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ABSTRACT

We propose a new class of spatio-temporal cluster detection meth-
ods designed for the rapid detection of emerging space-time clus-
ters. We focus on the motivating application of prospective dis-
ease surveillance: detecting space-time clusters of disease cases
resulting from an emerging disease outbreak. Automatic, real-time
detection of outbreaks can enable rapid epidemiological response,
potentially reducing rates of morbidity and mortality. Building on
the prior work on spatial and space-time scan statistics, our meth-
ods combine time series analysis (to determine how many cases
we expect to observe for a given spatial region in a given time in-
terval) with new “emerging cluster” space-time scan statistics (to
decide whether an observed increase in cases in a region is signif-
icant), enabling fast and accurate detection of emerging outbreaks.
We evaluate these methods on two types of simulated outbreaks:
aerosol release of inhalational anthrax (e.g. from a bioterrorist at-
tack) and FLOO (“Fictional Linear Onset Outbreak™), injected into
actual baseline data (Emergency Department records and over-the-
counter drug sales data from Allegheny County). We demonstrate
that our methods are successful in rapidly detecting both outbreak
types while keeping the number of false positives low, and show
that our new “emerging cluster” scan statistics consistently outper-
form the standard “persistent cluster” scan statistics approach.
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1. INTRODUCTION

In many data mining applications, we are faced with the task of
detecting clusters: regions of space where some quantity is signifi-
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cantly higher than expected. For example, our goal may be to detect
clusters of disease cases, which may be indicative of a naturally oc-
curring disease epidemic (e.g. influenza), a bioterrorist attack (e.g.
anthrax release), or an environmental hazard (e.g. radiation leak).
In medical imaging, we may attempt to detect tumors or other haz-
ardous growths; in neuroscience, we may be interested in detect-
ing spatial patterns of brain activity (measured by fMRI activation)
that correspond to various cognitive tasks. [11] discusses many
other applications of cluster detection, including mining astronom-
ical data (identifying clusters of stars or galaxies) and military re-
connaissance (monitoring strength and activity of enemy forces).
In all of these applications, we have two main goals: to pinpoint
the location, shape, and size of each potential cluster, and to de-
termine (by statistical significance testing) whether each potential
cluster is likely to be a “true” cluster or simply a chance occurrence.

While most of the prior work on cluster detection is purely spa-
tial in nature (e.g. [1, 10, 6]), it is clear from the above list of appli-
cations that fime is an essential component of most cluster detection
problems. We are often interested in clusters which are emerging
in time: for example, a growing tumor, an outbreak of disease, or
an increase in troop activity. In some applications, the time dimen-
sion can be dealt with easily, either by applying some purely spatial
cluster detection method at each time step, or by treating time as an-
other spatial dimension and thus applying spatial cluster detection
in a d + 1 dimensional space (d spatial dimensions, plus time). The
disadvantage of the first approach is that by only examining one
day of data at a time, we may fail to detect more slowly emerging
clusters. The disadvantage of the second approach is that we may
detect less relevant clusters: those clusters that have persisted for a
long time, rather than those that are newly emerging.

To improve on these methods, it is helpful to consider the guid-
ing question, “How is time, as a dimension, different from space?”
We argue that there are three important distinctions which require
us to treat spatio-temporal cluster detection differently from spa-
tial cluster detection. First, time (unlike space) has an important
point of reference: the present. We often care only about those
space-time clusters that are still “active” at the present time, and
in these cases we should use a prospective method (searching for
clusters which end at the present time) rather than a retrospective
method (searching for clusters which end at or before the present
time). Second, in the spatial cluster detection framework, we typi-
cally assume that we have some baseline denominator data such as
a census population (for epidemiology), and that the expected count
(e.g. number of disease cases) is proportional to this baseline. In
the spatio-temporal framework, we are generally not provided with
explicit denominator data; instead, we infer the expected values
of the most recent days’ counts from the time series of past counts.
Finally, and most interestingly, time has an explicit direction or “ar-



row,” proceeding from the past, through the present, to the future.
We are generally interested in clusters which emerge over time: for
example, a disease epidemic may start with only a few reported
cases, then increase in magnitude either gradually or rapidly. One
major focus of this paper is developing statistical methods which
are more appropriate for detecting such emerging clusters.

We focus here on the motivating application of prospective dis-
ease surveillance: detecting space-time clusters of disease cases
resulting from an emerging disease outbreak. In this application,
we perform surveillance on a daily (or even hourly) basis, with
the goal of finding emerging epidemics as quickly as possible. By
detecting epidemics rapidly and automatically, we hope to allow
more rapid epidemiological response (e.g. distribution of vaccines,
public health warnings), potentially reducing the rates of mortal-
ity and morbidity from an outbreak. In this application, we are
given the number of disease cases of some given type (e.g. respi-
ratory) in each spatial location (e.g. zip code) on each day. More
precisely, since we cannot measure the actual number of cases, we
instead rely on related observable quantities such as the number
of respiratory Emergency Department visits, or sales of over-the-
counter cough and cold medication, in a given spatial location on
a given day. We must then detect those increases that are indica-
tive of emerging outbreaks, as close to the start of the outbreak as
possible, while keeping the number of false positives low.

2. THE MODEL

In the general case, we have data collected at a set of discrete
time steps # = 1...T (where time 7T represents the present) at a set
of discrete spatial locations s;. For each s; at each time step 7, we
are given a count ¢!, and our goal is to find if there is any region
S (set of locations s;) and time interval (f = t,,j, . . . typax) for which
the counts are significantly higher than expected. Thus we must
first decide on the set of spatial regions S, and the time intervals
tmin - - -tmax, that we are interested in searching. In the scan statis-
tics framework discussed below, we typically search over the set of
all spatial regions of some given shape, and variable size. For sim-
plicity, we assume here (as in [18]) that the spatial locations s; are
aggregated to a uniform, two-dimensional, N X N grid G, and we
search over the set of all axis-aligned rectangular regions S C G.!
This allows us to detect both compact and elongated clusters, which
is important since disease clusters may be elongated due to disper-
sal of pathogens by wind, water, or other factors. For prospective
surveillance, as is our focus here, we care only about those clusters
which are still present at the current time 7', and thus we search over
time intervals with . = T'; if we were performing a retrospective
analysis, on the other hand, we would search over all #,,,, < T. We
must also choose the size of the “temporal window” W: we assume
that we are only interested in detecting clusters that have emerged
within the last W days (and are still present), and thus we search
over time intervals t,;,, ... T forall T — W < t,;, <T.

In the disease detection framework, we assume that the count
(number of cases) in each spatial region s; on each day ¢ is Poisson
distributed, ¢} ~ Po(Al) with some unknown parameter A.. Thus
our method consists of two parts: time series analysis for calcu-
lating the expected number of cases (or “baseline”) bt = E|[c!] for
each spatial region on each day, and space-time scan statistics for
determining whether the actual numbers of cases ¢} in some region
S are significantly higher than expected (given b!) in the last W
days. The choice of temporal window size W impacts both parts
of our method: we calculate the baselines b’ for the “current” days

Non-axis-aligned rectangles can be detected by examining multi-
ple rotations of the data, as in [18].

T —W <t <T by time series analysis, based on the “past” days
1 <t < T —W, and then determine whether there are any emerging
space-time clusters in the last W days. In addition to the tempo-
ral window size, three other considerations may impact the perfor-
mance of our method: the type of space-time scan statistic used,
the level on which the data is aggregated, and the method of time
series analysis. We discuss these considerations in detail below.

3. SPACE-TIME SCAN STATISTICS

One of the most important statistical tools for cluster detection is
the spatial scan statistic [15, 10, 11]. This method searches over a
given set of spatial regions, finding those regions which maximize
a likelihood ratio statistic and thus are most likely to be generated
under the alternative hypothesis of clustering rather than under the
null hypothesis of no clustering. Randomization testing is used
to compute the p-value of each detected region, correctly adjust-
ing for multiple hypothesis testing, and thus we can both identify
potential clusters and determine whether they are significant. The
standard spatial scan algorithm [11] has two primary drawbacks: it
is extremely computationally intensive, making it infeasible to use
for massive real-world datasets, and only compact (circular) clus-
ters are detected. In prior work, we have addressed both of these
problems by proposing the “fast spatial scan” algorithm [18, 19],
which can rapidly search for elongated clusters (hyper-rectangles)
in large multi-dimensional datasets. As noted above, we choose
here to search over rectangular regions, using a space-time variant
of the fast spatial scan as necessary to speed up our search.

In its original formulation [15, 10], the spatial scan statistic does
not take time into account. Instead, it assumes a single count ¢; (e.g.
number of disease cases) for each spatial location s;, as well as a
given baseline b; (e.g. at-risk population). Then the goal of the scan
statistic is to find regions where the rate (or expected ratio of count

to baseline) is higher inside the region than outside. The statistic

used for this is the likelihood ratio D(S) = %

the null hypothesis Hy represents no clustering, and each alterna-
tive hypothesis Hj (S) represents clustering in some region S. More
precisely, under Hy we assume a uniform disease rate ¢,;;, such that
¢i ~ Po(qgyb;) for all locations s;. Under H|(S), we assume that
¢i ~Po(qi,b;) for all locations s; € S, and ¢; ~ Po(geb;) for all lo-
cations s; € G — S, for some constants ¢;, > ¢o,:. From this, we can
derive an expression for D(S) using the maximum likelihood esti-
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, where

if % > %, and D(S) = 1 otherwise, where “in,” “out,” and “all”
are the sums of counts and baselines for S, G — S, and G respec-
tively. Then the most significant spatial region S is the one with the
highest score D(S); we denote this region by S*, and its score by
D*. Once we have found this region by searching over the space
of possible regions S, we must still determine its statistical signif-
icance, i.e. whether S* is a significant spatial cluster. To adjust
correctly for multiple hypothesis testing, we find the region’s p-
value by randomization: we randomly create a large number R of
replica grids under the null hypothesis ¢; ~ Po(q.;b;), and find the
highest scoring region and its score for each replica grid. Then the
p-value can be computed as &lg“—jjl, where Rpeq is the number of
replica grids with D* higher than the original grid. If this p-value
is less than some constant o (here o = .05), we can conclude that
the discovered region is unlikely to have occurred by chance, and is
thus a significant spatial cluster; we can then search for secondary
clusters. Otherwise, no significant clusters exist.

The formulation of the scan statistic that we use here is some-
what different, because we are interested not in detecting regions



with higher rates inside than outside, but regions with higher counts
than expected. Let us assume that baselines b; represent the ex-
pected values of each count ¢;; we discuss how to obtain these
baselines below. Then we wish to test the null hypothesis Hy: all
counts ¢; are generated by ¢; ~ Po(b;), against the set of alterna-
tive hypotheses Hj (S): for spatial locations s; € S, all counts ¢; are
generated by c¢; ~ Po(gb;), for some constant ¢ > 1, and for all
other spatial locations s; € G — S, all counts ¢; ~ Po(b;). We then
compute the likelihood ratio:

D(S) = Pr(Data|H,(S)) _ maxg> [Tes Pr(c; ~ Po(gb;))
Pr(Data | Hyp) [1s,esPr(ci ~ Po(b;))
maxg> Hsl_es(qb,-)cfe_"b' max > 1 qc""e*qBi"
T ket ek

Using the maximum likelihood estimate g = max (1, %), we ob-
1 — (G Cn Bin—Cin 3 ., . — 1
tain D(S) = { e ,if Cjp > Bijy, and D(S) = 1 otherwise.
As before, we search over all spatial regions S to find the highest
scoring region S*. Then the statistical significance (p-value) of §*
can be found by randomization testing as before, where the replica

grids are generated under the null hypothesis ¢; ~ Po(b;).

3.1 The 1-day space-time scan statistic

To extend this spatial scan statistic to the prospective space-time
case, the simplest method is to use a 1-day temporal window (W =
1), searching for clusters on only the present day t = 7. Thus we
wish to know whether there is any spatial region S with higher than
expected counts on day 7', given the actual counts ciT and expected
counts blT for each spatial location s;. To do so, we compare the
null hypothesis Hy: ¢! ~ Po(b!) for all s;, to the set of alternative
hypotheses H; (S): ¢! ~ Po(gb!) for all 5; € S, for some constant
g > 1,and ¢! ~ Po(b]) elsewhere. Thus the statistic takes the same
form as the purely spatial scan statistic, and we obtain: D(S) =

C
(%) eB=Cif C > B, and D(S) = 1 otherwise, where C = ¥ csc!

and B =Y s bl-T denote the total count and total baseline of region
S on time step 7. Again, we search over all spatial regions S to
find the highest scoring region S* and its score D*. To compute
the p-value, we perform randomization testing as before, where
each replica grid has counts clT generated from Po(blr) and all other
counts ¢} (t # T) copied from the original grid.

3.2 Multi-day space-time scan statistics

While the 1-day prospective space-time scan statistic is very use-
ful for detecting rapidly growing outbreaks, it may have difficulty
detecting more slowly growing outbreaks, as noted above. For
the multi-day prospective space-time scan statistics, we have some
temporal window W > 1, and must determine whether any out-
breaks have emerged within the most recent W days (and are still
present). In other words, we wish to find whether there is any spa-
tial region S with higher than expected counts on days ¢, ... 7T,
for some T — W < t;, < T. To do so, we first compute the ex-
pected counts b and the actual counts ¢} for each spatial location
s; on each day T —W <t < T; we discuss how the baselines b}
are calculated in the following section. We then search over all
spatial regions S C G, and all allowable values of #,,;,, finding the
highest value of the spatio-temporal score function D(S,t,). The
calculation of this function depends on whether we are searching
for “persistent” or “emerging” clusters, as we discuss below. In
any case, once we have found the highest scoring region (S, )
and its score D*, we can compute the p-value of this region by per-
forming randomization testing as before, where each replica grid

has counts ¢! generated from Po(b!) for T —W < < T, and all
other counts ¢ copied from the original grid.

Now we must consider how to compute the function D(S,tin)-
The standard method for computing the space-time scan statistic,
proposed for the retrospective case by [13] and for the prospective
case by [12], builds on the Kulldorff spatial scan statistic [10] given
above. As in the purely spatial scan, this method assumes that base-
lines b} are given in advance (e.g. population in each location for
each time interval), and that counts ¢! are generated from Poisson
distributions with means proportional to b}. Then the goal is to find
space-time clusters (S, #,;,) where the rate (ratio of count to base-
line) is significantly higher inside the region than outside. As in the
purely spatial case, this can be adapted to our framework, in which
the goal is to find space-time clusters where the observed counts
¢} are higher than the expected counts b%. For the “persistent clus-
ter” case, we maintain the other major assumption of the standard
model: that the multiplicative increase in counts (“relative risk™) in
an affected region remains constant through the temporal duration
of the cluster. For the “emerging cluster” case, we instead make the
assumption that the relative risk increases monotonically through
the cluster’s duration. It is also possible to assume a parametric
form for the increase in relative risk over time (e.g. exponential or
linear increase), and we consider such statistics in [17].

3.3 Persistent clusters

The test for persistent clusters assumes that the relative risk of a
cluster remains constant over time; as a result, the score function is
very similar to the 1-day statistic, with sums taken over the entire
duration of a cluster rather than only a single day.

As noted above, we must search over all spatial regions S and
all values of #,,;, (Where T —W <t < T), finding the maximum
score D(S, ). For a given region S and value f,,;,, we compare
the null hypothesis Hy: ¢} ~ Po(b!) for all spatial locations s; and
all T —W <t <T, to the alternative hypothesis H1 (S, t,nin): ¢} ~
Po(gb!) for s; € S and 1 =ty ... T, for some constant g > 1, and
¢t ~Po(bt) elsewhere. Thus we can compute the likelihood ratio:

DS, i) = maxy>1 [Pr(c; ~ Po(gbt)) _maxg>g H(qbﬁ)cﬁe*qbé
T qIPe(c ~Po(BY)  TI(B)ce Y

where the products are taken over s; € S and #,,;, <t < T. This
. . Co—aB
simplifies to max,>; ©5—, where C and B are the total count
Yses Ly, <i<r ¢; and total baseline Y cs ¥, . <,<7 b} respectively.

Finally, using the maximum likelihood estimate g = max <17 %),

. C C C o .
we obtain D(S,tin) = (§> eB=Cif C > B, and D = 1 otherwise.

3.4 Emerging clusters

While the space-time scan statistic for persistent clusters assumes
that relative risk of a cluster remains constant through its duration,
this is typically not true in disease surveillance. When a disease
outbreak occurs, the disease rate will typically rise continually over
the duration of the outbreak until the outbreak reaches its peak, at
which point it will level off or decrease. Our main goal in the epi-
demiological domain is to detect emerging outbreaks (i.e. those
that have not yet reached their peak), so we focus on finding clus-
ters where the relative risk is monotonically increasing over the
duration of the cluster. Again, we must search over all spatial re-
gions S and all values of #,,;, (Where T —W < t,,;, < T), finding the
maximum score D(S,#,i,). For a given region S and value t,;,, we
compare the null hypothesis Ho: ¢} ~ Po(b!) for all spatial locations
siand all T —W <t < T, to the alternative hypothesis H1 (S, in):
¢t ~ Po(g;bt) for s; € S and t = typy... T, for some monotoni-



¢t ~Po(bt) elsewhere. Thus we can compute the likelihood ratio:

cally increasing sequence of constants 1 < g;,, < ... < g7, and

maxj<g, <. <q [1Pr(ci ~Po(q:b}))
[1Pr(c ~ Po(b}))

D(S:[min) -

£ t
maxi<g,  <..<g [1(g:b})7e 4"
- 1 (CART
where the products are taken over s; € S and #,;, <t < T. This

Ct p—arB
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simplifies to - , where C; and B; are the total
count ¥ s ¢} and the total baseline Y b} on day ¢, and B is the
total baseline i s Y, = <;<7 b} as above.

Now, we must maximize the numerator subject to the constraints
on the g;. To do so, let E = E; ... E, be a partitioning of t,;,...T
into sets of consecutive integers, such that for all #,t, € E;, q;, =
gn, = Qj,and forall Ej, and E,, where ji < j2, Qj, < Qj,. In other
words, the E; define a partitioning of 7, ...T into time periods
where the relative risk is constant. Note that the g; are uniquely
defined by the partitions E; and the rates Q ;. We can then write:

Ci — 0B
maxg,..g, maxg, ..o, [1E; ()" e 2iBi
B

e

where Bj =¥ csYsep,; b; and Cj = Xy csYick, ¢i-
In [17], we prove that this expression is maximized when Q; =

D(S, tmin) =

% for all j. This allows us to simplify the expression to:

B—C G <
D(S, tmin) =€ ET?EH 5

£,

Then the question is how to choose the optimal partitioning £ =
{E;}, and in [17] we present the following algorithm. This method
uses a stack data structure, where each element of the stack repre-
sents a partition E; by a 5-tuple (fsart,fend,Cj,Bj,Q;). The algo-

rithm starts by pushing (T, T,Cr, BT, max (1, g—;) ) onto the stack.

Then for each ¢, from T — 1 down to #,,;,, we do the following:
temp = (t, t, C_t, B_t, max(l, C_t / B_t))
while (temp.Q >= stack.top.Q)
temp2 = stack.pop
temp = (temp.start, temp2.end, temp.C+temp2.C, temp.B +
temp2.B, max(l, (temp.C+temp2.C) / (temp.B+temp2.B)))
stack.push (temp)

As we prove in [17], this “step method” produces the unique
optimal partitioning E and rates Q, and thus the values of g, that
maximize the score subject to the monotonicity constraints above.

4. INFERRING BASELINE VALUES

In order to infer the baselines b} for the “current” days T — W <
t < T, we must consider two distinct questions: on what level to
aggregate the data for time series analysis, and what method of
time series analysis to use. We consider three different levels of
spatial aggregation, which we term “building-aggregated time se-
ries” (BATS), “cell-aggregated time series” (CATS), and “region-
aggregated time series” (RATS) respectively. For the BATS method,
we consider the time series for each spatial location independently;
for example, we may have a separate time series for each store
or hospital, or counts may be already aggregated at some level
(e.g. zip code). For each of these locations s;, we independently
compute the baselines b (T —W <t < T) from the past counts ¢}
(1 <t < T —W), using one of the time series analysis methods be-
low. Then whenever we calculate D(S,#,,,) for a region, we use

the baselines b} and counts ¢} for each location in the region. The
CATS method first computes the aggregate count ¢} for each cell of
the grid s; € G on each day ¢, by summing counts of all spatial loca-
tions in that cell. Then the baselines b/ are computed independently
for each grid cell s; € G, and whenever we calculate D(S, ;) for a
region, it is the cell counts and baselines that we use to compute the
score. Finally, the RATS method, whenever it searches a region S,
aggregates the time series of counts C;(S) “on the fly” by summing
counts of all spatial locations in that region, computes baselines
B:(S) for the “current” days T — W < ¢ < T, and applies the score
function D(S, ) to the resulting counts and baselines.

Randomization testing must also be performed differently for
each of the three levels of aggregation. To generate a replica grid
for BATS, we independently draw a count for each spatial location
s; for each current day ¢, using its baseline b’. To generate a replica
grid for CATS, we independently draw a count for each cell of the
grid s; € G for each current day ¢, using the cell baseline b%. Fi-
nally, randomization testing for RATS is somewhat more difficult
than for the other methods, since we must produce cell counts from
a correlated distribution. Various sampling methods can be used to
do this, but this makes randomization extremely computationally
expensive; see [17] for more details.

4.1 Time series analysis methods

For a given location, cell, or region s;, our goal is to estimate the
expected values of the “current” counts, b = E[c}], T—W <t <T,
from the time series of “past” counts ci», 1<t <T-—W. Avariety of
methods are possible, depending on how we wish to deal with three
questions: day of week effects, seasonal trends, and bias. Many
epidemiological quantities (for example, OTC drug sales) exhibit
strong day of week and seasonal trends. Here we consider three
methods of dealing with day of week effects: we can ignore them,
stratify by day of week (i.e. perform a separate time series calcula-
tion for each day of the week), or adjust for day of week. To adjust
for day of week, we assume that the observed count on a given day
is the product of an “actual” count and a constant dependent on the
day of week. Thus we compute the proportion of counts 3; on each
day of the week (i =1...7). Then we transform each past day’s ob-
served count by dividing by 7, do a single time series calculation
on the transformed past counts to predict the transformed current
counts, and finally multiply by 7f; to obtain the predicted count for
each current day. By adjusting instead of stratifying, more data is
used to predict each day’s count (potentially reducing the variance
of our estimates), but the success of this approach depends on the
assumption of a constant and multiplicative day-of-week effect.

We also consider three methods of adjusting for seasonal trends:
to use only the most recent counts (e.g. the past four weeks) for
prediction, to use all counts but weight the most recent counts more
(as is done in our exponentially weighted moving average and ex-
ponentially weighted linear regression methods), and to use regres-
sion techniques to extrapolate seasonal trends to the current data.
Finally, we consider both methods which attempt to give an unbi-
ased estimate of the current count (e.g. mean of past counts), and
methods which attempt to give a positively biased estimate of the
current count (e.g. maximum of past counts). As we show, the
unbiased methods typically have better detection power, but the bi-
ased methods have the advantage of reducing the number of false
positives to a more manageable level (see Section 7.5).

Here we consider a total of 10 time series analysis methods, in-
cluding “all_max” (b = maximum count of last 28 days), “all_mean”
(b} = mean count of last 28 days), “strat_max” (b} = maximum
count of same day of week, 1-4 weeks ago), “strat_mean” (b} =
mean count of same day of week, 1-4 weeks ago), two exponen-



tially weighted moving average methods (“strat EWMA” stratified
by day of week, “adj_.EWMA” adjusted for day of week), and two
exponentially weighted linear regression methods (“strat EWLR”
stratified by day of week, “adj_ EWLR” adjusted for day of week).
Our final two methods are inspired by the recent work of Kulldorff
et al. [14] on the “space-time permutation scan statistic,” so we call
them “strat_Kull” (stratified by day of week) and “all_Kull” (ig-
noring day of week effects). In this framework, the baseline b’ is
X C’;‘ Y C?
YoXic
pendent, so the expected fraction of all cases occurring in location
s; on day ¢ can be computed as the product of the fraction of all
cases occurring in location s; and the fraction of all cases occurring
on day ¢t. The problem with this method is that the current day’s
counts are used for prediction of the current day’s expected counts.
As a result, if there is a cluster on the current day, the baselines
for the current day will also be higher, reducing our power to detect
the cluster. Nevertheless, the strat_Kull and all_Kull methods do ex-
tremely well when detecting localized clusters (where the increase
in counts is noticeable for a small region, but the region is small
enough that the total count for the day is essentially unaffected).

We also note an interesting interaction between the level of ag-
gregation and the method of time series analysis. If the expected
counts b§ (T —W <t <T)are calculated as a linear combination of
past counts ¢} (1 <t < T —W), and the weights for each past day
t are constant from location to location, then we will calculate the
same baselines (and thus, the same scores) regardless of whether
we aggregate on the building, cell, or region level. This turns
our to be true for most of the methods we investigate: all_mean,
strat_mean, strat EWMA, strat_ EWLR, all_Kull, and strat_Kull. On
the other hand, if we choose different weights for each location (as
is the case when we adjust for day of week, as in adj EWMA and
adj_.EWLR), we will calculate different baselines (and thus, dif-
ferent scores) depending on our level of aggregation. Finally, we
have very different results for the “max” methods (strat_-max and
all_max) depending on the level of aggregation, because the maxi-
mum is not a linear operator. Since the sum of the maximum counts
of each location (¥;,csmax; c}) is higher than the maximum of the
sum (max; }.,cs ch), we always expect BATS to predict the highest
baselines, and RATS to predict the lowest baselines. For the re-
sults given below, we only distinguish between BATS, CATS, and
RATS aggregation for those methods where the distinction is rele-
vant (all_max, strat_max, adj EWMA, and adj_ EWLR).

computed as

i.e. space and time are assumed to be inde-

S. RELATED WORK

In general, spatio-temporal methods can be divided into three
classes: spatial modeling techniques such as “disease mapping,”
where observed values are spatially smoothed to infer the distribu-
tion of values in space-time [4, 3]; tests for a general tendency of
the data to cluster [9, 16]; and tests which attempt to infer the loca-
tion of clusters [13, 12, 14]. We focus on the latter class of meth-
ods, since these are the only methods which allow us to both an-
swer whether any significant clusters exist, and if so, identify these
clusters. Three spatio-temporal cluster detection approaches have
been proposed by Kulldorff et al.: the retrospective and prospective
space-time scan statistics [13, 12], and the space-time permutation
scan statistic [14]. The first two approaches attempt to detect per-
sistent clusters, assuming that baselines are given based on census
population estimates. The retrospective statistic searches over all
space-time intervals, while the prospective statistic searches over
those intervals ending at the present time. As noted above, these
formulations make sense for the case of explicitly given denomina-
tor data, and counts proportional to these baselines (e.g. we expect

a population of 10000 to have twice as many cases as a population
of 5000, but do not know how many cases we expect to see). They
are not appropriate for the case where we infer the expected values
of counts from the time series of past counts (e.g. based on past
data, we expect to see 40 cases in the first population and 15 cases
in the second). Even if accurate denominator data is provided, the
retrospective and prospective statistics may pick up purely spatial
clusters resulting from spatial variation in the underlying rate (e.g.
different parts of the country have different disease rates), or purely
temporal clusters based on temporal fluctuations in rate (seasonal
effects or long-term trends), and thus the detected clusters tend to
be less useful for prospective detection of emerging outbreaks.

The recently proposed ““space-time permutation scan statistic” [14]
attempts to remedy these problems; like the present work, it allows
baseline data to be inferred from the time series of past counts. As
noted above, baselines are calculated by assuming that cases are in-
dependently distributed in space and time, and a variant of the test
for persistent clusters is used (searching for regions with higher
rate inside than outside). Then randomization testing is done by
permuting the dates and locations of cases. This method focuses
on detecting space-time interaction, and explicitly avoids detect-
ing purely spatial or purely temporal clusters. The disadvantages
of this are twofold. First, it loses power to detect spatially large
clusters, because (as noted above) the current day’s counts are used
to estimate what the current day’s counts should be. In the most
extreme case, a spatially uniform multiplicative increase in disease
rate over the entire search area would be completely ignored by
this method, and thus it is unsafe to use for surveillance except in
combination with other methods. The second disadvantage is that
if the count decreases in one spatial region and remains constant
elsewhere, this is detected as a spatio-temporal cluster. This results
in false positives in cases where stores in one area are closed and
stores in a different area remain open: the open stores are flagged
as a cluster even if their counts have actually decreased.

Several other spatio-temporal cluster detection methods have also
been proposed. Iyengar [8] searches over “truncated rectangular
pyramid” shapes in space-time, thus allowing detection of clus-
ters which move and grow or shrink over time; the disadvantage
is that this much larger set of possible space-time regions can only
be searched approximately. Assuncao et al [2] assume a spatio-
temporal Poisson point process: the exact location of each point in
time and space is given, rather than aggregating points to discrete
locations and intervals. A test statistic similar to the space-time
permutation scan statistic is derived, assuming a Poisson intensity
function that is separable in space and time.

6. COMPUTATIONAL CONSIDERATIONS

We begin by making two important observations. First, for any
of the time series analysis methods given above, the baselines b’
(T —W <t <T) can be inferred from the past counts cf» (1<
t <T —W)in O(T). Second, we can compute the score function
D(S,tin), for a given spatial region S and forall T — W < t,,;, < T,
in total time O(W), regardless of whether the persistent or emerg-
ing scan statistic is used. This is obvious for the persistent statistic
since we can simply proceed backward in time, adding the cumula-
tive count C; and cumulative baseline B; for each day ¢, and recom-
puting the score. (We can accumulate these counts and baselines in
O(W) by using the “cumulative counts™ trick discussed in [18] for
each of the W current days.) The O(W) complexity is less obvious
for the emerging statistic, since adding any new day ¢ may result
in up to O(W) pops from the stack. But each day is pushed onto
the stack at most once, and thus the total number of pops for the W
days is at most W, giving total complexity O(W), not O(W?).



For the BATS method, our computation may be divided into
three steps: first, we compute baselines for each spatial location,
requiring total time O(N;T'), where Ny is the number of locations.
Second, we aggregate “current” store baselines and counts to the
grid, requiring time O(N?W) where N is the grid size. Third, we
search over all spatio-temporal regions (S,?,,i,): for each such re-
gion, we must compute the aggregate counts and baselines, and
apply the score function D. As noted above, we can do this in
O(W) per region, but since a naive search requires us to exam-
ine all O(N*) gridded rectangular regions, the total search time is
O(N*W), bringing the total complexity to O(N,T + N*W). For
CATS, we first aggregate all store baselines and counts to the grid,
requiring time O(N,T + N?T). Then we calculate baselines for
each of the N2 grid cells, requiring total time O(NZT). Finally, we
search over all spatio-temporal regions; as in BATS, this requires
time O(N*W), bringing the total complexity to O(N,T + N°T +
N4W). For RATS, we first aggregate all store baselines and counts
to the grid (as in CATS), requiring time O(N;T + N>T). Then for
each of the N* regions we search, we must calculate the baselines
for “current” days on the fly, requiring time O(T'), and compute
the score function using the counts and baselines for current days,
requiring time O(W). Thus the total complexity is O(N,T + N*T).

For large grid sizes N, the 0(N4) complexity of searching over
all spatial regions makes a naive search over all such regions com-
putationally infeasible. However, we can apply the fast spatial scan
of [18, 19], allowing us to find the highest scoring region and its p-
value while searching only a small fraction of possible regions. In
the purely spatial case, the fast spatial scan works by using a multi-
resolution, branch-and-bound search to prune sets of regions that
can be proven to have lower scores than the best region score found
so far. We can easily extend this method to the space-time case:
given a spatial region S, we must upper bound the scores D(S’, i)
for all regions S’ C S and T — W < t, < T. The simplest way of
doing so is to compute separate bounds on baselines and counts of
S’ for each time step ¢, using the methods given in [18], then use
these bounds to compute an upper bound on the score. It might
also be possible to achieve tighter bounds (and thus, better prun-
ing) by enforcing consistency constraints across multiple days, i.e.
ensuring that S’ has the same spatial dimensions on each time step.

7. RESULTS

We evaluated our methods on two types of simulated outbreaks,
injected into real Emergency Department and over-the-counter drug
sale data for Allegheny County, PA.? First, we considered aerosol
releases of inhalational anthrax (e.g. from a bioterrorist attack),
produced by the BARD (“Bayesian Aerosol Release Detector”)
simulator of Hogan et al. [7]. The BARD simulator takes in a
“baseline dataset” consisting of one year’s worth of Emergency
Department records, and the quantity of anthrax released. It then
produces multiple simulated attacks, each with a random attack lo-
cation and environmental conditions (e.g. wind direction), and uses
a Bayesian network model to determine the number of spores in-
haled by members of the affected population, the resulting number
and severity of anthrax cases, and the resulting number of respi-
ratory Emergency Department cases on each day of the outbreak
in each affected zip code. Each simulated outbreak can then be
injected into the baseline ED dataset, and our methods’ detection
performance can be evaluated using the testing framework below.

2 All data was aggregated to the zip code level to ensure anonymity,
giving 88 distinct spatial locations (zip code centroids). The ED
data contained an average of 40 respiratory cases/day, while the
OTC data averaged 4000 sales of cough and cold medication/day.

Second, we considered a “Fictional Linear Onset Outbreak” (or
“FLOQ”), with a linear increase in cases over the duration of the
outbreak. A FLOO outbreak is a simple simulated outbreak defined
by a set of zip codes, a duration T, and a value A. The FLOO
simulator then produces an outbreak lasting T'y;,, days, with A res-
piratory cases in each of the zip codes on day ¢, 0 <t < Tgy0/2,
and T;,A/2 cases on day 1, Tip0/2 < t < Tfioo. Thus we have
an outbreak where the number of cases ramps up linearly for some
period of time, then levels off. While this is clearly a less realistic
model than the BARD-simulated anthrax attack, it does have sev-
eral advantages. It allows us to precisely control the parameters
of the outbreak curve (number of cases on each day), allowing us
to test the effects of these parameters on our methods’ detection
performance. Also, it allows us to perform experiments using over-
the-counter drug sale data as well as Emergency Department data,
while the BARD simulator only simulates ED cases.

We now discuss our basic semi-synthetic testing framework, fol-
lowed by a discussion of the performance of our methods on each of
the three main experiments (anthrax outbreaks in ED data, FLOO
outbreaks in ED data, and FLOO outbreaks in OTC data).

7.1 Semi-synthetic testing

Our basic goal in the semi-synthetic testing framework is to eval-
uate detection performance: what proportion of outbreaks a method
can detect, and how long it takes to detect these outbreaks. Clearly
these numbers are dependent on how often the method is allowed
to “sound the alarm,” and thus we have a tradeoff between sensitiv-
ity (i.e. ability to detect true outbreaks) and detection time on the
one hand, and specificity (i.e. frequency of false positives) on the
other. More precisely, our semi-synthetic framework consists of the
following components. First, given one year of baseline data (as-
sumed to contain no outbreaks), we run the space-time scan statis-
tic for each day of the last nine months of the year (the first three
months are used to provide baseline data only; no outbreaks in this
time are considered). We thus obtain the highest scoring region S*,
and its score D* = D(S*), for each of these days. Then for each “at-
tack” that we wish to test, we do the following. First, we inject that
outbreak into the data, incrementing the number of cases as above.
Then for each day of the attack, we compute the highest scoring rel-
evant region S* and its score D*, where a relevant region is defined
as one which contains the centroid of all the cases injected that day.
The reason that we only allow the algorithm to search over relevant
regions is because we do not want to reward it for triggering an
alarm and pinpointing a region which has nothing to do with the
outbreak. We then compute, for each day t = 0...T,prear (Where
Tourbrear 18 the length of the attack), the fraction of baseline days
(excluding the attacked interval) with scores higher than the max-
imum score of all relevant regions on days 0 to #. This is the pro-
portion of false positives we would have to accept in order to have
detected that outbreak by day 7. By repeating this procedure on a
number of outbreaks, we can obtain summary statistics about the
detection performance of each method: we compute its averaged
AMOC curve [5] (average proportion of false positives needed for
detection on day ¢ of an outbreak), and for a fixed level of false
positives (e.g. 1 false positive/month), we compute the proportion
of outbreaks detected and the average number of days to detection.

Note that this basic framework does not perform randomiza-
tion testing, but only compares scores of attack and baseline days.
There are several disadvantages to this method: first, since the base-
lines & for each day are different, the distribution of scores for each
day’s replica grids will be different, and thus the highest scoring re-
gions may not correspond exactly to those with the lowest p-values.
A second disadvantage is that it does not tell us how to perform cal-



ibration: setting threshold p-values in order to obtain a fixed false
positive rate in real data. This is discussed in more detail below.

We tested a total of 150 methods: each combination of the three
aggregation levels (BATS, CATS, RATYS), five space-time scan statis-
tics (1-day, 3-day emerging, 3-day persistent, 7-day emerging, 7-
day persistent) and the ten methods of time series analysis listed
above. We compared these methods against two simple “straw
men”: a purely spatial scan statistic (assuming uniform underlying
at-risk population, and thus setting the baseline of a region propor-
tional to its area), and a purely temporal scan statistic (analyzing the
single time series formed by aggregating together all spatial loca-
tions, using 1-day all_mean). Since both the ED and OTC datasets
were relatively small in spatial extent (containing only records from
Allegheny County), we used a small grid (N = 16, maximum clus-
ter size = 8), and thus it was not necessary to use the fast spatial
scan. For larger datasets, such as nationwide OTC data, a much
larger grid size (e.g. N = 256) is necessary to achieve adequate
spatial resolution, and thus the fast spatial scan will be an impor-
tant component of our nationwide disease surveillance system.

For each outbreak type, we compared the detection performance
of our methods to the two straw men, and also determined which of
our methods was most successful (Table 1). Performance was eval-
uated based on detection rate (proportion of outbreaks detected)
at 1 false positive/month, with ties broken based on average num-
ber of days to detect; we list both the performance of our “best”
spatio-temporal method according to this criterion, as well as a
representative “median” method (i.e. the 75th best method out
of 150). We compare the methods in more detail in Table 2, giv-
ing each method’s average number of days to detection at 1 false
positive/month, assuming that undetected outbreaks were detected
on day T, prea- For each of the five scan statistics, we report
performance assuming its best combination of time series analy-
sis method and aggregation level; for each of the ten time series
analysis methods, we report performance assuming its best scan
statistic. Level of aggregation only made a significant difference
for the all_max and strat_max methods, so we report these results
separately for BATS, CATS, and RATS. For each outbreak, we also
construct AMOC curves of the “best,” “median,” purely temporal,
and purely spatial methods; we present three of these curves (one
for each outbreak type) in Figure 1. We also discuss each outbreak
type in more detail below.

7.2 Anthrax outbreaks, ED data

For the anthrax outbreaks, we began with real baseline data for
respiratory Emergency Department visits in Allegheny County in
2002. We used this data to simulate epidemics using BARD at
two different levels of anthrax release: 0.125 (high) and 0.015625
(low). For each release amount, 60 simulated epidemics were cre-
ated. Separately for the high and low levels, we tested all methods,
forming an average AMOC curve for each over all simulated epi-
demics, and measuring detection rate and average days to detect.

For the high release dataset, all of the methods tested were able
to rapidly detect all 60 outbreaks. For a fixed false positive rate
of 1/month, every method detected all outbreaks (100% detection
rate), with average time to detection ranging from 1.6 to 2.067 days.
The top method (1.6 days to detect) was the 1-day statistic using
all_mean, and half of all methods detected in 1.8 days or fewer.
Since the average delay from release to the first reported case was
1.18 days, these times were close to ideal detection performance.
All methods except all_max outperformed the purely temporal scan
statistic (100% detection rate, 1.9 days to detect), and all methods
outperformed the purely spatial scan statistic (100% detection rate,
2.317 days to detect). For this dataset, there was very little differ-

ence between the best and worst performing methods, and thus it
is hard to draw definitive conclusions. Nevertheless, we observed
that shorter temporal windows performed better (1-day was best, 7-
day was worst), and there were no significant differences between
emerging and persistent scan statistics. Looking at the outbreak
curve for this epidemic, it is clear why this is the case: all out-
breaks have huge spikes in the number of cases starting on day 1
or 2, so there is no advantage to having a longer window; and since
there is essentially no “ramp-up” in the number of cases (just the
large spike, at which point the outbreak is obvious to any method)
there is no advantage to the emerging over persistent statistics. For
time series analysis, the all_mean method performed best, followed
by adj_ EWMA. This result is somewhat surprising, suggesting that
the ED baseline data has very little day of week or seasonal trends.

Results on the low release dataset were similar, except for two
differences resulting from the amount of release. First, 7 of the
60 outbreaks were missed by all of our methods; these outbreaks
consisted of a very small number of cases (less than 5 in total),
and as a result there was essentially no signal to detect. The other
53 outbreaks typically produced a large and obvious spike in the
number of cases (again, with very little ramp-up prior to the spike),
though the delay between release and spike was longer on average
(2.6 days from release to first reported case). Again, the 1-day win-
dow was best, though the 3-day statistics performed almost as well,
and again all_mean and adj EWMA were the top two methods. Our
spatio-temporal methods again outperformed the straw men, requir-
ing 3.679 days to detect (best) and 3.906 days to detect (median)
at 1 false positive/month. This was substantially better than the
purely temporal and purely spatial methods, which required 4.250
days and 5.094 days respectively.

7.3 FLOO outbreaks, ED data

For the FLOO_ED outbreaks, we again began with the 2002 Al-
legheny County ED dataset. We injected three types of FLOO
attacks, assuming that only zip code 15213 (Pittsburgh) was af-
fected: (A =4, Tﬂog = 14), (A =2, Tfloo = 20), and (A = I:Tfloo =
20). Thus the first attack has the fastest-growing outbreak curve
(4t cases on day f), and the third has the slowest-growing out-
break curve (r cases on day ). For each outbreak type, we simu-
lated outbreaks for all possible start dates in April-December 2002,
and computed each method’s average performance over all such
outbreaks. All the spatio-temporal methods were able to detect
all injected outbreaks at a rate of 1 false positive/month; not sur-
prisingly, median number of days to detect increased from 2.076
for the fastest growing outbreak, to 5.066 for the slowest grow-
ing outbreak. All of these detection times were more than one
full day faster than the purely spatial and purely temporal methods,
with one exception (0.22 days faster than purely spatial for A = 4).
Again, the all_mean method performed well (1-day all_mean was
the winner for A = 4, with a detection time of 1.748 days), as did
adj_.EWMA and strat EWMA (3-day emerging strat EWMA was
the winner for A =2 and A = 1, with detection times of 2.898 and
4.484 days respectively). Our most interesting result was the effect
of the temporal window size W: for the fastest growing outbreak,
the 1-day method detected outbreaks 0.2 days faster than the 3-day
and 7-day methods, but for the slowest growing outbreak, both 3-
day and 7-day methods detected outbreaks a full day faster than the
1-day method. Emerging methods outperformed persistent meth-
ods for approximately 80% of our trials, though the difference in
detection time was typically fairly small (0.02-0.10 days, depend-
ing on the time series analysis method). We also observed that
higher aggregation typically performed better for the all_max and
strat_max methods (i.e. RATS performed best, and BATS worst).
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Figure 1: AMOC curves for three of the eight datasets. The four curves are for the best spatio-temporal method (O), the median
spatio-temporal method (o), the purely temporal method (x), and the purely spatial method (4). Note that the purely temporal
method, unlike the others, is not required to pinpoint the region location, so its AMOC will be lower at the start of an attack (before
there are a sufficient number of cases to detect); this is purely a function of the testing methodology, and does not imply better
performance.

Table 1: Summary of performance. Detection rate and average days to detect, 1 false positive/month, all datasets.

best median temporal spatial
dataset rate | days rate days | rate days rate | days best method
BARD (0.125) 1.000 | 1.600 | 1.000 | 1.800 | 1.000 | 1.900 | 1.000 | 2.317 1-day, all_mean
BARD (0.015625) | 0.883 | 3.679 | 0.883 | 3.906 | 0.867 | 4.250 | 0.883 | 5.094 1-day, all_mean

FLOO_ED (1,20) 1.000 | 4.484 | 1.000 | 5.066 | 0.988 | 6.119 | 1.000 | 7.289 | 3-day emerging, strat EWMA
FLOO_ED (2,20) 1.000 | 2.898 | 1.000 | 3.211 | 1.000 | 4.551 | 1.000 | 4.074 | 3-day emerging, strat EWMA

FLOO_ED (4,14) 1.000 | 1.748 | 1.000 | 2.076 | 1.000 | 3.103 | 1.000 | 2.290 1-day, all_mean
FLOO_OTC (20,20) | 1.000 | 3.891 | 0.595 | 7.621 | 0.315 | 7.358 | 0.260 | 8.910 1-day, strat_Kull
FLOO_OTC (40,14) | 1.000 | 2.319 | 0.981 | 4.609 | 0.240 | 4.667 | 0.232 | 6.082 1-day, strat_Kull
FLOO_OTC (alll,14) | 0.475 | 5.424 | 0.179 | 3.340 | 0.274 | 5.000 | 0.213 | 6.036 1-day, strat EWLR

Table 2: Comparison of methods. Average days to detect, 1 false positive/month, all datasets.

BARD BARD FLOO_ED | FLOO_ED | FLOO_ED | FLOO_OTC | FLOO_OTC | FLOO_OTC
method (0.125) | (0.015625) (1,20) (2,20) 4,14) (20,20) 40,14) (alll,14)

1-day 1.60 4.53 5.62 3.05 1.75 3.89 2.32 9.92
3-day persistent 1.75 4.58 4.53 2.93 1.94 4.02 2.61 11.61
3-day emerging 1.75 4.55 4.48 2.90 1.92 3.96 2.53 11.57
7-day persistent 1.80 4.67 473 3.06 2.01 4.35 2.83 11.89
7-day emerging 1.77 4.67 4.71 3.09 2.00 4.29 2.78 11.73
all_max_BATS 1.98 5.03 6.34 3.61 2.16 6.58 3.30 10.80
all_max_CATS 1.97 4.92 5.75 3.18 2.03 6.58 3.46 10.80
all_max_RATS 1.72 4.65 5.06 3.32 2.03 10.15 5.11 11.02
all_mean 1.60 4.53 4.79 3.04 1.75 15.34 6.67 11.78
strat_max_BATS 1.87 4.83 5.25 3.38 2.17 7.11 3.69 11.73
strat_max_CATS 1.87 4.82 5.25 3.23 2.10 7.21 3.75 11.82
strat_max_RATS 1.73 4.68 5.20 3.21 2.08 12.34 4.57 11.54
strat_mean 1.75 4.63 4.68 3.04 1.99 15.92 6.46 11.67
strat EWMA 1.75 4.58 4.48 2.90 1.92 16.88 11.49 12.19
adj EWMA 1.68 4.55 4.65 2.92 1.89 16.58 7.56 11.84
strat EWLR 1.83 4.82 5.17 3.42 2.29 10.84 5.23 9.92
adj EWLR 1.75 4.67 5.24 3.12 2.03 10.19 4.36 10.78
all_Kull 1.80 4.65 4.69 2.96 1.95 4.25 2.59 11.63
strat_Kull 1.75 4.68 4.53 2.92 1.94 3.89 2.32 10.89




7.4 FLOO outbreaks, OTC data

For the FLOO_OTC outbreaks, we began with one year’s worth
of data for retail sales of over-the-counter cough and cold med-
ication in Allegheny County, collected from 2/13/04-2/12/05. We
injected three types of FLOO attacks: for the first two, we again as-
sumed that only zip code 15213 was affected, but (since the overall
numbers of OTC sales were much higher than the overall numbers
of ED visits) we injected larger numbers of counts, (A =40, Tt100 =
14) and (A = 20, Tf;0, = 20). For the third attack, we assumed
that all zip codes in Allegheny County were affected, using (A =
1,Tf100 = 14) for each. For each outbreak type, we simulated out-
breaks for all possible start dates over the last nine months of our
data, and computed each method’s average performance over all
such outbreaks. Our first observation was that these attacks were
substantially harder to detect than in the ED data: for the two local-
ized attacks, our median methods only detected 98.1% and 59.5%
of outbreaks for the faster-growing (A = 40) and slower-growing
(A = 20) outbreaks respectively. It appears that the main reason
for this was the difficulty in accurately predicting the OTC counts
for the baseline days, as we observed huge differences in perfor-
mance between the various time series analysis methods. The data
contained significant seasonal and day of week trends, as well as
other irregularities (e.g. large spikes in sales in single stores, prob-
ably resulting from promotions), and most of our methods were
not entirely successful in accounting for these; nevertheless, they
performed much better than the purely spatial and purely tempo-
ral methods, which only detected 23-32% of these outbreaks. Our
second observation was that the strat_Kull method performed re-
markably well in predicting the localized outbreaks, detecting with
100% accuracy in 2.32 and 3.89 days for A =40 and A = 20 re-
spectively; strat_Kull and all_Kull detected the A = 20 outbreaks
over two days faster than any other methods. This suggests that
those methods were able to predict baselines for the non-attack
days much more accurately than any of the other time series anal-
ysis methods: using the current day’s counts to predict the current
day’s baselines allows accurate adjustment for seasonal trends, and
if the attack is sufficiently localized, only slightly reduces detec-
tion power. Clearly it would be better to have a method which
correctly predicts the trends without using the current day’s counts,
but none of the methods discussed here were able to do this. For the
non-localized attack (cases added to every zip code), the power of
strat_Kull was substantially reduced, and it was only able to detect
36% of outbreaks, while our best-performing method (strat_ EWLR)
detected 48%. And this is far from the worst case for strat_Kull:
since different zip codes have different average sales, adding the
same number of counts to each creates a large amount of space-
time interaction. If we had instead multiplied counts in each zip
code by the same factor, strat_Kull would have no power to detect
this. We also note that the 1-day statistics performed best for all
three outbreak types on the OTC data, though the 3-day emerg-
ing statistics performed almost as well. Again, emerging methods
consistently outperformed persistent methods, and the difference in
detection time was larger than on the ED data (typically 0.05-0.20
days). Finally, we note that the lower levels of aggregation (BATS
and CATS) outperformed RATS for the “max” methods; this is the
opposite result from what we observed on the ED data.

Based on these conflicting results, it is difficult to recommend a
single method for use on all datasets and outbreak types. As shown
above, the optimal temporal window size depends on how fast the
number of cases increases, with longer temporal windows appro-
priate for more slowly growing outbreaks. The optimal temporal
window is also affected by our desired tradeoff between number of
false positives and detection time: a lower acceptable false positive

rate (and thus, longer acceptable detection time) increases the opti-
mal window size. For example, for the FLOO_ED (1,20) outbreak,
the 3-day emerging statistic has the fastest time to detection at a rate
of 1 false positive/month, while the 7-day emerging statistic has the
fastest time to detection at a rate of 1 false positive/year. As noted
above, the emerging statistics consistently outperform the corre-
sponding persistent statistics, and while the amount of difference
is not that large (0.02-0.20 days across all outbreaks and methods),
even slightly earlier detection may make a substantial difference in
the efficacy of outbreak response. It appears that the 3-day emerg-
ing statistic is a reasonable compromise solution, at least for the
set of outbreaks tested. It may also be a good idea to run emerg-
ing statistics with different window sizes in parallel, for better de-
tection of both fast-growing and slow-growing outbreaks; optimal
combination of detectors is an interesting and open research ques-
tion. It is clear that the best time series analysis method depends
on the characteristics of the dataset, as well as whether the out-
break is spatially localized or occupies a large spatial region: the
strat_Kull method is excellent for localized outbreaks, but should
be used only in parallel with another method that can detect large-
scale outbreaks. For datasets with little seasonal trend, such as the
ED data used here, very simple mean and moving average methods
are sufficient, but it is still an open question to find a method which
can accurately predict baseline counts for OTC data without using
the current day’s counts to predict the current day’s expectations.

7.5 Calibration

As noted above, our testing framework simply compares scores
of the highest scoring regions on each day, and computes AMOC
curves; no randomization testing is done, and thus we do not ac-
tually compute the p-value of discovered regions. Because our
detection performance is high, it is clear that the attacked regions
would have lower p-values than the highest scoring regions on non-
attacked days. But this does not answer the question of calibration:
at what threshold p-value should we trigger an alarm? If non-
attacked days were actually generated under the null hypothesis,
we could choose some level o and be guaranteed that we will only
trigger false alarms that proportion of the time (e.g. once every 20
days for o, = .05). However, our null hypothesis, that each count ¢/
is generated by a Poisson distribution with mean b, is clearly false,
since b} is only an estimate of what we expect ¢} to be, assuming
that no outbreak is present. If this estimate were unbiased and ex-
actly precise (zero variance), then we would achieve a false positive
rate of o In practice, however, this estimate can be both biased and
highly imprecise. For any method of calculating baselines that is
approximately unbiased, but has non-zero variance (i.e. all of our
time series analysis methods except all_max and strat_max), we ex-
pect the proportion of false positives to be greater than o, since the
scan statistic picks out any regions where b’ is an underestimate of
ct. The all_max and strat_max methods, on the other hand, are con-
servatively biased (predicting values of b} which overestimate c/
on average) but also have non-zero variances; thus they may result
in proportions of false positives either higher or lower than a. To
examine the calibration of our methods, we calculated the p-value
for each day in both the ED and OTC datasets (with no injected
attacks). We used a 3-day emerging scan statistic, BATS aggrega-
tion, with four different time series analysis methods: two unbiased
methods (adj_.EWLR and all_mean) and two conservative methods
(all_max and strat_max). R = 100 randomizations were performed,
and we counted the proportion of false positives at oo = 0.01 and
o = 0.05 for each method on each dataset. See Table 3 for results.

As expected, we observe a large number of false positives in both
datasets for the unbiased methods. For the OTC dataset, we also



Table 3: Proportion of false positives.
ED dataset OTC dataset
method a=.01 | a=.05| a=.01 | a=.05
adj . EWLR | 0.171 0.393 0.725 0.808
all_mean 0.091 0.240 0.789 0.840
strat_max 0.000 0.025 0.275 0.344
all_max 0.000 0.000 0.058 0.072

have high false positive rates even for the conservative methods.
What conclusions can we draw from this? Because of the variance
in our predictions, the baseline data, especially the OTC data, is
not fit well by the null hypothesis. Nevertheless, the likelihood
ratio statistic (which serves as a sort of distance away from the null
hypothesis) is very successful at distinguishing between attacks and
non-attacked days. So how can we calibrate the statistic? One
option would be to use an unbiased method with a much lower
threshold a, but the problem with this is that it would require a huge
number of randomizations to determine whether the p-value is less
than o. Another option would be to use a conservative method,
but the problem is that these methods not only record fewer false
positives, but also are less able to detect a true positive. In fact, as
our results above demonstrate, the conservative methods typically
have much less power to distinguish attacks from non-attacked days
for a given level of false positives, so this is clearly not a good idea.
A better option is to trigger alarms for a given threshold on the
score rather than on the p-value, with that threshold learned from
previous data (e.g. the year of ED and OTC data used here). An
even better solution might be to account for the uncertainty of our
baseline estimates bﬁ», as discussed below, and thus make our null
hypothesis more accurately describe the real data.

8. CONCLUSIONS

We have presented a new class of space-time scan statistics de-
signed for the rapid detection of emerging clusters, and demon-
strated that these methods are highly successful on the task of rapidly
and accurately detecting emerging disease epidemics. We are cur-
rently working to extend this framework in a number of ways. Per-
haps the most important of these extensions is to account for the
imprecision in our baseline estimates b/, using methods of time
series analysis which not only predict the expected values of the
“current” counts but also estimate the variance in these estimates.
Our current difficulty is that we are testing the null hypothesis that
all counts ¢} are generated from the estimated values b, but since
these values are only estimates, the null hypothesis is clearly false.
As a result, as we demonstrated in the previous section, the stan-
dard randomization testing framework results in large numbers of
false positives, i.e. on most non-attack days we still observe a p-
value less than 0.05. The combination of time series methods which
account for imprecision of estimates, and scan statistics which use
distributions that can account for mean and variance separately (e.g.
Gaussian or negative binomial distributions) should allow us to cor-
rect these problems. This will also make the distinction between
building-aggregated, cell-aggregated, and region-aggregated time
series methods more relevant, as the variance computations will be
very different depending on the level of aggregation. A second (and
related) extension is accounting for factors such as overdispersion
and spatial correlation between neighboring counts. Our current
methods assume that each spatial location, cell, or region has an
independent time series of counts, and thus infer baselines inde-
pendently for each such time series. When we extend the model to

distributions that model mean and variance separately, we should
be able to calculate correlations between time series of neighbor-
ing spatial locations, and adjust for these correlations.

Finally, we are in the process of applying our spatio-temporal
scan statistics to nationwide over-the-counter drug sales, searching
for emerging disease outbreaks on a daily basis. Scaling up the sys-
tem to national data creates both computational issues (the use of
the fast spatial scan is essential for searching large grids) as well
as statistical issues (dealing with irregularities in the data, such as
missing data, and increased sales resulting from product promo-
tions). We are currently working with state and local public health
officials to ensure that the clusters we report correspond to relevant
potential outbreaks, thus rapidly and accurately identifying emerg-
ing outbreaks while keeping the number of false positives low.
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