavapeddy, and Peter Sewell. 2015. SibylFS: formal

specification and oracle-based testing for POSIX and real-world file systems. In Proceedings of the 25th Symposium on

Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015, Ethan L. Miller and Steven Hand (Eds.).
ACM, 38ś53. https://doi.org/10.1145/2815400.2815411

Russell Sears and Raghu Ramakrishnan. 2012. bLSM: a general purpose log structured merge tree. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012,
K. Selçuk Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano, and Ariel Fuxman (Eds.). ACM, 217ś228. https:
//doi.org/10.1145/2213836.2213862

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015a. Mechanized verification of fine-grained concurrent
programs. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation,

Portland, OR, USA, June 15-17, 2015, David Grove and Stephen M. Blackburn (Eds.). ACM, 77ś87. https://doi.org/10.1145/
2737924.2737964

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015b. Specifying and Verifying Concurrent Algorithms with
Histories and Subjectivity. In Programming Languages and Systems - 24th European Symposium on Programming, ESOP 2015,

Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.

Proceedings (Lecture Notes in Computer Science, Vol. 9032), Jan Vitek (Ed.). Springer, 333ś358. https://doi.org/10.1007/978-
3-662-46669-8_14

Dennis G. Severance and Guy M. Lohman. 1976. Differential Files: Their Application to the Maintenance of Large Databases.
ACM Trans. Database Syst. 1, 3 (1976), 256ś267. https://doi.org/10.1145/320473.320484

Ali Sezgin, Serdar Tasiran, and Shaz Qadeer. 2010. Tressa: Claiming the Future. In Verified Software: Theories, Tools,

Experiments, Third International Conference, VSTTE 2010, Edinburgh, UK, August 16-19, 2010. Proceedings (Lecture Notes

in Computer Science, Vol. 6217), Gary T. Leavens, Peter W. O’Hearn, and Sriram K. Rajamani (Eds.). Springer, 25ś39.
https://doi.org/10.1007/978-3-642-15057-9_2

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.

https://doi.org/10.1007/978-3-030-44914-8_12
https://doi.org/10.1007/978-3-319-08867-9_37
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1145/1835698.1835722
https://doi.org/10.1145/1835698.1835722
https://doi.org/10.1007/s002360050048
https://arxiv.org/abs/2109.05631
http://arxiv.org/abs/2109.05631
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-662-46669-8_29
https://doi.org/10.1145/3132747.3132765
https://doi.org/10.1145/2815400.2815411
https://doi.org/10.1145/2213836.2213862
https://doi.org/10.1145/2213836.2213862
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1145/320473.320484
https://doi.org/10.1007/978-3-642-15057-9_2


113:32 Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies

Dennis E. Shasha and Nathan Goodman. 1988. Concurrent Search Structure Algorithms. ACM Trans. Database Syst. 13, 1
(1988), 53ś90. https://doi.org/10.1145/42201.42204

Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. 2016. Push-Button Verification of File Systems via
Crash Refinement. In 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah,

GA, USA, November 2-4, 2016, Kimberly Keeton and Timothy Roscoe (Eds.). USENIX Association, 1ś16. https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson

Risi Thonangi and Jun Yang. 2017. On Log-Structured Merge for Solid-State Drives. In 33rd IEEE International Conference

on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017. IEEE Computer Society, 683ś694. https:
//doi.org/10.1109/ICDE.2017.121

Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. 2013. Logical relations for fine-
grained concurrency. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’13, Rome, Italy - January 23 - 25, 2013, Roberto Giacobazzi and Radhia Cousot (Eds.). ACM, 343ś356. https:
//doi.org/10.1145/2429069.2429111

Viktor Vafeiadis. 2008. Modular fine-grained concurrency verification. Ph.D. Dissertation. University of Cambridge, UK.
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221

Viktor Vafeiadis. 2009. Shape-Value Abstraction for Verifying Linearizability. In Verification, Model Checking, and Abstract

Interpretation, 10th International Conference, VMCAI 2009, Savannah, GA, USA, January 18-20, 2009. Proceedings (Lecture

Notes in Computer Science, Vol. 5403), Neil D. Jones and Markus Müller-Olm (Eds.). Springer, 335ś348. https://doi.org/10.
1007/978-3-540-93900-9_27

Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo Petri. 2019. Replication-aware linearizability. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019,

Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 980ś993. https://doi.org/10.
1145/3314221.3314617

Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-trie: An LSM-tree-based Ultra-Large Key-Value Store for Small
Data Items. In 2015 USENIXAnnual Technical Conference, USENIXATC ’15, July 8-10, Santa Clara, CA, USA, Shan Lu and Erik
Riedel (Eds.). USENIX Association, 71ś82. https://www.usenix.org/conference/atc15/technical-session/presentation/wu

Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner. 2020. Data Consistency in Transactional Storage Systems:
A Centralised Semantics. In 34th European Conference on Object-Oriented Programming, ECOOP 2020, November 15-17,

2020, Berlin, Germany (Virtual Conference) (LIPIcs, Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 21:1ś21:31. https://doi.org/10.4230/LIPIcs.ECOOP.2020.21

Zipeng Zhang, Xinyu Feng, Ming Fu, Zhong Shao, and Yong Li. 2012. A Structural Approach to Prophecy Variables. In
Theory and Applications of Models of Computation - 9th Annual Conference, TAMC 2012, Beijing, China, May 16-21, 2012.

Proceedings (Lecture Notes in Computer Science, Vol. 7287), Manindra Agrawal, S. Barry Cooper, and Angsheng Li (Eds.).
Springer, 61ś71. https://doi.org/10.1007/978-3-642-29952-0_12

He Zhu, Gustavo Petri, and Suresh Jagannathan. 2015. Poling: SMT Aided Linearizability Proofs. In Computer Aided

Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II

(Lecture Notes in Computer Science, Vol. 9207), Daniel Kroening and Corina S. Pasareanu (Eds.). Springer, 3ś19. https:
//doi.org/10.1007/978-3-319-21668-3_1

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 113. Publication date: October 2021.

https://doi.org/10.1145/42201.42204
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
https://doi.org/10.1109/ICDE.2017.121
https://doi.org/10.1109/ICDE.2017.121
https://doi.org/10.1145/2429069.2429111
https://doi.org/10.1145/2429069.2429111
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221
https://doi.org/10.1007/978-3-540-93900-9_27
https://doi.org/10.1007/978-3-540-93900-9_27
https://doi.org/10.1145/3314221.3314617
https://doi.org/10.1145/3314221.3314617
https://www.usenix.org/conference/atc15/technical-session/presentation/wu
https://doi.org/10.4230/LIPIcs.ECOOP.2020.21
https://doi.org/10.1007/978-3-642-29952-0_12
https://doi.org/10.1007/978-3-319-21668-3_1
https://doi.org/10.1007/978-3-319-21668-3_1

	Abstract
	1 Introduction
	2 Motivation and Overview
	2.1 A Library Analogy to Multicopy Search Structures
	2.2 Log-Structured Merge Trees

	3 Multicopy Search Structure Framework
	3.1 Multicopy Search Structures
	3.2 Client-Level Specification
	3.3 Template-Level Specification: Search Recency

	4 Relating the Client-Level and Template-Level Specifications
	4.1 Challenges and Proof Outline
	4.2 Keeping Track of the Upsert History
	4.3 The Helping Protocol

	5 The LSM DAG Template
	6 Verifying the Template
	6.1 High-Level Proof Outline
	6.2 Iris Invariant

	7 Multicopy Maintenance Operations
	7.1 Maintenance template
	7.2 High-level proof of compact

	8 Proof Mechanization
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

