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Policy Points:

� We can leverage data science and artificial intelligence to inform state and local re-
source allocation for overdose prevention.

� Data science and artificial intelligence can help us answer four questions: (1) What
is the impact of laws on access to interventions and overdose risk? (2) Where should
interventions be targeted? (3) Which types of demographic subgroups benefit the
most and the least from interventions? and (4) Which types of interventions should
they invest in for each setting and population?

� Advances in data science and artificial intelligence can accelerate the pace at which we
can answer these critical questions and help inform an effective overdose prevention
response.
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The Overdose Crisis: Epidemiologic Profile and
Potential Solutions

People in the United States are dying at record numbers from overdose.1

Overdose deaths increased from fewer than 17,000 deaths in 1999 to an estimated
100,000 deaths approximately 25 years after, with a peak of almost 108,000 deaths
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Leveraging Data Science and AI for Overdose Prevention 125

in 2022.2 Racial/ethnic minoritized groups are now particularly affected: in 2023,
the highest rates of overdose were among non-Hispanic Black and American In-
dian/Alaska Native Americans.3 Although overdoses increasingly involve both
opioids and stimulants, opioids contribute to over three-quarters of all overdose
deaths, primarily driven by illegally manufactured synthetic opioids like fentanyl.1

Provisional data indicate that we have seen an overall decline in US overdose deaths
in the past 2 years, with a decline of 4% in 2022–2023 and 17% in 2023–2024.4

Despite this substantial decline, the number of deaths per year remain higher than
they were prior to the start of the COVID-19 pandemic. Further, this decline has been
unequally experienced across racial and ethnic groups. According to the latest avail-
able race-specific data, White populations saw a 7% decline in 2022–2023 compared
with a 3% increase among Black Americans, a 39.4% increase among Native Hawai-
ian or Other Pacific Islander populations, and no change among other racial/ethnic
groups.3 These patterns signal a need to develop targeted and tailored interventions
that effectively reduce both total overdose deaths and disparities in overdose.

Federal overdose prevention strategies call for investment at four levels of action
to address the overdose crisis: primary prevention, harm reduction, evidence-based
treatment, and recovery.5 Primary prevention focuses on strategies to prevent misuse
of opioids and other drugs, and the onset of opioid use disorder (OUD) and other
substance use disorders (SUDs), including regulation of the legal drug supply and
reduction of the unregulated drug supply. Harm reduction seeks to minimize the
negative consequences of drug use by meeting people where they are—whether that
is active drug use, treatment, or recovery—and providing evidence-based services
in a compassionate manner, including drug-checking equipment, syringe service
programs (SSPs), and naloxone, among other services. Evidence-based treatment in-
cludes treatment modalities for which research has documented improved outcomes
across the spectrum of OUD and other SUD health and recovery. Pharmacological
treatment with medications for OUD including methadone, buprenorphine, and
naltrexone meets these criteria.6 Finally, recovery refers to overall improvements
in health and social functioning, increased quality of life, and deepened social
integration associated with effective treatment of OUD and other SUDs.

Investment across these four levels has strong potential to reduce overdose deaths,
yet large fractions of people who use drugs cannot access the services they need.
Primary prevention efforts have emphasized supply control by enacting laws and
programs to regulate opioid prescribing, including prescription drug monitoring
programs, prescription limits, and pain-management clinic laws, among others.
The lack of concomitant investment in primary prevention efforts that address
other drivers of demand, however, have meant that the unregulated drug market
has responded to supply regulation efforts by shifting to cheaper and more potent
synthetic products, hindering the potential decline in overdose risk (and causing an
increase in risk caused by the increased lethality of the new drug products). Although
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126 M. Cerdá, et al.

harm reduction services have expanded substantially in the past 10 years and may
have contributed to the decline in overdose deaths in the past 2 years, access to these
services remains limited in communities across the nation. For example, although a
survey of SSPs found a shift from 55% to 94% of SSPs that implemented overdose
education and naloxone distribution between 2013 and 2019, the bulk of naloxone
distribution was carried out by only 6% of SSPs.7 Further, although substantial
advances have been made in the distribution and prescribing of buprenorphine
and methadone,8 fewer than one in four people with OUD receive treatment with
buprenorphine, methadone, or naltrexone.9 The harm reduction and treatment gaps
are particularly acute for racially/ethnically minoritized groups.10–14

The Role of Public Health in Informing an
Effective Response

In the next 4 years, opioid settlement funds will likely be one of the largest sources of
funding for state and local governments to address the overdose crisis. This represents
a unique opportunity for localities to make a substantial and equitable investment in
evidence-based programs and services across the four levels of the overdose prevention
strategy. More than $50 billion in settlement funds from pharmaceutical companies
are being paid out over the next 18 years to state and local governments, and 85% of
funding must go to treatment and prevention.15

Public health scientists, in partnership with experts in data science and artificial
intelligence (AI), have an important role to play in informing state and local gov-
ernments about the allocation of resources for overdose prevention. They can help
governments answer four critical questions: (1) What impact do state and local laws
have on access to evidence-based interventions and overdose risk? (2) In which geo-
graphic areas should we target interventions? (3) What type of heterogeneity exists
across demographic subgroups in overdose risk and in the reach and effectiveness of
evidence-based interventions? and (4) What types of interventions will work best
and be most cost-effective for each setting and population, given our understand-
ing of population-level effects, geographic targeting, and subgroup heterogeneity in
intervention reach and effectiveness?

Data Science and AI: Important Tools for an
Epidemiologic Response to the Overdose Crisis

Substantial barriers in data availability and analytic capacity limit our ability to an-
swer these four critical questions. However, we can leverage tools from data science
and AI to overcome these barriers and accelerate the pace at which we can help inform
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Leveraging Data Science and AI for Overdose Prevention 127

an effective overdose prevention response. Below, we describe some of the challenges
associated with answering each of the four questions and provide some suggestions
about the role that data science and AI can play in addressing these challenges. We
illustrate each case with an example from existing research.

Evaluating the Impact of State and Local Laws on
Intervention Access and Overdose Risk: Tracking
State and Local Laws

State and local (i.e., municipal, county) laws are critical levers that have the power
to increase or restrict access to evidence-based primary prevention, harm reduction,
treatment, and recovery services. Although there has been a concerted effort to collect
data on state laws that can affect overdose prevention, harm reduction, treatment, and
recovery, available state law data sources are often outdated by several years,16 and
municipal and county law data sources are virtually nonexistent. Comprehensive and
up-to-date data on ever-evolving state laws are limited by the time-intensive effort
required to manually extract and code laws across states and over time. This issue
is compounded when the number of governments is expanded to consider counties
and cities. Simple keyword searches may also miss relevant laws that affect access to
services, especially in cases in which services are regulated under broad protections
or restrictions (e.g., local ordinances that restrict loitering or congregation in public
spaces, which are used to targetmethadone clinics with earlymorning opening hours).
Finally, manual data collection does not allow for changes to the measures included
in the legal data collection protocol midway through the process, as doing so would
require coders to go back and repeat months of work to accommodate the changes in
a consistent way.

Developments in AI—in particular, the current generation of text-embedding
models and large language models—offer a potential breakthrough in the way we
review legal materials for epidemiology. Text embeddings encode blocks of text
as vectors of numbers representing the content of the text; these embeddings can
then be used to implement better retrieval over large legal documents compared
with traditional keyword searches.17 Further, large language models (such as Ope-
nAI’s GPT-4o, Google’s Gemini 1.5, or Anthropic’s Claude 3.5 Sonnet) make it
feasible to extract information from retrieved legal text and generate quantitative
variables capturing the presence or absence and content of prespecified provisions,
together with excerpts of the legal text for human review. The broad category
of techniques following this approach is known as retrieval-augmented generation
(RAG).18–20

An example application relates to the retrieval and coding of local harm reduc-
tion laws. Using traditional methods, a team of analysts working at the NYU Center
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128 M. Cerdá, et al.

for Opioid Epidemiology and Policy, under the supervision of legal experts from the
Network for Public Health Law, spent 2 years hand coding data about local laws
relevant to harm reduction services and supplies for several hundred counties and
municipalities. We are now developing a prototype RAG pipeline with the aim of
evaluating the new approach against the traditional hand-coding method, updating
the legal data set as new laws are introduced or revised and extending the data col-
lection to other domains of law. Our team is also tailoring RAG techniques for legal
research (e.g., taking care to segment the source texts to preserve the structure of
the document, preserving section headings for additional context and accurate cita-
tions, pulling in related definitions and other terms from across the documents when
answering questions, and providing retrieved citations as validation information for
review and verification by human analysts).
The application of AI to retrieve and code laws is still in development, and

questions remain about whether the models will be able to accurately identify and
code laws as well as humans can. Limited access to legal databases without a paywall
(e.g., LexisNexis) constrains the development of automated retrieval systems. The
lack of a uniform structure for legal texts increases complexity and potential error
rates of AI approaches. Further, the quality of validation depends on how much
human-coded data there are for comparison. At the same time, this approach offers
several potential benefits, including the capacity to identify relevant legal code that
could be missed by a simple keyword search by humans, substantially lower cost and
time, and introduces greater flexibility to add new laws and variables to the resulting
legal database with the simple change in lines of code rather than through repetition
of a years’ long legal review. If successful, the application of large language models
and other forms of AI to legal research could transform the pace of discovery of the
effects of laws on the overdose crisis.

Geographic Targeting of Interventions

In a context of scarce resources, policymakers and community stakeholders need data
to guide their choices about where to allocate limited resources to prevent overdoses
from escalating in their community. The overdose crisis has evolved at a rapid pace so
that governments are often forced to make choices about where to allocate resources
in a reactive fashion using surveillance data that are often outdated or institutional or
individual knowledge. Yet, because of the dynamic nature of the crisis, past overdose
burden may not reflect current community overdose risk.21 Hence, new methods are
needed to proactively and accurately forecast how the crisis will evolve in commu-
nities so that local stakeholders can optimally target interventions to prevent future
spikes in overdose. Spatiotemporal machine learning models offer a tool to predict
which geographic areas have the highest future risk of overdose.
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Leveraging Data Science and AI for Overdose Prevention 129

The Preventing Overdose Using Information and Data from the Environment
(PROVIDENT) study22–25 illustrates the potential use of spatiotemporal machine
learning to forecast community-level overdose risk and to use these predictions to
allocate resources. The study developed ensemble-based machine learning models to
predict the 20% of census block groups (CBGs) in Rhode Island towns that would
experience at least 40% of state overdose deaths in the next 6 months and evaluated
these models with respect to various measures of accuracy and equity. The final model
successfully and consistently identified the top 20% of CBGs in which more than
40% of overdose deaths subsequently occurred.22–25 The team also developed a dash-
board tool to inform community-based harm reduction organizations about CBGs
prioritized by the model so that the organizations could use this information to steer
outreach and other services to prioritized areas. An evaluation is now underway to test
whether fine-grained targeting of interventions at the community level (based on pre-
diction from machine learning models) can reduce overdose rates and increase equity
in allocating limited prevention resources.22–25 This type of model can be adapted to
new settings to help local governments decide where to proactively allocate overdose
prevention funds given their own relevant community characteristics.

The application of machine learning as a decision support tool to inform the
allocation of community-level overdose prevention interventions requires the de-
velopment of new, practice-based model evaluation criteria that are tailored to the
concerns of local practitioners and that supplement traditional model performance
metrics (e.g., mean squared error). As part of PROVIDENT, Allen and colleagues
proposed four guiding questions that can help researchers work with practitioners
to define the parameters of a neighborhood-based forecasting model and to evaluate
model performance.23,25 First, what capacity do stakeholders have to distribute
prevention resources across a government? In PROVIDENT, resource constraints
expressed by local partners led us to focus on 20% of CBGs that could be prioritized
for overdose prevention per 6-month period. Second, what is the target preventive
potential of focused intervention deployment? In the case of PROVIDENT, our
target was to prevent 40% of overdose deaths in 5 years by targeting 20% of
CBGs, so we evaluated whether the model could predict at least 40% of deaths,
assuming 20% implementation capacity. Third, based on model predictions, how
will resources be allocated across different intersecting dimensions of equity (e.g.,
geographic, racial/ethnic, and socioeconomic)? In PROVIDENT, we evaluated the
racial/ethnic and socioeconomic profile of CBGs prioritized by the model to ensure
that equity was a key consideration in both prediction and resource allocation.
Fourth, how would local partners like to deploy resources within jurisdictions? In
the case of PROVIDENT, practitioner concerns about ensuring that all towns had
at least one prioritized CBG led us to set a model constraint to select at least one
CBG per town. Application of such evaluation criteria will ensure that machine
learning is deployed in partnership with local stakeholders so that the model fits the
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130 M. Cerdá, et al.

specific use case, priorities, and practical constraints relevant to the partners and the
setting.
Machine learning approaches to forecasting overdose risk and informing inter-

vention allocation do pose their own set of challenges. First, prediction accuracy
is limited by the number of observation time points and communities available
to train the model.26 Second, the type of data available to inform predictions may
induce selection bias. For example, data on patients receiving treatment for OUD
may only reflect risk among service-involved populations, whereas data that do not
vary over time may only help identify communities with high, stable risk of overdose
as opposed to more dynamic patterns of risk. Third, predictions are only useful to
the extent that they are used by local partners. Hence, the types of questions that
will be answered using machine learning tools, the criteria against which model
performance is evaluated, and the meaning of the predictions should all be decided in
close partnership with local stakeholders who will put the information into practice.

Measuring Heterogeneity in Risk, Reach, and
Effectiveness Across Intersectional Subgroups

Escalating disparities in overdose rates across racial and ethnic groups3 point to a po-
tentially unequal impact of current efforts to address the overdose crisis. For example,
although they experience the highest rates of overdose deaths, non-Hispanic Black
people are less likely to access harm reduction services such as overdose education and
naloxone distribution,10–12 and evidence-based SUD treatment than non-Hispanic
White people.13,14 Epidemiologists working with local partners must thus ask key
questions about the heterogeneity of intervention reach and effectiveness. That is,
which population groups do evidence-based overdose prevention policies, services,
and interventions reach, and which population groups do they fail to reach? Among
which population groups do we see a reduction in overdoses and related harms follow-
ing the implementation of a policy, service, or intervention, and in which groups do
we fail to see an effect? To better understand sources of inequity, we must go beyond
only comparing racial/ethnic groups to investigate variation among subgroups of the
population defined across intersecting demographic, social, contextual, geographic,
and behavioral dimensions. An intersectional lens reveals that the impacts of inter-
secting social statuses are often not simply additive; for example, Black women may
experience barriers to accessing overdose prevention services that are not fully ex-
plained by racism and sexism.27–29 An intersectional approach is therefore critical to
ensure true equity in investment of resources to reduce the overdose crisis.
Quantifying heterogeneity across multiple dimensions presents significant com-

putational and statistical challenges, particularly in identifying subpopulations
with the greatest inequities. These challenges stem from the need to search across
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Leveraging Data Science and AI for Overdose Prevention 131

numerous subgroups while accounting for multiple hypothesis testing, which can
increase the risk of false discoveries and inflate effect size estimates. Recent advances
in machine learning and causal inference,30–37 some of which we describe below,
offer novel solutions to these issues. By leveraging the linear-time subset scanning
property,31,34 these methods efficiently identify the most significant population
subgroups, reducing the computational burden from an exponential to a linear
number of subset evaluations and dramatically decreasing processing time from
years to seconds. Furthermore, randomization testing provides robust significance
estimates while correcting for multiple comparisons, and data-splitting techniques
ensure unbiased effect size estimation.

Two types of machine learning tools are helpful to quantify heterogeneity across in-
tersectional subgroups. First, tools such as Bias Scan38,39 and Conditional Bias Scan40

can help us quantify heterogeneity in the reach of policies, services, and interventions.
Bias Scan38,39 identifies intersectional subgroups with significantly higher or lower
probability of receiving an intervention than expected based on the overall popula-
tion. Instead, Conditional Bias Scan40 identifies intersectional subgroups for whom
the probability of an outcome is significantly different for individuals in a protected
class, compared with individuals in a nonprotected class. For example, Bias Scan could
be used to discover intersectional subgroups for whom the reach of services is signif-
icantly lower than the population as a whole (e.g., service reach among Black men
living in rural areas may be significantly lower than among the general US popula-
tion). In contrast, Conditional Bias Scan could be used to discover contexts in which
and subgroups, defined in terms of social identities other than race, for whom a service
is less likely to reach a certain racial group compared with their counterparts in other
racial groups (e.g., reach among Black men living in rural areas may be significantly
lower than among non-Black men living in rural areas).

To date, Bias Scan and Conditional Bias Scan have primarily been used for as-
sessing systematic biases in predictive models rather than inequities in the reach
of services.38–40 However, Bias Scan has been applied to identify intersectional sub-
groupsmost impacted by overpolicing, analyzing over 760,000 pedestrian stopsmade
under the New York Police Department’s “stop and frisk” policy.39

Second, tools such as Heterogeneous Treatment Effect (HTE)-Scan41 can be used
to quantify heterogeneity in the effectiveness of policies, services, or interventions.
This approach identifies intersectional subgroups for whom the treatment effect is
larger or smaller than the overall average treatment effect. We can use such an ap-
proach to detect subgroups for whom a policy, service, or intervention is significantly
more, or less, effective in preventing overdose. As a concrete example of the use of
HTE-Scan to discover heterogeneity (applied to an exposure rather than an interven-
tion), we analyzed the impact of the COVID-19 pandemic on overdose among New
York State (NYS) Medicaid enrollees.41 During March-December 2020, overdoses
increased 21% compared with prepandemic levels (March-December 2019) for the
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132 M. Cerdá, et al.

NYSMedicaid population as a whole. However, HTE-Scan identified two large inter-
sectional subgroups with statistically significant heterogeneity: overdoses increased
by 54% for Black and Hispanic men aged 45–64 years old with no documented
OUD and by 57% for blind or disabled individuals aged 45–64 years old with no
documented OUD, compared with prepandemic levels. This example demonstrates
the ability of HTE-Scan to identify intersectional subpopulations (including race,
gender, age, and/or disability status) who were most significantly impacted by the
confluence of the COVID-19 and overdose crises.
The use of machine learning tools such as Bias Scan, Conditional Bias Scan, and

HTE-Scan to search over intersectional subgroups faces several challenges. First, al-
though the use of randomization testing to determine the statistical significance of
detected subgroups correctly adjusts for the search procedure and thus avoids the
problem of high false-positive rates, this procedure is computationally expensive, and
larger search spaces correspond to reduced detection power. Second, these tools work
best when the number of data records is large; for smaller data sets, there may not be
enough data records for an intersectional subgroup to identify whether that group is
differentially impacted. Third, Bias Scan is a descriptive method, identifying differ-
ences among subgroups, and results should not be interpreted causally. In contrast,
HTE-Scan explicitly measures the causal effect of treatment, and Conditional Bias
Scan can be implicitly interpreted as measuring the causal effect of membership in
the protected class, controlling for observed variables that may affect selection into
treatment or protected class membership. These methods require standard assump-
tions for unbiased causal inference,42–44 and any unmeasured confounders can lead
to biased estimates of treatment effects. Approaches for addressing unmeasured con-
founders include sensitivity analysis45,46 as well as new approaches developed by our
team for automated discovery of natural experiments,47–49 which produce unbiased
local treatment effect estimates even in the presence of unmeasured confounding and
extrapolate these estimates to the remainder of the population.

What Types of Interventions Will Work Best for
Each Setting, and How Much to Invest

Once intervention target geographic areas or population subgroups are identified, the
next step is to work with local stakeholders to identify the types of interventions that
will have the greatest potential to reduce population rates of overdose and other harms
in prioritized sites and populations given resource constraints and cost benefit trade-
offs associated with alternative investment strategies. This is particularly salient at
the current time, with the funds promised to states, cities, and counties as a result
of lawsuits against pharmaceutical manufacturers, distributors, and retailers.15 Many
governments are engaging with public health experts to make data-driven decisions
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Leveraging Data Science and AI for Overdose Prevention 133

about how, where, and when to spend funds to ensure the highest impact immediately
and into the future. The lack of localized evidence from intervention trials that would
be suited to answer these questions highlights the need for new methods.

Computational simulation models such as systems dynamics models49 and agent-
based models50,51 are ideally suited to answer these “what if” questions. By relying
on local data (e.g., on overdose rates, risk factors, and currently deployed services
and interventions) and a methodological toolkit customized to a community’s pri-
ority concerns, simulation models can be used to advise local governments on opti-
mal investments to achieve their objectives. Robust, mathematical models of opioid
use, overdose, and other opioid-related outcomes have been in development for more
than 10 years.52,53 These models use empirical data to simulate dynamics and con-
sequences of drug use within designated geographic areas. An advantage of systems’
science simulation modeling is that it incorporates empirical data and assumptions
about connections between key inputs and outputs and can incorporate nonlinear
dynamics, feedback loops, and emergent properties that shape overdose dynamics in
specific communities and subpopulations. Table 1 provides examples of the types of
questions models can answer, which models are best suited to answer these questions,
and examples of studies that have applied these models.

One example of the utility of simulationmodels is theHealing Communities Study
(HCS).68 TheHCS aimed to reduce opioid-related overdoses by 40% in selected coun-
ties using a multisite, parallel-group, cluster randomized wait-list controlled trial.
The HCS was implemented in 67 counties in New York, Kentucky, Massachusetts,
and Ohio. The study tested an implementation science framework to assist counties
in selecting and adopting three types of evidence-based interventions: naloxone dis-
tribution, medication for OUD (MOUD) initiation and retention, and safe opioid
prescribing. In parallel to conducting an evaluation of the impact of the HCS, the
HCS team used a range of microsimulation, systems dynamics, and agent-based mod-
els to inform local governments about the types of investments that would help them
achieve the 40% overdose reduction target. For example, the NYS team used the
agent-based model Simulation of Community-Level Overdose Prevention Strategy
(SiCLOPS)61 to advise eight New York counties about the amount by which delivery
of MOUD and naloxone would have to increase to reduce overdose deaths by 40%.
County-specific models calibrated agent characteristics using data from the county on
opioid use and use disorder, treatment availability, access and uptake, and overdose.
The study used model visualization and infographic materials in a public-facing web
portal to help counties to directly engage with the data and simulation findings.61

The results from SiCLOPS demonstrated the need for locally tailored interventions
to reduce overdose deaths, as the level of investment in MOUD and naloxone dis-
tribution required depended on county urbanicity and on each county’s preexisting
treatment and harm reduction service infrastructure.
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134 M. Cerdá, et al.

Table 1. Example Questions Addressed in Computational Simulation Models

Question Model

Given the current set of circumstances
and resources, which of a defined set of
potential interventions (e.g., harm
reduction, treatment, recovery
support) is likely to have the biggest
impact on outcomes of interest in this
community in 1, 2, and 3 years?

Systems dynamics models with large
simulated populations to
approximate social networks and
mixing, forecast anticipated
changes in overdose; simpler and
focused compartmental models to
address statewide change54–58

Within a county, are there geographic
hotspots that would most benefit from
a particular intervention (e.g., harm
reduction, treatment, recovery
support)? How can we leverage social
networks to distribute resources and
expand the impact of interventions?

Agent-based models at a local,
granular level that accommodate
data on geography and distance
traveled; microsimulation models
that simulate individual
trajectories over multiple years
under different scenarios52,59–66

In which geographic areas should we
place interventions to have maximum
impact on our intended outcomes?
How could the distribution of
unprescribed buprenorphine in
networks affect opioid use and
heroin/fentanyl mortality?

Agent-based models at a local,
granular level that accommodate
data on geography, service
location, and distance
traveled62–66

How do organizational networks,
administrative structures, and
contextual factors affect the adoption
of evidence-supported behavioral
health policies within an agency?

Network-based, agent-based
models67

The application of simulation models to identify intervention priorities must be
considered in light of current methodological challenges. First, data sources used
for model calibration will define model-based outcomes and, therefore, the accuracy
and utility of estimated intervention impacts. Yet, despite investigating different
contexts and populations, most current studies using simulation approaches rely
on the same data sources. Hence, any limitations of such data will be reflected in
the estimates obtained from simulation models. Second, in most cases, researchers
rely on published estimates of intervention effects to calibrate model parameters.52

However, intervention-effect estimates may not be transportable across populations,
periods, and geographic areas.69,70 Third, the quality of simulation models directly
depends on calibration and validation; established guidelines for calibration and
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validation of simulation models should be followed in future studies using these
methods.71,72

Conclusions

Extraordinary developments in AI and data science offer new opportunities for re-
searchers to partner with policymakers and practitioners to inform evidence-based
approaches to address the overdose crisis. As public health scientists, we can leverage
data science and AI to accelerate the pace of research on urgent public health problems
such as overdose. This paper covered just four examples of the types of applications
of these methods to inform overdose prevention, including automating the extrac-
tion and coding of data on policy levers with greater frequency and fewer resources,
forecasting emerging trends in key public health problems in small geographic areas
to optimally target interventions, quantifying inequities in intervention reach and
effectiveness across intersectional subgroups, and advising governments about the
expected outcomes associated with alternative investments.

As applications of data science and AI in public health accelerate, we must bring
together experts with different disciplinary perspectives and different methodologi-
cal and modeling expertise and integrate a range of data sources that offer different
strengths. With such a consortium, we can work with local stakeholders to identify
and answer important questions communities would like answered, offering local
governments a “modeling toolbox” they can leverage to inform intervention targets
and to devise optimal responses to this continued overdose crisis.

References

1. Drug overdose deaths: facts and figures. National Institute on Drug Abuse,
National Institutes of Health. August 21, 2024. Accessed July 25, 2023. https:
//nida.nih.gov/research-topics/trends-statistics/overdose-death-rates

2. Spencer MR, Garnett MF, Miniño AM.Drug Overdose Deaths in the United States,
2002–2022. NCHS Data Brief No 491. National Center for Health Statistics;
2024.

3. Garnett MF, Miniño AM.Drug Overdose in the United States, 2003–2023. NCHS
Data Brief No 522. National Center for Health Statistics; 2024.

4. Ahmad FB, Cisewski JA, Rossen LM, Sutton P. Provisional drug overdose death
counts. National Center for Health Statistics. Updated May 14, 2025. Accessed
January 1, 2025. https://dx.doi.org/10.15620/cdc/20250305008

5. CerdáM, KrawczykN, Keyes K. The future of the United States overdose crisis:
challenges and opportunities. Milbank Q. 2023;101(S1):478-506.

6. Bell J, Strang J. Medication treatment of opioid use disorder. Biol Psychiatry.
2020;87(1):82-88. https://doi.org/10.1016/j.biopsych.2019.06.020

 14680009, 2025, S1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1468-0009.70025 by N

ew
 Y

ork U
niversity, W

iley O
nline L

ibrary on [03/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://nida.nih.gov/research-topics/trends-statistics/overdose-death-rates
https://nida.nih.gov/research-topics/trends-statistics/overdose-death-rates
https://dx.doi.org/10.15620/cdc/20250305008
https://doi.org/10.1016/j.biopsych.2019.06.020


136 M. Cerdá, et al.

7. Lambdin BH, Bluthenthal RN, Wenger LD, et al. Overdose education and
naloxone distribution within syringe service programs – United States, 2019.
MMWR Morb Mortal Wkly Rep. 2020;69(33):1117-1121. doi: 10.15585/
mmwr.mm6933a2

8. Kennalley AL, Fanelli JL, Furst JA, et al. Dynamic changes in methadone util-
isation for opioid use disorder treatment: a retrospective observational study
during the COVID-19 pandemic. BMJ Open. 2023;13(11):e074845. https:
//doi.org/10.1136/bmjopen-2023-074845

9. Jones CM, Han B, Baldwin GT, Einstein EB, Compton WM. Use of medica-
tion for opioid use disorder among adults with past-year opioid use disorder
in the US, 2021. JAMA Netw Open. 2023;6(8):e2327488. https://doi.org/10.
1001/jamanetworkopen.2023.27488

10. Khan MR, Hoff L, Elliott L, et al. Racial/ethnic disparities in opioid overdose
prevention: comparison of the naloxone care cascade inWhite, Latinx, and Black
people who use opioids in New York City.Harm Reduct J. 2023;20(1):24. https:
//doi.org/10.1186/s12954-023-00736-7

11. Nolen S, Zang X, Chatterjee A, et al. Evaluating equity in community-based
naloxone access among racial/ethnic groups in Massachusetts. Drug Alcohol De-
pend. 2022;241:109668. https://doi.org/10.1016/j.drugalcdep.2022.109668

12. Zang X,Walley AY, Chatterjee A, et al. Changes to opioid overdose deaths and
community naloxone access among Black, Hispanic and White people from
2016 to 2021 with the onset of the COVID-19 pandemic: an interrupted time-
series analysis in Massachusetts, USA. Addiction. 2023;118(12):2413-2423.
https://doi.org/10.1111/add.16324

13. Lagisetty PA, Ross R, Bohnert A, ClayM,Maust DT. Buprenorphine treatment
divide by race/ethnicity and payment. JAMA Psychiatry. 2019;76(9):979-981.
https://doi.org/10.1001/jamapsychiatry.2019.0876

14. Magee T, Peters C, Jacobsen SM, et al. Inequities in the treatment of opioid use
disorder: a scoping review. J Subst Use Addict Treat. 2023;152:209082. https:
//doi.org/10.1016/j.josat.2023.209082

15. Minhee C. Tracking opioid settlements & spending plans since
2019. Updated March 23, 2025. Accessed January 1, 2025. https:
//www.opioidsettlementtracker.com/

16. Prescription Drug Abuse Policy System. Prescription Drug Abuse Policy Sys-
tem. 2025. Accessed January 1, 2025. pdaps.org

17. Chitturi K. Understanding vector embeddings in AI search: a technical deep
dive. Int J Comput Eng Technol. 2024;15(6):1725-1733.

18. Gao Y, Xiong Y, Gao X, et al. Retrieval-augmented generation for large lan-
guage models: a survey. arXiv. Preprint revised online March 27, 2024. doi:
10.48550/arXiv.2312.10997

19. Gupta S, Ranjan R, Narayan Singh S. A comprehensive survey of retrieval-
augmented generation (RAG): evolution, current landscape and future direc-
tions. arXiv. Preprint posted online October 3, 2024. doi: 10.48550/arXiv.
2410.12837

 14680009, 2025, S1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1468-0009.70025 by N

ew
 Y

ork U
niversity, W

iley O
nline L

ibrary on [03/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.15585/mmwr.mm6933a2
https://doi.org/10.15585/mmwr.mm6933a2
https://doi.org/10.1136/bmjopen-2023-074845
https://doi.org/10.1136/bmjopen-2023-074845
https://doi.org/10.1001/jamanetworkopen.2023.27488
https://doi.org/10.1001/jamanetworkopen.2023.27488
https://doi.org/10.1186/s12954-023-00736-7
https://doi.org/10.1186/s12954-023-00736-7
https://doi.org/10.1016/j.drugalcdep.2022.109668
https://doi.org/10.1111/add.16324
https://doi.org/10.1001/jamapsychiatry.2019.0876
https://doi.org/10.1016/j.josat.2023.209082
https://doi.org/10.1016/j.josat.2023.209082
https://www.opioidsettlementtracker.com/
https://www.opioidsettlementtracker.com/
http://pdaps.org
https://doi.org/10.48550/arXiv.2312.10997
https://doi.org/10.48550/arXiv.2410.12837
https://doi.org/10.48550/arXiv.2410.12837


Leveraging Data Science and AI for Overdose Prevention 137

20. Feuerriegel S, Maarouf A, Bär D, et al. Using natural language processing
to analyse text data in behavioural science. Nat Rev Psychol. 2025;4:96-111.
https://doi.org/10.1038/s44159-024-00392-z

21. Davis CS, Green TC, Zaller ND. Addressing the overdose epidemic requires
timely access to data to guide interventions. Drug Alcohol Rev. 2016;35(4):383-
386. https://doi.org/10.1111/dar.12321

22. Schell RC, Allen B, Goedel WC, et al. Identifying predictors of opioid over-
dose death at a neighborhood level with machine learning. Am J Epidemiol.
2022;191(3):526-533. https://doi.org/10.1093/aje/kwab279

23. Allen B, Neill DB, Schell RC, et al. Translating predictive analytics for pub-
lic health practice: a case study of overdose prevention in Rhode Island. Am J
Epidemiol. 2023;192(10):1659-1668. https://doi.org/10.1093/aje/kwad119

24. Marshall BDL, Alexander-Scott N, Yedinak JL, et al. Preventing Overdose Us-
ing Information and Data from the Environment (PROVIDENT): protocol
for a randomized, population-based, community intervention trial. Addiction.
2022;117(4):1152-1162. https://doi.org/10.1111/add.15731

25. Allen B, Schell RC, Jent VA, et al. PROVIDENT: development and validation
of a machine learning model to predict neighborhood-level overdose risk in
Rhode Island. Epidemiology. 2024;35(2):232-240.

26. DeCamp M, Lindvall C. Latent bias and the implementation of artificial
intelligence in medicine. J Am Med Inform Assoc. 2020;27(12):2020-2023.
https://doi.org/10.1093/jamia/ocaa094

27. Crenshaw K. Mapping the margins: intersectionality, identity politics, and
violence against women of color. Stan Law Rev. 1991;43(6):1241-1299.
https://doi.org/10.2307/1229039

28. Crenshaw K. Race, gender, and sexual harassment. S Cal L Rev. 1992;65:1467-
1476.

29. Collins P. Black Feminist Thought: Knowledge, Consciousness, and the Politics of Em-
powerment. Routledge; 1990.

30. Neill DB. Subset scanning for event and pattern detection. In: Shekhar S, Xiong
H, Zhou X, eds. Encyclopedia of GIS. Springer; 2017:2218-2228.

31. Neill DB. Fast subset scan for spatial pattern detection. J R Stat Soc Series
B Stat Methodol. 2012;74(2):337-360. https://doi.org/10.1111/j.1467-9868.
2011.01014.x

32. Neill DB, McFowland E III, Zheng H. Fast subset scan for multivariate
event detection. Stat Med. 2013;32(13):2185-2208. https://doi.org/10.1002/
sim.5675

33. McFowland E, Speakman S, Neill D. Fast generalized subset scan for anomalous
pattern detection. J Mach Learn Res. 2013;14:1533-1561.

34. Speakman S, Somanchi S, McFowland E, Neill D. Penalized fast subset
scanning. J Comput Graph Stat. 2016;25(2):382-404. https://doi.org/10.1080/
10618600.2015.1029578

35. Fitzpatrick D, Ni Y, Neill D. Support vector subset scan for spatial pattern
detection. Comput Stat Data Anal. 2020;157(55):107149. https://doi.org/10.
1016/j.csda.2020.107149

 14680009, 2025, S1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1468-0009.70025 by N

ew
 Y

ork U
niversity, W

iley O
nline L

ibrary on [03/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1038/s44159-024-00392-z
https://doi.org/10.1111/dar.12321
https://doi.org/10.1093/aje/kwab279
https://doi.org/10.1093/aje/kwad119
https://doi.org/10.1111/add.15731
https://doi.org/10.1093/jamia/ocaa094
https://doi.org/10.2307/1229039
https://doi.org/10.1111/j.1467-9868.2011.01014.x
https://doi.org/10.1111/j.1467-9868.2011.01014.x
https://doi.org/10.1002/sim.5675
https://doi.org/10.1002/sim.5675
https://doi.org/10.1080/10618600.2015.1029578
https://doi.org/10.1080/10618600.2015.1029578
https://doi.org/10.1016/j.csda.2020.107149
https://doi.org/10.1016/j.csda.2020.107149


138 M. Cerdá, et al.

36. Herlands W, McFowland E, Wilson A, Neill D. Gaussian process subset scan-
ning for anomalous pattern detection in non-iid data. Proc Mach Learn Res.
2018;84:425-434.

37. McFowland E III, Somanchi S, Neill D. Efficient discovery of heterogeneous
quantile treatment effects in randomized experiments via anomalous pattern
detection. arXiv. Preprint revised online May 10, 2023. doi: 10.48550/arXiv.
1803.09159

38. Zhang Z, Neill DB. Identifying significant predictive bias in classifiers. arXiv.
Preprint revised online July 4, 2017. doi: 10.48550/arXiv.1611.08292

39. Ravishankar P, Mo Q, McFowland E III, Neill DB. Provable detection of
propagating sampling bias in prediction models. Proc AAAI Conf Artif Intell.
2023;37(8):9562-9569.

40. Boxer K, McFowland E III, Neill DB. Auditing predictive models for inter-
sectional biases. arXiv. Preprint posted online June 22, 2023. doi: 10.48550/
arXiv.2306.13064

41. Pamplin JR II, Wheeler-Martin K, Shroff R, Cerdá M, Neill D.
Identifying demographic predictors of increased opioid overdose risk
among New York State Medicaid enrollees following the COVID-
19 pandemic: an analysis of heterogeneous treatment effects. Power-
Point presented at: World Congress of Epidemiology 2024; Septem-
ber 27, 2024; Cape Town, South Africa. Accessed January 1, 2025.
https://www.wce2024.org/wp-content/uploads/2024/10/John-Identifying-
heterogeneous-treatment-effects-of-the-COVID-19-pandemic-on-non-fatal-
opioid-overdose-amount-New-York-State-Medicaid-enrollees.pdf

42. Igelström E, Craig P, Lewsey J, Lynch J, Pearce A, Katikireddi SV. Causal in-
ference and effect estimation using observational data. J Epidemiol Community
Health. 2022;76(11):960-966. https://doi.org/10.1136/jech-2022-219267

43. Hernán MA, Robins JM. Causal Inference: What If? Chapman & Hall; CRC
Press; 2020.

44. Imbens G, Rubin D. Causal Inference in Statistics, Social, and Biomedical Sciences.
Cambridge University Press; 2015.

45. Lash TL, Fox MP, MacLehose RF, Maldonado G, McCandless LC, Greenland S.
Good practices for quantitative bias analysis. Int J Epidemiol. 2014;43(6):1969-
1985. https://doi.org/10.1093/ije/dyu149

46. Rosenbaum P, Rubin D. Assessing sensitivity to an unobserved binary covariate
in an observational study with binary outcome. J R Stat Soc Series B Stat Methodol.
1983;45(2):212-218.

47. Herlands W, McFowland Iii E, Wilson A, Neill D. Automated local regression
discontinuity design discovery. Proc ACM SIGKDD Int Conf Knowl Discov Data
Min. 2018:1512-1520.

48. Jakubowski B, Somanchi S,McFowland Iii E, Neill D. Exploiting discovered re-
gression discontinuities to debias conditioned-on-observable estimators. J Mach
Learn Res. 2023;24(133):1-57.

49. Ip EH, Rahmandad H, Shoham DA, et al. Reconciling statistical and systems
science approaches to public health.Health Educ Behav. 2013;40(1 Suppl):123S-
131S. https://doi.org/10.1177/1090198113493911

 14680009, 2025, S1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1468-0009.70025 by N

ew
 Y

ork U
niversity, W

iley O
nline L

ibrary on [03/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.48550/arXiv.1803.09159
https://doi.org/10.48550/arXiv.1803.09159
https://doi.org/10.48550/arXiv.1611.08292
https://doi.org/10.48550/arXiv.2306.13064
https://doi.org/10.48550/arXiv.2306.13064
https://www.wce2024.org/wp-content/uploads/2024/10/John-Identifying-heterogeneous-treatment-effects-of-the-COVID-19-pandemic-on-non-fatal-opioid-overdose-amount-New-York-State-Medicaid-enrollees.pdf
https://www.wce2024.org/wp-content/uploads/2024/10/John-Identifying-heterogeneous-treatment-effects-of-the-COVID-19-pandemic-on-non-fatal-opioid-overdose-amount-New-York-State-Medicaid-enrollees.pdf
https://www.wce2024.org/wp-content/uploads/2024/10/John-Identifying-heterogeneous-treatment-effects-of-the-COVID-19-pandemic-on-non-fatal-opioid-overdose-amount-New-York-State-Medicaid-enrollees.pdf
https://doi.org/10.1136/jech-2022-219267
https://doi.org/10.1093/ije/dyu149
https://doi.org/10.1177/1090198113493911


Leveraging Data Science and AI for Overdose Prevention 139

50. Marshall BD, Galea S. Formalizing the role of agent-based modeling in causal
inference and epidemiology. Am J Epidemiol. 2015;181(2):92-99. https://doi.
org/10.1093/aje/kwu274

51. Pearce N, Merletti F. Complexity, simplicity, and epidemiology. Int J Epidemiol.
2006;35(3):515-519. https://doi.org/10.1093/ije/dyi322

52. Cerdá M, Jalali MS, Hamilton AD, et al. A systematic review of simulation
models to track and address the opioid crisis. Epidemiol Rev. 2022;43(1):147-
165. https://doi.org/10.1093/epirev/mxab013

53. Beaulieu E, DiGennaro C, Stringfellow E, et al. Economic evaluation in opioid
modeling: systematic review. Value Health. 2021;24(2):158-173.

54. Linas BP, Savinkina A, Madushani R, et al. Projected estimates of
opioid mortality after community-level interventions. JAMA Netw Open.
2021;4(2):e2037259. https://doi.org/10.1001/jamanetworkopen.2020.37259

55. Flam-Ross JM, Marsh E, Weitz M, et al. Economic evaluation of extended-
release buprenorphine for persons with opioid use disorder. JAMA Netw Open.
2023;6(9):e2329583. https://doi.org/10.1001/jamanetworkopen.2023.29583

56. Chatterjee A, Weitz M, Savinkina A, et al. Estimated costs and outcomes asso-
ciated with use and nonuse of medications for opioid use disorder during incar-
ceration and at release in Massachusetts. JAMANetw Open. 2023;6(4):e237036.
https://doi.org/10.1001/jamanetworkopen.2023.7036

57. Savinkina A, Madushani R, Eftekhari Yazdi G, et al. Population-level im-
pact of initiating pharmacotherapy and linking to care people with opioid
use disorder at inpatient medically managed withdrawal programs: an ef-
fectiveness and cost-effectiveness analysis. Addiction. 2022;117(9):2450-2461.
https://doi.org/10.1111/add.15879

58. Adams JW, Savinkina A, Fox A, et al. Modeling the cost-effectiveness and im-
pact on fatal overdose and initiation of buprenorphine-naloxone treatment at
syringe service programs. Addiction. 2022;117(10):2635-2648. https://doi.org/
10.1111/add.15883

59. Keyes KM, Hamilton A, Swanson J, Tracy M, Cerdá M. Simulating the suicide
prevention effects of firearms restrictions based on psychiatric hospitalization
and treatment records: social benefits and unintended adverse consequences.Am
J Public Health. 2019;109(S3):S236-S243. https://doi.org/10.2105/ajph.2019.
305041

60. Tracy M, Cerdá M, Keyes KM. Agent-based modeling in public health: cur-
rent applications and future directions. Annu Rev Public Health. 2018;39:77-94.
https://doi.org/10.1146/annurev-publhealth-040617-014317

61. Cerdá M, Hamilton AD, Hyder A, et al. Simulating the simultaneous impact
of medication for opioid use disorder and naloxone on opioid overdose death in
eight New York counties. Epidemiology. 2024;35(3):418-429. https://doi.org/
10.1097/ede.0000000000001703

62. Adams JW, Duprey M, Khan S, Cance J, Rice DP, Bobashev G. Examining
buprenorphine diversion through a harm reduction lens: an agent-based mod-
eling study. Harm Reduct J. 2023;20(1):150. https://doi.org/10.1186/s12954-
023-00888-6

 14680009, 2025, S1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1468-0009.70025 by N

ew
 Y

ork U
niversity, W

iley O
nline L

ibrary on [03/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1093/aje/kwu274
https://doi.org/10.1093/aje/kwu274
https://doi.org/10.1093/ije/dyi322
https://doi.org/10.1093/epirev/mxab013
https://doi.org/10.1001/jamanetworkopen.2020.37259
https://doi.org/10.1001/jamanetworkopen.2023.29583
https://doi.org/10.1001/jamanetworkopen.2023.7036
https://doi.org/10.1111/add.15879
https://doi.org/10.1111/add.15883
https://doi.org/10.1111/add.15883
https://doi.org/10.2105/ajph.2019.305041
https://doi.org/10.2105/ajph.2019.305041
https://doi.org/10.1146/annurev-publhealth-040617-014317
https://doi.org/10.1097/ede.0000000000001703
https://doi.org/10.1097/ede.0000000000001703
https://doi.org/10.1186/s12954-023-00888-6
https://doi.org/10.1186/s12954-023-00888-6


140 M. Cerdá, et al.

63. Bobashev G, Goree S, Frank J, Zule W. Pain Town, an agent-based model of
opioid use trajectories in a small community. In: Thomson R, Dancy C, Hyder
A, Bisgin H, eds. Social, Cultural, and Behavioral Modeling. Springer Interna-
tional Publishing; 2018:274-285.

64. Bobashev G, Eggleston B, Morris R, et al. Impact of recovery interventions
on opioid users. A simulation study. Drug Alcohol Depend. 2017;171:e21-e22.
https://doi.org/10.1016/j.drugalcdep.2016.08.074

65. Hoffer L, Bobashev G, Morris RJ. Simulating patterns of heroin addiction
within the social context of a local heroin market. In: Gutkin B, Ahmed SH,
eds. Computational Neuroscience of Drug Addiction. Springer Science & Business
Media; 2012:313-331.

66. Hoffer LD, Bobashev G, Morris RJ. Researching a local heroin market as
a complex adaptive system. Am J Community Psychol. 2009;44(3-4):273-286.
https://doi.org/10.1007/s10464-009-9268-2

67. Combs T, Nelson KL, Luke D, et al. Simulating the role of knowledge bro-
kers in policy making in state agencies: an agent-based model. Health Serv Res.
2022;57(Suppl 1):122-136. https://doi.org/10.1111/1475-6773.13916

68. Healing Communities Study Consortium; Samet JH, El-Bassel N, Winhusen
TJ, et al. Community-based cluster-randomized trial to reduce opioid over-
dose deaths. N Engl J Med. 2024;391(11):989-1001. https://doi.org/10.1056/
NEJMoa2401177

69. Murray EJ, Robins JM, Seage GR, Freedberg KA, Hernan MA. A comparison
of agent-based models and the parametric g-formula for causal inference. Am J
Epidemiol. 2017;186(2):131-142. https://doi.org/10.1093/aje/kwx091

70. Keyes KM, Smith GD, Koenen KC, Galea S. The mathematical limits of ge-
netic prediction for complex chronic disease. J Epidemiol Community Health.
2015;69(6):574-579. https://doi.org/10.1136/jech-2014-204983

71. Briggs AH,Weinstein MC, Fenwick EA, et al. Model parameter estimation and
uncertainty analysis: a report of the ISPOR-SMDM Modeling Good Research
Practices Task Force Working Group-6. Med Decis Making. 2012;32(5):722-
732. https://doi.org/10.1177/0272989X12458348

72. Pitman R, Fisman D, Zaric GS, et al. Dynamic transmission modeling: a report
of the ISPOR-SMDM Modeling Good Research Practices Task Force Work-
ing Group-5.Med Decis Making. 2012;32(5):712-721. https://doi.org/10.1177/
0272989X12454578

Conflict of Interest Disclosures: Drs. Cerdá and Keyes have participated in opioid litigation as
expert witnesses. Dr. Marshall is chair of the state of Rhode Island’s opioid settlement advisory
committee. The perspectives shared in this article are those of the authors alone and do not
represent the views of the state of Rhode Island nor other committee members.

Address correspondence to: Magdalena Cerdá, NYU LangoneHealth, 180Madison Ave, 5th Floor,
New York, NY 10016 (email: magdalena.cerda@nyulangone.org).

 14680009, 2025, S1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1468-0009.70025 by N

ew
 Y

ork U
niversity, W

iley O
nline L

ibrary on [03/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.drugalcdep.2016.08.074
https://doi.org/10.1007/s10464-009-9268-2
https://doi.org/10.1111/1475-6773.13916
https://doi.org/10.1056/NEJMoa2401177
https://doi.org/10.1056/NEJMoa2401177
https://doi.org/10.1093/aje/kwx091
https://doi.org/10.1136/jech-2014-204983
https://doi.org/10.1177/0272989X12458348
https://doi.org/10.1177/0272989X12454578
https://doi.org/10.1177/0272989X12454578
mailto:magdalena.cerda@nyulangone.org

	Stemming the Tide of the US Overdose Crisis: How Can We Leverage the Power of Data Science and Artificial Intelligence?
	The Overdose Crisis: Epidemiologic Profile and Potential Solutions
	The Role of Public Health in Informing an Effective Response
	Data Science and AI: Important Tools for an Epidemiologic Response to the Overdose Crisis
	Evaluating the Impact of State and Local Laws on Intervention Access and Overdose Risk: Tracking State and Local Laws
	Geographic Targeting of Interventions
	Measuring Heterogeneity in Risk, Reach, and Effectiveness Across Intersectional Subgroups
	What Types of Interventions Will Work Best for Each Setting, and How Much to Invest
	Conclusions
	References 


