Pre-syndromic surveillance for improved detection of emerging public health threats

Daniel B. Neill, Ph.D.

Machine Learning for Good Laboratory New York University

daniel.neill@nyu.edu

Joint work with Mallory Nobles (CMU), Ramona Lall (NYC DOHMH), and Rob Mathes (NYC DOHMH).

Center for Urban Science + Progress Machine Learning for Good Laboratory

SCIENCE ADVANCES | RESEARCH ARTICLE

EPIDEMIOLOGY

Presyndromic surveillance for improved detection of emerging public health threats

Mallory Nobles¹†, Ramona Lall², Robert W. Mathes², Daniel B. Neill³*

Existing public health surveillance systems that rely on predefined symptom categories, or syndromes, are effective at monitoring known illnesses, but there is a critical need for innovation in "presyndromic" surveillance that detects biothreats with rare or previously unseen symptomology. We introduce a data-driven, automated machine learning approach for presyndromic surveillance that learns newly emerging syndromes from free-text emergency department chief complaints, identifies localized case clusters among subpopulations, and incorporates practitioner feedback to automatically distinguish between relevant and irrelevant clusters, thus providing personalized, actionable decision support. Blinded evaluations by New York City's Department of Health and Mental Hygiene demonstrate that our approach identifies more events of public health interest and achieves a lower false-positive rate compared to a state-of-the-art baseline.

INTRODUCTION

To offer a rapid, targeted, and effective response to emerging biothreats, public health officials must be able to detect a huge variety of emerging events. Recent, high-profile events highlight the diversity of situations that can affect public health: In February 2020, 50+ residents of a nursing home in Kirkland, Washington were part of one of the first coronavirus disease 2010 (COVID-19) outbreaks in the

can result in substantial detection delays. Moreover, syndromic surveillance can dilute the signal of a rare outbreak or novel biothreat, either by grouping rare cases with more common illnesses, or by splitting cases among many syndromes. In either case, the syndromic surveillance system may require a large increase in cases to recognize an anomalous cluster corresponding to a rare or novel event, making i difficult for public health to achieve timely detection and response. This presentation is based on our recent publication: M. Nobles, R. Lall, R.W. Mathes, and D.B. Neill*, *Science Advances* 8(44): eabm4920, 2022. DOI: 10.1126/sciadv.abm4920 (open access)

Acknowledgements:

This work was partially supported by NSF grants IIS-0916345, IIS-0911032, and IIS-0953330 and the DHS Hidden Signals Challenge.

Copyright © 2022

The Authors, some

American Association for the Advancement

of Science. No claim to

original U.S. Government Works, Distributed

under a Creative

NonCommercial

Commons Attribution

License 4.0 (CC BY-NC)

rights reserved; exclusive licensee

Thanks to the BCD Syndromic Surveillance Unit at NYC DOHMH for providing retrospective data for this study and participating in blinded evaluations, and to Boyuan Chen and Andy Wei for their work in developing the open-source Python version of MUSES.

Pre-syndromic surveillance

Date/time	<u>Hosp.</u>	<u>Age</u>	<u>Complaint</u>
Jan 1 08:00	А	19-24	runny nose
Jan 1 08:15	В	10-14	fever, chills
Jan 1 08:16	А	0-1	broken arm
Jan 2 08:20	С	65+	vomited 3x
Jan 2 08:22	А	45-64	high temp
\sim	$\sim \sim \sim$	$\sim\sim\sim$	\sim

Key challenge: A syndrome cannot be created to identify every possible cluster of potential public health significance.

Thus a method is needed to identify relevant clusters of disease cases that do not correspond to existing syndromes.

Use case proposed by NC DOH and NYC DOHMH, solution requirements developed through a public health consultancy at the International Society for Disease Surveillance.

Where do existing methods fail?

The typical syndromic surveillance approach can effectively detect emerging outbreaks with commonly seen, general patterns of symptoms (e.g. ILI).

If we were monitoring these particular symptoms, it would only take a few such cases to realize that an outbreak is occurring!

What happens when something new and scary comes along?
- More specific symptoms ("coughing up blood")
- Previously unseen symptoms ("nose falls off")

Mapping specific chief complaints to a broader symptom category can dilute the outbreak signal, delaying or preventing detection.

Where do existing methods fail?

The semantic scan statistic

age group, for each topic $\phi_{j.}$

NYC DOHMH dataset

- New York City's Department of Health and Mental Hygiene, Bureau of Communicable Disease, provided us with 6 years of data (2010-2016) consisting of ~28M chief complaint cases from 53 hospitals in NYC.
- For each case, we have data on the patient's chief complaint (free text), date and time of arrival, age group, gender, and discharge ICD code.
- Substantial pre-processing of the chief complaint field was necessary because of the size and messiness of the data (typos, abbreviations, etc.).

VOIMITING	VOMITINIG	VOMITINGN
VOIMITTING	VOMITINNG	VOMITINGQ
VOIMTING	VOMITIONG	VOMITINGS
VOMIITING	VOMITITING	VOMITINGT
VOMIITNG	VOMITITNG	VOMITINGX
VOMINITING	VOMITN	VOMITINGX1
VOMINTING	VOMITNG	VOMITINGX2
VOMIOTING	VOMITNIG	VOMITINGX3
VOMITE	VOMITNING	VOMITINGX4
VOMITED	VOMITO	VOMMITTING
VOMITG	VOMITOS	VOMNITING
VOMITHING	VOMITS	VOMOITING
VOMITI	VOMITT	VOMTIING
VOMITIG	VOMITTE	VOMTIN
VOMITIGN	VOMITTI	VOMTITING
VOMITIING	VOMITTING	VONMITING
VOMITIN	VOMITTTING	VOOMITING
VOMITING3	VOMITUS	VOPMITING
VOMITINGA	VOMMIT	VVOMITING
VOMITINGG	VOMMITING	VOMITINGM

Variations of the words "vomit" and "vomiting" that appear > 15 times in data

Events identified by semantic scan

The progression of detected clusters after Hurricane Sandy impacted NYC highlights the variety of strains placed on hospital emergency departments following a natural disaster:

Many other events of public health interest were identified:

Accidents	Contagious	Other
Motor vehicle	Diseases	Drug overdoses
Ferry	Meningitis	Smoke inhalation
School bus	Scabies	Carbon monoxide
Elevator	Ringworm	poisoning
	Hepatitis	Crime related, e.g.,

Example of a detected cluster

Arrival Date	Arrival Time	Hospital ID	Chief Complaint	Patient Sex	Patient Age
			EVAUATION, DRANK COFFEE		
11/28/2014	7:52:00	HOSP5	WITH CRUS	М	45-49
11/28/2014	7:53:00	HOSP5	DRANK TAINTED COFFEE	М	65-69
11/28/2014	7:57:00	HOSP5	DRANK TAINTED COFFEE	F	20-24
11/28/2014	7:59:00	HOSP5	INGESTED TAINTED COFFEE	М	35-39
11/28/2014	8:01:00	HOSP5	DRANK TAINTED COFFEE	М	45-49
11/28/2014	8:03:00	HOSP5	DRANK TAINTED COFFEE	М	40-44
11/28/2014	8:04:00	HOSP5	DRANK TAINTED COFFEE	М	30-34
11/28/2014	8:06:00	HOSP5	DRANK TAINTED COFFEE	М	35-39
11/28/2014	8:09:00	HOSP5	INGESTED TAINTED COFFEE	М	25-29

This detected cluster represents 9 patients complaining of ingesting tainted coffee, and demonstrates Semantic Scan's ability to detect rare and novel events.

First blinded user study

Fig. 2. Results from a blinded user study comparing our MUSES approach (fixed model) to a competing, keyword-based approach. Each method's top 500 highest-scoring clusters over a 6-year time period were rated as "meaningful and highly relevant," "meaningful but not highly relevant," or "not meaningful" by public health epidem ologists at NYC DOHMH. (A) Number of meaningful clusters and (B) number of "highly relevant" meaningful clusters, detected by each method, assuming that its top-*k* highest-scoring clusters were reported. Blue line: MUSES. Red line: keyword-based approach. For any fixed number of detected clusters, MUSES identifies more meaningful clusters and more highly relevant meaningful clusters than the keyword-based approach.

"Highly relevant" clusters included bacterial meningitis and synthetic drug use. "Meaningful" but not "highly relevant" clusters included motor vehicle accidents. "Not meaningful" clusters could be due to typos, coincidence, etc.

Incorporating user feedback

- Our system enables continual improvement of performance by including public health practitioners in the loop and incorporating their feedback.
- Users can add new syndromes and specify if they would like the system to monitor or ignore them in the future.
- Blinded user studies show that this Practitioner in the Loop approach enables the system to report more relevant clusters and to avoid overwhelming the user with irrelevant findings.

Last Upsided: 1	Netriesday, Ma	y 22, 2019					(2)			
			NOVEL CLUSTERS						MONITORED CLUSTERS	•
Summary	of Detect	ed Clusters 🌔	3							
Score	Star	rt Date	End Date	Words	in Learned :	Syndrome			Affected Locations	Affected Age Range
18.0759	201	4-11-28 18:04	2014-11-28 19:59	coffee	coffee drank tainted ingested evauation morning				HOSP05	20-69
14.1742	201	4-11-27 13:01	2014-11-27 15:39	tos cou	gh				HOSP05	00-09
13.2475	201	4-11-25 08:12	2014-11-25 09:13	2014-11-25 09:13 days nasal sore congestion throat work congetion painting pressu				getion painting pressure	HOSP05	25-59
12.7226	201	4-11-25 12:27	2014-11-25 13:54	std test	s hiv boyfrie	and check			HOSP05	20-29
12.1204	201	4-11-27 11:20	2014-11-27 13:56	tos cou	gh				HOSP05	00-09
11.7565	201	4-11-25 16:16	2014-11-25 18:30	commun resfriado symptoms cold				HOSP05	00-24	
11.0672	201	4-11-25 17:20	2014-11-25 19:57	lower a	ob discolori	stion thigh	bluish forehe	ad extremities noted abdomin mo	HOSP05	00-69
10.827	201	4-11-26 19:27	2014-11-26 21:59	fever vo	mited diso	rder trasto	rno bipolar an	siedad anxiety sorethroat	HOSP05	00-59
Details for Date	r Selected Time	Cluster 4	Chief Complaint		ICD-9	Sex	Age Group	VISIT ID		
11/28/14	18:04	HOSP05	I DRANK VODRA AND NEED DER	JX.		•	35-39	1117221065722		Confi
11/28/14	19:52	HOSPUS	EVAUATION, DRANK COFFEE WIT	H CRUSHED		м	45-49	1119121064563		tain
	19:53	HOSP05	DRANK TAINTED COFFEE			M	00-09	1119121064611		e dra
11/28/14	40.07	museus	DRAWN THINTED COPPEE	JRANK TAINTED COFFEE		r	20-24	1119221003070		
11/28/14	19:57	11000000	INGESTED TAINTED COFFEE			54	33-39	1113151000505		(5)
11/28/14 11/28/14 11/28/14 11/28/14	19:57	HOSP05	DOMESTIC STRATED COLLEGE				45 40	4440404066400		
11/28/14 11/28/14 11/28/14 11/28/14	19:57 19:59 20:01	HOSP05 HOSP05	DRANK TAINTED COFFEE			м	45-49	1119121065422		

Second blinded user study

Fig. 4. Results from a blinded user study comparing the fixed and PITL models. Blue lines: PITL model. Red lines: fixed model. (A) Cumulative number of highly relevant clusters detected by each method, after each 2-week time period. The performance gap between the PITL and fixed models increases monotonically as a function of the number of labeled clusters used as training data by the PITL model. (B) Cumulative number of clusters detected by each method that were similar to clusters previously labeled "to ignore" by the user, after each 2-week time period. During the experiment, the fixed model detected 78 irrelevant clusters similar to clusters previously labeled "to ignore" by the user, after each 2-week time period. During the experiment, the fixed model detected 78 irrelevant clusters similar to clusters previously labeled "to ignore" by the user, after each 2-week time period. During the experiment, the fixed model detected by each method that were similar to clusters previously labeled "to ignore" by the user, after each 2-week time period. During the experiment of clusters detected by each method that were similar to clusters previously labeled "to ignore" by the user, after each 2-week time period. During the experiment of clusters detected by each method that were similar to clusters previously labeled "to ignore" by the user, after each 2-week time period. The PITL model identified a total of 18 highly relevant clusters that the practitioner had previously expressed interest in monitoring, as compared to 8 for the fixed model.

COVID results (March-June 2020)

Table 2. Results from MUSES runs on ED chief complaint data from NYC DOHMH during the first wave of the novel coronavirus (COVID-19) pandemic in NYC, 1 March through 30 June 2020. Highest-scoring clusters found with 25 static and 25 emerging topics, scanning over both static and emerging topics. For each cluster, we report the date, de-identified hospital ID, number of cases, cluster duration in hours, whether the cluster is COVID-related, the most common chief complaints, and the cluster's log-likelihood ratio score. ICD-10 diagnosis codes were noted when used consistently to describe cases in the cluster (9 of 33 clusters). At least 30 of the 33 detected clusters were COVID-related. Thirty of 33 clusters occurred during the peak of the pandemic in NYC (17 March through 5 April), and 32 of 33 clusters corresponded to emerging topics rather than static topics.

Date	Hosp ID	No. of cases	No. of hours	COVID	Description	Score
27 March	31	164	12	Y	"Covid 19 exposure," flu-like symptoms, testing, cough, sob	244
28 March	31	152	10	Y	Testing, exposure, cough, sore throat, syncope	178
25 March	19	43	6	Y	"Coronavirus" [ICD-10: B97.29], cough, fever, headache, sob	75
29 March	31	111	11	Y	Testing, exposure, cough, fever, diarrhea, pneumonia	69
1 April	40	26	3	Y	Influenza-like respiratory [ICD-10: J10.1]	69
17 March	7	42	8	?	Smoke inhalation [ICD-10: J70.5], cough	65
26 March	1	14	3	Y	"Covid", cough, sore throat, body ache, measured O2	58
2 April	52	64	11	Y	screening for viral disease [ICD-10: Z11.59], cough, fever, sob	54
27 April	7	19	5	Y	"Covid 19 screening", cough, fever, sob	53
24 March	4	30	6	Y	Respiratory, headache	53

Discussion

Pre-syndromic surveillance is a **safety net** that can supplement existing ED syndromic surveillance systems by alerting public health to unusual or newly emerging threats.

Our recently proposed **multidimensional semantic scan** (MUSES) can accurately and automatically discover pre-syndromic case clusters corresponding to novel outbreaks and other patterns of interest.

Thanks for listening!

More details and MUSES opensource software on our project page: <u>https://wp.nyu.edu/ml4good/pre-</u> <u>syndromic-surveillance</u>

Check out our MUSES demo later this afternoon! Or e-mail me at: <u>daniel.neill@nyu.edu</u>