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A B S T R A C T

Objectives: To evaluate the predictive performance of different data sources to forecast fatal overdose in Rhode 
Island neighborhoods, with the goal of providing a template for other jurisdictions interested in predictive an
alytics to direct overdose prevention resources.
Methods: We evaluated seven combinations of data from six administrative data sources (American Community 
Survey (ACS) five-year estimates, built environment, emergency medical services non-fatal overdose response, 
prescription drug monitoring program, carceral release, and historical fatal overdose data). Fatal overdoses in 
Rhode Island census block groups (CBGs) were predicted using two machine learning approaches: linear re
gressions and random forests embedded in a nested cross-validation design. We evaluated performance using 
mean squared error and the percentage of statewide overdoses captured by CBGs forecast to be in top percentiles 
from 2019 to 2021.
Results: Linear models trained on ACS data combined with one other data source performed well, and comparably 
to models trained on all available data. Those including emergency medical service, prescription drug monitoring 
program, or carceral release data with ACS data achieved a priori goals for percentage of statewide overdoses 
captured by CBGs prioritized by models on average.
Conclusions: Prioritizing neighborhoods for overdose prevention with forecasting is feasible using a simple-to- 
implement model trained on publicly available ACS data combined with only one other administrative data 
source in Rhode Island, offering a starting point for other jurisdictions.

1. Introduction

The United States continues to experience an unprecedented over
dose crisis. Between 2002 and 2022, the drug overdose mortality rates in 
the United States increased four-fold, with drug overdose deaths sur
passing 100,000 in both 2021 and 2022 (Spencer et al., 2024). The lack 
of accessible, stable, and preventative care for people who use drugs 
(PWUD) in the United States too often results in healthcare that is 
reactive, unnecessarily expensive, and inadequate (Buresh et al., 2021; 
Adeniran et al., 2023; Vohra et al., 2022). In response, community-based 

overdose prevention services to meet PWUD where they are is a practical 
and cost-effective care delivery model for wound care, infectious disease 
management, substance use disorder treatment access, and other over
dose prevention services (e.g. naloxone distribution) (Hill et al., 2023; 
Springer, 2023; Robinowitz et al., 2014; Chan et al., 2021; Rosecrans 
et al., 2022; Pepin et al., 2023).

While funding for overdose prevention and response has increased in 
the United States, public health resources are still subject to finite limits. 
Practitioners need strategies to ensure that they deploy available re
sources efficiently to maximally reduce overdose mortality. Data science 
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methods can be used to prioritize communities at highest risk of future 
overdose deaths, thereby improving the efficiency of care delivery for 
PWUD, particularly in the context of limited resources (Saloner et al., 
2018; Wilt et al., 2019). Machine learning techniques have advanced 
accurate prediction of public health outcomes at both the individual and 
neighborhood level, with performance typically enhanced by utilizing a 
variety of data sources (Mhasawade et al., 2021). Prior scholarship has 
established the capacity of multiple machine learning approaches to 
forecast overdoses spatially, and the use of such forecasts to improve 
public health intervention deployment is currently under study state- 
wide in Rhode Island and elsewhere (Neill and Herlands, 2018; Schell 
et al., 2022; Marshall et al., 2022; Allen et al., 2023; Allen et al., 2024).

The use of neighborhood-level predictive modelling to guide over
dose crisis response has potential for applications beyond Rhode Island, 
but portability considerations have not been well explored. Rhode Island 
is an excellent environment to trial predictive modelling approaches due 
to its centralized, statewide public health infrastructure. Public health 
data and funding at all levels in the state are overseen by a single health 
authority that coordinates action in partnership with a network of 
community-based harm reduction organizations, which in turn have 
strong ties to technical experts at local academic institutions (Yedinak 
et al., 2024).

However, such “ideal” conditions are not necessarily generalizable to 
other jurisdictions. Where public health activities are governed by 
multiple state and local agencies, access to multiple data sources may be 
infeasible. Overdose prediction efforts by public health departments 
may also be hindered by a lack of technical expertise. A previous ma
chine learning effort in Rhode Island did not prioritize usability or 
accessibility of the model for non-technical stakeholders, solely focusing 
on maximizing predictive performance (Allen et al., 2024). We consider 
this model, coded in two languages and resource-intensive to train, 
inaccessible as a template for non-technical public health stakeholders, 
highlighting the need for an accessible template (Allen et al., 2024). To 
inform the feasibility of using predictive analytics to guide overdose 
prevention intervention by local authorities across the United States and 
beyond, this study used Rhode Island data from several commonly used 
overdose and public health surveillance data sources to A) assess which 
commonly collected sociodemographic, public health, and overdose 
monitoring data sources have the best predictive performance in the 
Rhode Island context; and B) apply simple-to-implement machine 
learning and univariate techniques to assess performance and to provide 
a template (including statistical code in R) for application in new set
tings. We hypothesized that different combinations of data sources 
would have varying degrees of predictive performance in forecasting 
overdose deaths.

2. Methods

2.1. Data sources and preparation

This study used data from Rhode Island from January 1, 2019 to 
December 31, 2021. The census block group (CBG) was used as the unit 
of analysis, as it is the smallest geographical unit for which both Rhode 
Island overdose mortality and United States census data are available. 
Further, CBGs were considered a realistic geographic unit for Rhode 
Island practitioners to locally target public health interventions in 
communities, as they consist of approximately 600–3000 residents and 
are established proxies for neighborhoods (Roux et al., 2001). Bound
aries used for CBGs were from the 2010 United States Census; data from 
2020 and 2021 were geo-coded or cross-walked to 2010 census 
boundaries. Data for CBGs were aggregated at six-month intervals (with 
period one defined as January 1st-June 30th, period two defined as July 
1st-December 31st) (Manson et al., 2021). A period of six months was 
identified by Rhode Island practitioners as a realistic time frame to 
implement interventions in prioritized neighborhoods (Marshall et al., 
2022). Rhode Island has 815 total CBGs; six of these were excluded from 

the analysis due to zero population size or special land use (e.g., airport) 
status.

The outcome in all models was the count of unintentional drug 
overdose deaths for each CBG in the subsequent six-month prediction 
period, obtained from Rhode Island’s State Unintentional Drug Over
dose Reporting Surveillance (SUDORS) (Jiang et al., 2018). SUDORS is a 
national system operating in 49 states and District of Columbia in the 
United States that includes detailed data on the location and other 
characteristics of overdose deaths. Wherever possible, we used the 
location of injury to geocode overdose deaths, with the address of de
cedents’ residence used if this information was missing. CBG-level 
covariates came from five other sources (Table 1): the five-year Amer
ican Community Survey (ACS) data (Bureau, 2025); Built Environment 
data (collated from Rhode Island Geographic Information System 
(Rhode Island Geographic Information System, 2025), Substance Use 
and Mental Health Services Administration treatment center data 
(Substance Abuse and Mental Health Services Administration, 2025), 
and Rhode Island state business and healthcare state license data (Rhode 
Island Department of Business Regulation, 2025; Rhode Island Depart
ment of Health, 2025)); Emergency Medical Service (EMS) overdose 
data for responses to suspected, nonfatal, opioid-involved overdoses 
(Hallowell et al., 2021); Prescription Drug Monitoring Program (PDMP) 
data (Rhode Island Department of Health, 2022); and Rhode Island 
Department of Corrections (RIDOC) inmate release data (Rhode Island 
Department of Corrections, 2023). SUDORS data were used as a sixth 
source to provide a single covariate: current period all drug overdose 
death count. Data sources were limited to high-quality administrative 
sources that were comprehensive for the state of Rhode Island to avoid 
geographic discrepancies in data quality to avoid biased predictions. 
Descriptions of these data sources, rationales for their predictive utility, 
and their availability beyond Rhode Island are included in Table 1.

To evaluate predictive performance consistency over time, two 
evaluation windows were utilized. A schematic of the evaluation win
dows can be found in Fig. 1. Window one utilized training data that 
consisted of covariates from 2019 period one, 2019 period two, and 
2020 period one to predict respective next period fatal overdoses, with 
covariates from 2020 period two held out as a corresponding test set. 
Window two utilized training data that consisted of covariates from 
2019 period two, 2020 period one, and 2020 period two to predict the 
respective next period fatal overdoses, with covariates from 2021 period 
one held out as a corresponding test set. Covariates with greater than 5 
% missingness across all periods from 2019 to 2021 were excluded. Data 
were split into the training and test sets and next period all drug over
dose death counts prepared for each evaluation window separately. 
Missing data in the training and test sets were imputed separately with 
the CBG-specific mean value for the variable.

2.2. Data subset preparation and predictive approaches

Due to its accessibility and national ubiquity in the United States, 
ACS data were used as the starting set of covariate data in all analyses 
(outside the United States analogous national socio-economic census 
data could be used). Data from the five other sources (Built Environ
ment, EMS, PDMP, RIDOC, and SUDORS datasets) were appended to the 
ACS data one at a time to create five other datasets. A seventh dataset 
(hereby referred to as “All Data”) was created by merging data from all 
six sources.

Two predictive models were developed with the goal of being simple- 
to-implement for non-technical stakeholders. In brief, both models uti
lized a nested cross-validation design employing least absolute 
shrinkage and selective operator (LASSO) as a screening algorithm for 
variable selection. After variable selection, the first model used a linear 
model and the second a tuned random forest to make predictions. 
Technical details on model design are included in Supplementary Ma
terials, with model schematics visualized in Supplementary Figs. 1 A and 
1B. After model training, variable importance was analyzed by two 
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Table 1 
Description of Data Sources Used as Training and Test Data for Predictive Models to Forecast Fatal Overdoses in Rhode Island 2019–2021.

Data source Source description Controlling agency Rationale for use as predictors of 
fatal overdose

Collected ubiquitously in a 
standardized manner in the 
United States?

Free to 
access?

American 
community survey 
5-year estimates 
(ACS)

Demographic, socio-economic, 
and housing structure census data United states census Bureau

Fatal overdose has social and 
economic determinants, which the 
American community survey is 
uniquely positioned to capture

Yes Yes

Built environment Business license, healthcare 
license, and treatment center data

Rhode Island geographic 
information system, Rhode 
Island Department of Business 
Regulation, Substance Abuse 
and Mental Health Services 
Administration

Business and service locations, as 
well as substance use disorder 
treatment availability, may be 
associated with where people use 
drugs and are subsequently at risk 
for fatal overdose

No No

Emergency medical 
service responses 
to nonfatal opioid- 
involved 
overdoses 
(EMS)

Emergency medical service 
responses to nonfatal overdose 
events involving opioids using a 
validated case definition (
Hallowell et al., 2021), geocoded 
by the incident location.

Rhode island department of 
health

Nonfatal overdose is associated 
with future fatal overdose at the 
individual level, and areas with 
heightened response to nonfatal 
overdoses are likely to benefit 
from proactive care interventions

No, but emergency medical 
service data is uniformly 
collected nationally in the 
National Emergency Medical 
Services Information System 
database, to which a case 
definition for nonfatal overdose 
could be applied

No

Rhode Island 
prescription drug 
monitoring 
program 
(PDMP)

A statewide, centralized database 
collecting data for controlled 
substances prescriptions and 
prescription fills designed for 
clinician and pharmacist 
utilization

Rhode island department of 
health

Misuse of prescription opioids or 
other controlled medications, 
either in isolation or with other 
drug classes, can be one source of 
overdose deaths. The inclusion of 
buprenorphine prescription data 
also provides insight into areas 
with a burden of opioid use 
disorders.

No No

Rhode island 
department of 
corrections 
Carceral releases 
(RIDOC)

Data for releases from 
incarceration, geocoded to where 
the person was released

Rhode island department of 
corrections

Recent incarceration is associated 
with future fatal overdose in 
Rhode Island at both the 
individual and neighborhood level

No No

Rhode Island state 
unintentional drug 
overdose reporting 
system 
(SUDORS)

A Centers for Disease Control and 
Prevention-funded, state-based 
surveillance system to record and 
characterize fatal overdoses in 
Rhode Island, geocoded at the 
injury incident location

Rhode island department of 
health

Future fatal overdose was the 
outcome of interest and current 
fatal overdoses were thought 
likely to be predictive of future 
fatal overdoses.

Yes, it is available in 49 of 50 
states and District of Columbia 
as of 2024

No

Notes: Listed as the controlling agencies are the United States or Rhode Island agencies used in this case study. For the Rhode Island or United States specific controlling 
agencies, there are likely analogous agencies in other jurisdictions.

Fig. 1. Schematics of Evaluation Windows for Models Predicting Fatal Overdose for Census Block Groups in Rhode Island 2019–2021 Notes: Schematic of model 
evaluation windows used to train and test models. Training sets for each evaluation window are shown in solid fill, while test sets are shown as partially transparent. 
Periods One and Two refer to January 1st -June 30th and July 1st-December 31st of the given year respectively.
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standard metrics specific to each model: absolute value of covariate 
coefficient t statistic for linear models and by increase in node purity for 
random forests (Grömping, 2015; Hastie et al., 2009).

To explore if comparable predictive performance could be achieved 
with traditional analysis, we trained univariate linear models to rank 
CBGs. One variable from each data source (e.g. EMS) per dataset (e.g. 
ACS + EMS) per model type was chosen based on maximum average 
importance value across the two evaluation windows. Univariate linear 
models were fit to training data, and predictions on respective test sets 
were used to rank CBGs. All analyses were performed in R 4.2.2 (R Core 
Team, 2021).

2.3. Model and univariate ranking evaluation

Each model made predictions using its respective test set of cova
riates. Models were evaluated by comparing these predictions to the 
actual test set fatal overdose counts. Model and univariate performance 
was assessed using two sets of metrics: first, we calculated mean squared 
error (MSE), a traditional model metric, for all approaches. Second, to 
contextualize the predictive performance of datasets and their associ
ated models, we calculated the percentage of actual statewide fatal 
overdoses captured in the CBGs with predicted fatal overdose ranked 
greater than a desired percentile. This evaluation criterion is designed to 
evaluate model performance as it might be implemented in the applied 
public health setting (Allen et al., 2023). Resource-intensive in
terventions, such as street-based, low-threshold buprenorphine induc
tion services, may only be feasible for a small percentage of 
neighborhoods (e.g. 5 %). Other, less resource-intensive interventions, 
such as naloxone distribution, could be scaled to more neighborhoods (e. 
g. 20 %). Understanding how different data sources and models perform 
to target different intervention scopes is useful to differentiate what 
datasets and variables to prioritize based on the scale of the planned 
intervention. Four variations of this metric, referred to as four “priori
tization scenarios”, were evaluated: percentages of total statewide fatal 
overdoses captured in the CBGs predicted to be greater than 95th, 90th, 
85th, and 80th percentiles of predicted fatal overdoses (with 5 %–20 % 

of CBGs prioritized respectively). For each percentile, the a priori goal of 
percentage of fatal overdose captured is double the prioritized per
centage of CBGs (i.e. if 20 % of CBGs are being prioritized, the model 
should be able to identify CBGs that capture 40 % or more of statewide 
fatal overdoses), as agreed upon with Rhode Island Department of 
Health and community partners (Marshall et al., 2022). Study proced
ures were approved by the Brown University Institutional Review Board.

3. Results

From January 1st, 2019 to December 31st, 2021, the period of 
analysis, Rhode Island experienced 1072 fatal overdoses, averaging 179 
fatal overdoses per six-month period with fatal overdoses increasing 
moderately with time. Of the 352 covariates available when combining 
all six data sources, variable selection included 86 unique covariates 
across the 28 linear models and random forests. Supplementary Tables 1 
and 2 rank these included covariates by variable importance across the 
linear models and random forests respectively. For linear models, the 
most influential variables were derived from across the Built Environ
ment, RIDOC, ACS, PDMP, and EMS data sources. In contrast, the 
random forests relied more narrowly on variables from the PDMP, ACS, 
and RIDOC sources to predict future fatal overdose. Variable importance 
measures resulted in thirteen individual variables being selected for use 
in univariate rankings, with some variables being the most important 
variable across multiple dataset-model combinations.

Assessing overall model performance, MSE was lower (better) for 
linear models than random forest models trained on the same data 
sources and window in all cases. Shown in Fig. 2, the models trained on 
All Data had the lowest (i.e. best) MSE for both model classes.

Assessing approaches by the percentage of statewide fatal overdoses 
captured metrics, the models trained on All Data provided an upper 
benchmark of performance. Shown in Fig. 3, linear models slightly 
outperformed their random forest counterparts across the four prioriti
zation scenarios on average across the two windows. Both predictive 
approaches performed well across all data combinations in the first three 
prioritization scenarios (top 5th-top 15th percentiles of CBGs), generally 

Fig. 2. Mean Squared Error by Data Source Combination for Models Predicting Fatal Overdose for Census Block Groups in Rhode Island Using Data from 2019 to 
2021. Notes: Mean squared error for all models’ predictions for CBG-level fatal overdoses in Rhode Island on test set data unused in model training in evaluation 
windows one and two. Univariate rankings by variables selected as most important from their data source from linear models and random forests trained on All Data 
are shaded green and orange respectively. See Supplemental Fig. 2 for full univariate results. CBG, Census block group. ACS, American Community Survey data. BE, 
Built Environment. EMS, Emergency medical service runs for opioid-involved nonfatal overdose data. LM, Linear Model. PDMP, Prescription drug monitoring 
program data. RF, Random Forest. RIDOC, Rhode Island Department of Corrections prisoner release data. SUDORS, State Unintentional Drug Overdose Reporting 
System prior period fatal overdose count data. Var, Variable. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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achieving prioritization goals on average. Scaling efficient CBG priori
tization to the top 20 % proved more challenging. Four linear models 
trained on All Data, ACS + EMS, ACS + PDMP, and ACS + RIDOC were 
the only models to achieve the a priori goal on average, with no random 
forest achieving the a priori goal and only the random forest trained on 
All Data coming close. Performance of both approaches was generally 
better in window two, with the three linear models trained on All Data, 

ACS + PDMP, and ACS + RIDOC most consistent across the two win
dows for all four prioritization scenarios. Despite meeting the a priori 
goal on average in the top 20 % scenario, the linear model trained on 
ACS + EMS data did not do so in window one.

In terms of proportion of overdoses captured averaged over the two 
windows, univariate rankings generally underperformed compared to 
models, but often the performances were quite similar. For clarity, only 

Fig. 3. Percent of Statewide Overdoses Captured by Census Block Groups Prioritized by Models in Rhode Island Using Data from 2019 to 2021. Notes: Percentage of 
statewide fatal overdoses in Rhode Island captured in the top 5th, 10th, 15th, and 20th percentiles of CBGs by predicted fatal overdose from the respective test sets in 
evaluation windows 1 and 2. Univariate rankings by variables selected as most important from their data source from linear models and random forests trained on All 
Data are shaded green and orang respectively. See Supplemental Fig. 3 for full univariate results. CBG, Census block group. ACS, American Community Survey data. 
BE, Built Environment. EMS, Emergency medical service runs for opioid-involved nonfatal overdose data. LM, Linear Model. PDMP, Prescription drug monitoring 
program data. RF, Random Forest. RIDOC, Rhode Island Department of Corrections prisoner release data. SUDORS, State Unintentional Drug Overdose Reporting 
System prior period fatal overdose count data. Var, Variable. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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univariate results for variables selected from the All Data models are 
shown in Figs. 2 and 3, with full results in Supplementary Figs. 2 and 3. 
In limited instances, univariate rankings in a single window out
performed one or both models trained on the corresponding dataset, 
with best performing variables derived from the ACS, EMS, and PDMP 
sources. These instances were generally in window one, where both 
model classes generally performed worse than window two. Better 
performance by the multivariable models is most evident in the top 15th 
and 20th percentile prioritization scenarios.

4. Discussion

This analysis establishes a template for utilizing and evaluating 
simple-to-implement univariate or machine learning methods to predict 
area-level fatal overdose, generating six-month forecasts that can guide 
overdose prevention efforts even when only limited data sources are 
available. In the Rhode Island context, linear regression approaches 
trained on only the ACS + EMS, ACS + PDMP, and ACS + RIDOC data 
sources on average performed well, and comparably to both the linear 
and random forest models trained on All Data. This finding suggests that, 
in the context of limited data availability, practitioners might consider 
acquisition of at least one of emergency medical service responses for 
nonfatal opioid-involved overdose, prescription drug monitoring pro
gram, or carceral release data in conjunction with socio-economic 
census data to train simple prediction models to forecast fatal over
doses at the neighborhood level. This recommendation relies on the 
assumption that both the processes that drive overdose and the predictor 
data available in new jurisdictions are similar to those in Rhode Island. 
Future work in new jurisdictions should be mindful of the limits of this 
assumption and consider the differences between Rhode Island and 
other jurisdictions to adapt to new contexts. Wherever there are a va
riety of predictors readily available, it would be advisable to incorporate 
all of them into a predictive model that includes a variable selection 
step.

Results indicate that on average in Rhode Island the linear regression 
approach outperformed the more complex random forest algorithm and 
the simpler univariate rankings, providing a method to prioritize 
neighborhoods for overdose prevention efforts that is quick to train and 
accessible to interpret for non-technical stakeholders. Due to limitations 
in generalizing these specific findings, we recommend that future work 
in new jurisdictions still evaluate multiple prediction approaches 
ranging in complexity. The code provided in Supplementary Materials 
offers a starting place for such evaluation.

The standout predictive performances of emergency medical service 
responses for suspected, nonfatal, opioid-involved overdoses, prescrip
tion drug monitoring programs, and carceral release data align well with 
established knowledge. For example, recent release from incarceration 
is strongly associated with increased risk of fatal overdose in Rhode Is
land, at both the individual and neighborhood levels (Brinkley-Rubin
stein et al., 2018; Cartus et al., 2023). However, unlike many other 
jurisdictions, carceral release data in Rhode Island comes from one 
agency as the state has a single, combined jail and prison system and no 
federal prisons. While carceral release data may improve predictive 
ability efficiently (i.e., the RIDOC dataset consisted of only three vari
ables), barriers to comparable data access from carceral institutions may 
inhibit the portability of this approach beyond Rhode Island.

The first wave of the North American overdose crisis was charac
terized by prescription opioid involved deaths, with PDMPs established 
in response to prescription opioid misuse (Smith et al., 2023). Recent 
trends in overdose mortality have been driven by illicitly manufactured 
synthetic opioids, primarily fentanyl, and design and utilization het
erogeneity among PDMPs may hinder PDMP data portability beyond 
Rhode Island (Ciccarone, 2021). Prescription opioid related variables 
were less included in and less important for models considering PDMP 
data compared to buprenorphine related variables. Of the 39 times 
PDMP variables were included in models in this analysis, 22 of these 

instances involved a buprenorphine-related variable, which in linear 
models were always positively associated with future fatal overdose. An 
over-reliance on PDMP data may skew models to prioritize areas with 
existing treatment services, such as buprenorphine access.

Despite less stable window to window performance, emergency 
medical services data may be more natural to integrate into overdose 
forecasting efforts by local stakeholders. Emergency medical services 
data for responses to suspected overdoses have been used previously to 
identify geographic units to target overdose prevention resources in 
eastern United States (Dworkis et al., 2018; Pesarsick et al., 2019), and 
non-fatal overdose is a known predictor of fatal overdose at the indi
vidual level (Guo et al., 2021). A prediction approach that incorporates 
EMS responses for nonfatal opioid-involved overdose data likely benefits 
dually from improved prediction performance and more direct priori
tization of areas to target preventative care where the wider health 
system is already responding. While in the window one top 15th and 
20th percentiles scenarios ACS + EMS models did not achieve prioriti
zation goals, the univariate ranking by Total EMS Responses still per
formed well, indicating the utility of EMS data in the face of poor 
individual model performance. A nationally standardized case definition 
for an EMS response for non-fatal overdose might improve the gener
alizability of these data regarding their predictive performance in other 
settings (Hallowell et al., 2021). The case definition for nonfatal opioid- 
involved overdose used in this analysis could form such a basis, or could 
be broadened to capture nonfatal stimulant-involved overdoses 
(Hallowell et al., 2021).

The stronger predictive performance of the linear regression models 
than the more complex random forest models was surprising given the 
size and assumed complexity of possible predictor interactions. How
ever, traditional regressions outperforming machine learning methods is 
not without precedent (Christodoulou et al., 2019). The random forests 
may have suffered from their inability to extrapolate as statewide fatal 
overdose counts increased longitudinally from training to test set pe
riods, and predictor relationships may lack significant complexity 
(Hastie et al., 2009). The strong performance of the univariate rankings 
(though typically underperforming the multivariable models) supports 
this lack of significant complexity, and the linear models may have 
found a sweet spot in terms of complexity.

While previous work has explored the utility of using predictive 
analytics to address the overdose crisis, the majority of these modelling 
efforts have focused on targeting clinical interventions based on 
individual-level overdose risk (Bharat et al., 2021). Efforts to predict 
fatal overdoses at the neighborhood level have used a variety of so
phisticated methods (Schell et al., 2022; Allen et al., 2024; Lo-Ciganic 
et al., 2019; Yedinak et al., 2021; Bozorgi et al., 2021), but often without 
specific regard for accessibility and interpretability for non-technical 
stakeholders in whose hands the models may make the most differ
ence. Machine learning approaches to guide community response to the 
overdose crisis rely on engagement with public health professionals and 
community stakeholders for effective implementation (Yedinak et al., 
2021). Our aim is to establish simple-to-implement methods evaluated 
across different data sources as a template for the uptake of predictive 
analytics to inform preventative outreach by overdose crisis stake
holders who may have less technical expertise or have access to data 
from fewer domains.

This analysis is subject to several limitations. The high quality and 
standardized nature of data used in this analysis, due to diligent man
agement by Rhode Island’s centralized state health department, may not 
be reproducible in other jurisdictions with more fragmented public 
health authorities. All data used to train and evaluate this study’s models 
either precede or are concurrent with the COVID-19 pandemic, limiting 
generalizability to future time periods. Data sources’ predictive perfor
mances may not be generalizable to other jurisdictions as associations 
making certain variables predictive for overdose in Rhode Island may be 
different in other regions. Practitioners working in new jurisdictions or 
outside the United States should consider incorporation of further data 
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sources that fit conceptually as predictive of fatal overdose. The appli
cation of these methods in other jurisdictions is a crucial next step in our 
research to evaluate this approach. Using only fatal overdose as the 
outcome variable may not capture the greater burden of nonfatal 
overdoses and substance use disorders, which preventative programs 
should also target. Some model predictors may reflect areas already with 
services (e.g. count of freestanding ambulatory clinics or total bupre
norphine prescriptions), introducing a bias in model predictions. Miti
gation of the overdose crisis at the neighborhood level should be 
complemented by similar endeavors at the individual level. All predic
tive models that inform the delivery of healthcare will only ever be as 
effective as the care they facilitate. Further work is required to address 
the upstream causes of overdose mortality (Dasgupta et al., 2018).

5. Conclusions

This analysis presents a template for straightforward modelling ap
proaches to forecast fatal overdoses at the neighborhood level with data 
from administrative sources commonly used as part of overdose sur
veillance. A screened linear regression model trained on only either ACS 
and emergency medical service response to non-fatal overdoses, ACS 
and carceral release data, or ACS and prescription drug monitoring 
program data performed comparably on average to the same model 
trained on six diverse administrative data sources. This template has 
potential to enable jurisdictions in the United States and beyond to 
predict overdose at the neighborhood level and coordinate deployment 
of overdose prevention services to where they are needed most.
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Magdalena Cerdá: Writing – review & editing, Funding acquisition. 
Brandon D.L. Marshall: Writing – review & editing, Funding acquisi
tion. Daniel B. Neill: Writing – review & editing, Supervision. Jennifer 
Ahern: Writing – review & editing, Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing interests 
that could have appeared to influence the work reported in this paper.

Acknowledgments

We would like to thank Dr. Benjamin Hallowell, Maxwell Krieger, 
and Dr. William Goedel for their help in this endeavor. We would like to 
thank Dr. Robert Schell for his help early in this endeavor. This study is 
funded by the National Institute on Drug Abuse (NIDA; project reference 
R01-DA046620) and by the Centers for Disease Control and Prevention 
(CDC; project reference K01CE003586).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ypmed.2025.108276.

Data availability

The authors do not have permission to share the original data used in 
the full analysis, but a full code template with simulated data repre
sentative of the data used is included in Supp Materials

References

Adeniran, E., Quinn, M., Wallace, R., et al., 2023. A scoping review of barriers and 
facilitators to the integration of substance use treatment services into US mainstream 
health care. Drug Alcohol Depend Rep. 7, 100152. https://doi.org/10.1016/j. 
dadr.2023.100152.

Allen, B., Neill, D.B., Schell, R.C., et al., 2023. Translating predictive analytics for public 
health practice: a case study of overdose prevention in Rhode Island. Am J 
Epidemiol., kwad119 https://doi.org/10.1093/aje/kwad119.

Allen, B., Schell, R.C., Jent, V.A., et al., 2024. PROVIDENT: development and validation 
of a machine learning model to predict neighborhood-level overdose risk in Rhode 
Island. Epidemiology 2. https://doi.org/10.1097/EDE.0000000000001695.

Bharat, C., Hickman, M., Barbieri, S., Degenhardt, L., 2021. Big data and predictive 
modelling for the opioid crisis: existing research and future potential. Lancet Digit 
Health. 3 (6), e397–e407. https://doi.org/10.1016/S2589-7500(21)00058-3.

Bozorgi, P., Porter, D.E., Eberth, J.M., Eidson, J.P., Karami, A., 2021. The leading 
neighborhood-level predictors of drug overdose: a mixed machine learning and 
spatial approach. Drug Alcohol Depend. 229, 109143. https://doi.org/10.1016/j. 
drugalcdep.2021.109143.

Brinkley-Rubinstein, L., Macmadu, A., Marshall, B.D.L., et al., 2018. Risk of fentanyl- 
involved overdose among those with past year incarceration: findings from a recent 
outbreak in 2014 and 2015. Drug Alcohol Depend. 185, 189–191. https://doi.org/ 
10.1016/j.drugalcdep.2017.12.014.

Bureau, U.C., 2025. American Community Survey (ACS). Census.gov. Accessed 
September 20, 2023. https://www.census.gov/programs-surveys/acs.

Buresh, M., Stern, R., Rastegar, D., 2021. Treatment of opioid use disorder in primary 
care. BMJ 373, n784. https://doi.org/10.1136/bmj.n784.

Cartus, A.R., Goedel, W.C., Jent, V.A., et al., 2023. Neighborhood-level association 
between release from incarceration and fatal overdose, Rhode Island, 2016–2020. 
Drug Alcohol Depend. 247, 109867. https://doi.org/10.1016/j. 
drugalcdep.2023.109867.

Chan, B., Hoffman, K.A., Bougatsos, C., Grusing, S., Chou, R., McCarty, D., 2021. Mobile 
methadone medication units: a brief history, scoping review and research 
opportunity. J. Subst. Abuse Treat. 129, 108483. https://doi.org/10.1016/j. 
jsat.2021.108483.

Christodoulou, E., Ma, J., Collins, G.S., Steyerberg, E.W., Verbakel, J.Y., Van Calster, B., 
2019. A systematic review shows no performance benefit of machine learning over 
logistic regression for clinical prediction models. J. Clin. Epidemiol. 110, 12–22. 
https://doi.org/10.1016/j.jclinepi.2019.02.004.

Ciccarone, D., 2021. The rise of illicit fentanyls, stimulants and the fourth wave of the 
opioid overdose crisis. Curr. Opin. Psychiatry 34 (4), 344–350. https://doi.org/ 
10.1097/YCO.0000000000000717.

Dasgupta, N., Beletsky, L., Ciccarone, D., 2018. Opioid crisis: no easy fix to its social and 
economic determinants. Am. J. Public Health 108 (2), 182–186. https://doi.org/ 
10.2105/AJPH.2017.304187.

Dworkis, D., Weiner, S., Liao, V., Rabickow, D., Goldberg, S., 2018. Geospatial clustering 
of opioid-related emergency medical services runs for public deployment of 
naloxone. West. J. Emerg. Med. 19 (4), 641–648. https://doi.org/10.5811/ 
westjem.2018.4.37054.
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