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Abstract
Algorithmic recourse aims to provide individuals with actionable
recommendations to reverse unfavorable outcomes from algorith-
mic decision-makers. For these systems to foster agency and trust,
they must adhere to three principles: (1) recommendations, when
acted upon, reliably lead to favorable outcomes, (2) realistically
implementable recommendations are accessible at a high rate, and
(3) fairness considerations must be upheld. We propose a novel
training framework for algorithmic decision-makers that jointly
optimizes accessibility to recommendations, predictive fairness, and
fair algorithmic recourse, including equalized access to recommen-
dations and equalized cost of recommendations across sensitive
subpopulations, by using a burden-based multi-objective loss func-
tion. Evaluations across three data settings demonstrate significant
improvements in availability of recommendations, reduced rec-
ommendation costs, and improved individual and group fairness
properties compared to benchmarks. By imposing various con-
straints for generating recommendations, our approach ensures
that recommendations reliably lead to favorable outcomes. This
framework sets a new standard for algorithmic recourse by ensuring
that systems that provide recourse uphold reliability, accessibility,
and fairness standards, which is essential for materially increasing
agency for those subject to algorithmic decisions and growing trust
in algorithmic decision-making systems more broadly.
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1 Introduction
The field of algorithmic recourse within explainable machine learn-
ing aims to equip individuals who have received unfavorable out-
comes from an algorithmic decision-maker with the necessary in-
formation to achieve favorable outcomes in future interactions with
the same algorithmic decision-maker [54]. Systems that provide
recourse often consist of two components: an algorithmic decision-
maker (typically a fixed binary classifier) that decides which indi-
viduals are given (un)favorable outcomes, and a recommendation
generator that provides only those individuals who are given the
unfavorable outcome with a recommendation (in the form of an
action set) to perform and subsequently receive the favorable out-
come [20]. To illustrate this concretely, consider an individual who
applies for a mortgage with the following information: (Male, 55
years old, 57.5% of his cumulative credit line is still available, 586
credit score), and an algorithm determines that he is too high-risk
to be granted the mortgage. Along with the rejection, he is provided
with a recommendation to perform the following action: reduce his
credit utilization so that 79% of his cumulative credit line is avail-
able. If that action is performed, when he reapplies for a mortgage,
it will be approved.

Algorithmic recourse has been touted to support various prin-
ciples that are necessary for individuals’ well-being, including en-
abling individuals to assert agency through planning (i.e., tempo-
rally extended agency) and building societal trust in algorithmic
decision-makers at large [51]. However, for these promises to fully
materialize in practice, we argue that systems providing recourse
must adhere to the following three principles:

Principle R Theymust produce reliable recommendations, mean-
ing that when individuals perform the recommen-
dations provided by the system, and return to the
same algorithmic decision-maker, they should con-
sistently receive favorable outcomes.

Principle A The systems must provide access to realistically
implementable recommendations at a high rate for
those given unfavorable outcomes.

Principle F Systems that provide recourse must be fair with
regards to consistent treatment regardless of race,
gender, and other sensitive attributes.

Therefore, for systems that provide recourse to genuinely em-
power individuals to achieve favorable outcomes, fulfilling any
single criterion – whether fair algorithmic decision-making, or
reliability, accessibility, or fairness of recommendations – is insuffi-
cient because this is a multifaceted task and therefore requires a
multi-objective approach.

Much of algorithmic recourse research has focused primarily on
recommendation formulations and accompanying recommendation
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generator algorithms [3, 21, 27, 33, 39, 50, 54]. While we motivate
our choice of recommendation formulation, specifically regarding
Principle R, our research goal is to train algorithmic decision-
makers, in the form of gradient-based classification models,
that facilitate algorithmic recourse aligned with the above
principles of reliability, accessibility, and fairness. This is be-
cause, importantly, regardless of which recommendation definition
and accompanying generator one uses, algorithmic decision-makers
trained with recourse-agnostic objectives will often provide subpar
recourse when deployed in real-world settings. We demonstrate
this empirically by evaluating algorithmic decision-makers trained
with recourse-agnostic objectives, as shown in Section 4. Intuitively,
if a model heavily relies on features that individuals cannot mod-
ify (such as zip code at birth or race), this model will most likely
provide very little recourse to most individuals regardless of the
recommendation generator it is paired with.

We present a burden-based approach for reasoning about sys-
tems that provide recourse that considers all individuals in a target
population, not only those given the unfavorable outcome and
provided with recommendations. We formulate a multi-objective
loss function that integrates various metrics, formed from burden
measurements, to train algorithmic decision-makers, as outlined in
Section 3. Our technique addresses various issues affecting systems
that provide recourse, including non-reliable recommendations,
lack of access to recommendations, imbalanced erroneous access
to or denial of favorable outcomes, and imbalanced access to and
cost of recommendations across sensitive subpopulations.

Our novel contributions include:
• Providing a guiding set of principles pertaining to reliability
of recommendations, access to recommendations, and fairness
for systems that provide recourse (Section 1).
• Illuminating a comprehensive set of fairness issues that affect
systems that provide recourse (Section 2.2).
• Introducing a burden measurement that encapsulates predic-
tive outcomes, access to recommendations, and cost of rec-
ommendations for the full target population, as well as an
individual fairness measurement (“excess burden”) that forms
the foundation for a multi-objective loss function for training
algorithmic decision-makers (Section 3).
• An empirical evaluation of our method for three data settings
that highlights the statistically significant improvements for
relevant metrics of our method compared to the benchmark
methods (Section 4), including an ablation study (Section 4.1)
that empirically supports our claim that to materialize algo-
rithmic recourse’s full potential, systems must simultaneously
optimize multiple objectives.

By offering recommendations, systems that provide recourse
often subtly imply that the responsibility for achieving favorable
outcomes rests solely on individuals, deflecting the responsibility
away from the system itself [47]. Our research offers a principled
method to improve the algorithmic decision-maker itself (i.e., the
underlying decisionmodel), emphasizing that designers of these sys-
tems share responsibility, through the algorithmic decision-maker
they provide, in enabling individuals to achieve favorable outcomes.

2 Motivation
2.1 Formalizations of Recommendations with

Respect to Principle R and Principle A
As stated above, systems that provide recourse consist of an algo-
rithmic decision-maker,ℎ𝜃 (·), which takes as input an individual 𝑖’s
feature values, 𝑥𝑖 = {𝑥𝑖 𝑗 }. The algorithmic decision-maker either
assigns individual 𝑖 a favorable outcome, ℎ𝜃 (𝑥𝑖 ) = 1, or unfavor-
able outcome, ℎ𝜃 (𝑥𝑖 ) = 0. If individual 𝑖 is given the unfavorable
outcome, ℎ𝜃 (𝑥𝑖 ) = 0, a recommendation generator algorithm, 𝐴(·),
produces a recommendation for individual 𝑖 . These recommenda-
tion algorithms are often, at their core, optimization solvers for
minimization problems. For example, an early formulation of a
recommendation as a constrained minimization problem adapted
from [54] is displayed below:

𝑥
𝑟𝑒𝑐−𝐿𝑝
𝑖

= argmin
𝑥 ′∈𝑥

{dist(𝑥𝑖 , 𝑥 ′) | ℎ𝜃 (𝑥 ′) = 1}

where dist(·, ·) is a Lp distance function.
(1)

Therefore, a recommendation generator algorithm, 𝐴(·), that
employs the recommendation definition in Equation 1 takes as
input a point, 𝑥𝑖 , that falls on the negative side of ℎ𝜃 (·)’s decision
boundary, and finds the nearest point to 𝑥𝑖 in the feature space,
as measured by a Lp distance function, that falls on the positive
side of ℎ𝜃 (·)’s decision boundary. 𝑥𝑟𝑒𝑐−𝐿𝑝

𝑖
can be decomposed as

𝑥
𝑟𝑒𝑐−𝐿𝑝
𝑖

= 𝑥𝑖 +𝛿∗𝑖 , where 𝛿
∗
𝑖
is treated as the action set an individual

𝑖 needs to perform to get a favorable outcome from ℎ𝜃 (·) [20].
Ustun et al. [50] pointed out that when 𝛿∗ is unrestricted, an

individual could be recommended to change their race, decrease
their age, increase their age to 250, etc. Therefore, they proposed a
taxonomy for restricting action set spaces through additional con-
straints, encoded as 𝛿𝑖 ∈ 𝐹 (𝑥𝑖 ), to ensure that recommendations
are actionable and plausible. Additionally, they highlighted that
dist(·, ·) as an Lp distance function might be an ill-suited measure-
ment to minimize in the context of algorithmic recourse because the
distance within a feature space might not be analogous to the effort
it requires for an individual to shift their features. Therefore, they
present various options for cost(·, ·) as a parametric component of
the optimization problem. A formal definition, which is adapted
from [50], is presented below:

𝑥𝑟𝑒𝑐−𝑐𝑜𝑠𝑡𝑖 = 𝑥𝑖 + 𝛿∗𝑖
where 𝛿∗𝑖 = argmin

𝛿𝑖 ∈𝐹 (𝑥𝑖 )
{cost(𝑥𝑖 , 𝛿𝑖 ) | ℎ𝜃 (𝑥𝑖 + 𝛿𝑖 ) = 1} (2)

The final formulation we explore was introduced by Karimi
et al. [21], who critique the assumption that features can change
independently of each other. They show that acting on a recommen-
dation to change one feature may unintentionally alter additional
features, and therefore cannot guarantee a favorable result in fu-
ture interactions with the algorithmic decision-maker unless these
causal relationships are taken into account.

For concreteness, we introduce a simulated mortgage lending
setting, which we use throughout the paper. Consider a dataset for
a mortgage lending scenario where the features for each individual
are gender (𝑋1), age (𝑋2), proportion of cumulative credit line avail-
able (𝑋3), and credit score (𝑋4). These features relate to each other
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𝑈1 𝑋1

𝑈2 𝑋2

𝑈3 𝑋3

𝑈4

𝑋4

𝑋1 := 𝑈1

𝑋2 := 𝑈2

𝑋3 := 𝑓3 (𝑋2) +𝑈3

𝑋4 := 𝑓4 (𝑋1, 𝑋2, 𝑋3) +𝑈4

Figure 1: The structural causal model (SCM)M for a simple simulated mortgage lending setting. Endogenous variables: 𝑋1
is gender. 𝑋2 is age. 𝑋3 is proportion of cumulative credit line available. 𝑋4 is credit score. Exogenous variable distributions:
𝑈1 ∼ Bernoulli(0.50). 𝑈2 ∼ N(38, 22) truncated to [18, 75] ∩ Z. 𝑈3 ∼ Uniform(0.40, 1.09). 𝑈4 ∼ Uniform(200, 400). Structural
functions: 𝑓3 (𝑋2) = −0.005 ∗ 𝑋2. 𝑓4 (𝑋1, 𝑋2, 𝑋3) = 𝑋1 + 50 ∗ 𝑋2 + 400 ∗ 𝑋3. Outcome variable (not shown): whether an individual
is trustworthy for a mortgage. Note, this is a simplified, simulated scenario rather than a complete and accurate model of
mortgage lending. For more information about this data setting, including simulation algorithm, reference Appendix D.1.1. For
more information on SCMs, reference Appendix B.

through the causal relationships shown in a structural causal model
(SCM),M = (U,X, F ), in Figure 1 [21, 36], which takes the form
of an additive noise model [35]. Here U are exogenous variables,
X are endogenous variables, and F are functional relationships
between variables. If an individual who was denied a mortgage was
given a recommendation that involved solely modifying variable𝑋2
to 𝑥 ′ (equivalently, performing do(𝑋2 = 𝑥 ′) using the do-operator),
this would result in variables 𝑋3 and 𝑋4 being modified as well
because 𝑋2 is a parent of both variables inM, as shown in Fig-
ure 1. (For a primer on SCMs and the abduction-action-prediction
framework using the do-operator, please reference Appendix B.)
Therefore, the following definition, adapted from [21], accounts
for the causal effects of recommendations when determining if a
recommendation results in a favorable outcome:

𝑥𝑟𝑒𝑐−𝑆𝐶𝑀𝑖 = 𝑥𝑖 | do(𝑥𝑖 𝑗 + 𝛿∗𝑖 𝑗 )∀ 𝑗∈𝛿∗𝑖
where 𝛿∗𝑖 = argmin

𝛿𝑖 ∈𝐹 (𝑥𝑖 )
{cost(𝑥𝑖 , 𝛿𝑖 ) | ℎ𝜃 (𝑥𝑖 | do(𝑥𝑖 𝑗 + 𝛿𝑖 𝑗 )∀ 𝑗∈𝛿𝑖 ) = 1}

(3)
For Equation 3, we assume 𝛿𝑖 only contains the recommended

actions, indexed by 𝑗 , for individual 𝑖 , and the do-operator uses the
specific SCM,M, for the given data setting. A recommendation gen-
erator algorithm that assumes the recommendation formulation in
Equation 3 could be represented as𝛿∗

𝑖
= 𝐴(𝑥𝑖 , ℎ𝜃 (·), cost(·, ·), 𝐹 (·),M)

where 𝑥𝑟𝑒𝑐−𝑆𝐶𝑀
𝑖

= 𝑥𝑖 | do(𝑥𝑖 𝑗 + 𝛿∗
𝑖 𝑗
)∀ 𝑗∈𝛿∗

𝑖
. Unlike Equation 2,

𝑥𝑟𝑒𝑐−𝑆𝐶𝑀
𝑖

≠ 𝑥𝑖+𝛿∗𝑖 , since modifying the variables in 𝛿∗
𝑖
also impacts

their descendants in the SCM.
We present the evolutionary nature of these recommendation

formulations (Equations 1-3) to highlight the following phenome-
non in algorithmic recourse research, which is supported by proofs
in [21, 50]: as the definition of a valid recommendation be-
comes more parametric and the corresponding optimization
problem becomes more constrained, the recommendations
become more reliable in terms of their realistic mapping
to low-effort actions for individuals and their execution re-
sulting in favorable outcomes in the future. Therefore, to en-
sure that recommendations result in favorable outcomes, which

fully addresses Principle R, and are executable for individuals,
which partially addresses Principle A, we adopt Equation 3 as
the recommendation definition we utilize in this research, and
we use the accompanying recommendation generator algorithm,
MINT [19]. For conciseness, for the remainder of the paper, we use
𝐴𝜃 (𝑥𝑖 ) = 𝐴(𝑥𝑖 , ℎ𝜃 (·), cost(·, ·), 𝐹 (·),M), where 𝐴𝜃 (·) assumes the
recommendation definition in Equation 3 and takes the classifier’s
output ℎ𝜃 (·) as its input.

Additionally, we use the following cost function which is com-
monly used in algorithmic recourse research [19–21]:

cost(𝑥𝑖 , 𝛿𝑖 ) =
1
𝑚

∑︁
∀ 𝑗∈𝛿𝑖

𝑤 𝑗 |𝛿𝑖 𝑗 |

where𝑤 𝑗 =
1

max∀𝑖 (𝑥𝑖 𝑗 ) −min∀𝑖 (𝑥𝑖 𝑗 )

(4)

In Equation 4, as described in [19–21],𝑚 is the number of action-
able features in the dataset. Actionable refers to features that can
be used in action sets, excluding unmodifiable features such as race
and zip code at birth [20, 50]. This cost function normalizes the cost
of an action independently for each feature based on its observed
data distribution, allowing for diverse data types and settings. For
the feasibility and plausibility constraints we used, 𝐹 (·), for each
data setting, see Appendix D.1.

As the recommendation definitions become more complex and
the corresponding optimization problems becomemore constrained,
two non-ideal scenarios can occur that are antithetical to Principle
A: (1) individuals given unfavorable outcomes have no access to
recommendations, and will continue to receive the unfavorable out-
come regardless of what future actions they take; or (2) individuals
are provided with very high-cost recommendations.

When scenario (1) occurs for individual 𝑖 , we say that there
is no coverage for individual 𝑖 , and denote this as 𝐴𝜃 (𝑥𝑖 ) = ∅,
as defined in [20, 25]. An inadequate recommendation generator
could result in low coverage of recommendations. However, if the
algorithmic decision-maker relies solely on non-actionable features,
such as race, zip code at birth, or number of past late payments, then
regardless of the recommendation generator, all individuals with
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unfavorable outcomes will have no recommendations available
to them. For scenario (2), as noted in [47], providing high-cost
recommendations could effectively prevent many individuals from
being able to act upon them, therefore, there are ethical motivations
for designing systems that provide low-cost recommendations.

2.2 Fair Algorithmic Recourse in Relation
to Principle F

As mentioned in Principle F, systems that provide recourse should
conform to some notation of fairness. Gupta et al. [15] proposed a
group parity measurement for fair algorithmic recourse:

𝛼eq-cost =

������� 1��𝑆−𝑎 �� ∑︁
𝑥𝑖 ∈𝑆−𝑎

cost(𝑥𝑖 , 𝛿∗𝑖 ) −
1��𝑆−
𝑎′

�� ∑︁
𝑥𝑖 ∈𝑆−𝑎′

cost(𝑥𝑖 , 𝛿∗𝑖 )

������� , (5)

where a binary sensitive attribute 𝑗 is used to partition the set of
individuals given unfavorable outcomes into two groups, 𝑆−𝑎 =

{𝑥𝑖 ∈ 𝑥 : ℎ𝜃 (𝑥𝑖 ) = 0, 𝑥𝑖 𝑗 = 𝑎} and 𝑆−
𝑎′ = {𝑥𝑖 ∈ 𝑥 : ℎ𝜃 (𝑥𝑖 ) =

0, 𝑥𝑖 𝑗 = 𝑎′}. Fairness is measured by the absolute difference between
subpopulations 𝑎 and 𝑎′ of the average cost of recommendations for
individuals given unfavorable outcomes. Higher 𝛼eq-cost represents
a larger disparity in costs of recommendations.

Example 1: Let’s say we have an algorithmic decision-maker,
ℎ
eq-cost
𝜃

(·), that is trained to minimize the balanced 0/1 loss and
𝛼eq-cost (defined in Equation 5) for the simulated mortgage data
setting introduced in Section 2.1 and shown in Figure 1. In Fig-
ure 2 we show a plot of the misclassification rates and recourse for
ℎ
eq-cost
𝜃

(·) for a balanced sample of the simulated mortgage data.
Below are some observations for Figure 2:

• For those individuals with negative ground truth labels (who
should be given the unfavorable outcome), men are erro-
neously and advantageously being granted the favorable
outcome at a higher rate (0.18 FPR for men vs. 0 FPR for
women). Women have a lower rate of coverage by 30%: they
have no access to the favorable outcome regardless of their
future actions.
• For those individuals with positive ground truth labels (who
should be given the favorable outcome), women are erro-
neously (and to their disadvantage) being granted the unfa-
vorable outcome at a higher rate (0.90 FNR for women vs.
0.70 FNR for men). Women have a lower rate of coverage
by 24%: even though they should have been given the favor-
able outcome, they have no access to the favorable outcome
regardless of their future actions .

These observations about Figure 2 reveal three fairness issues
overlooked by 𝛼eq-cost: (1) imbalanced misclassification rates across
sensitive subpopulations, creating disparities in erroneous access
to or denial of favorable outcomes; (2) disparities in recommen-
dation coverage rates across sensitive subpopulations; and (3) the
lack of stratification by the true label (positive and negative class)
when equalizing recommendation costs across sensitive subpopu-
lations. This allows for expected costs of recommendations to be
equalized in suboptimal ways, such as by equalizing the cost of

recommendations for individuals who are false negatives in sen-
sitive subpopulation 𝐴 with individuals who are true negatives in
sensitive subpopulation 𝐵.

An additional fairness metric was proposed in [53] that defines
individual fair algorithmic recourse as an equal cost of recommen-
dations for an individual and a counterfactual estimation of that
individual if they were a member of the complement sensitive sub-
population (formally defined in Equation 6). This definition assumes
that there is an underlying SCM,M, and the counterfactual for
𝑥𝑖 is 𝑥𝐶𝐹𝑖

= 𝑥𝑖 | do(1 − 𝑥𝑖 𝑗 ), as proposed in [26], and ℎ𝜃 (·) is fair
if 𝛼 ind-fair = 0. Here 𝛿∗𝐶𝐹

𝑖
= 𝐴𝜃 (𝑥𝐶𝐹𝑖

). (To clarify, while the same
SCM for a given setting is used to generate counterfactual estimates,
𝑥𝐶𝐹
𝑖

, and recommendations, 𝑥𝑟𝑒𝑐−𝑆𝐶𝑀
𝑖

(Equation 3), 𝑥𝐶𝐹
𝑖

is not a
recommendation.)

𝛼 ind-fair = max
𝑥𝑖 ∈𝑥 :ℎ𝜃 (𝑥𝑖 )=0

���cost(𝑥𝑖 , 𝛿∗𝑖 ) − cost(𝑥𝐶𝐹𝑖 , 𝛿∗𝐶𝐹𝑖 )
��� (6)

As explained in [53], to ensure 𝛼 ind-fair = 0, the sensitive at-
tribute 𝑥𝑖 𝑗 and all descendants of 𝑥𝑖 𝑗 inM must be ignored when
training ℎ𝜃 (·). In many contexts, this results in very few or no fea-
tures available to train ℎ𝜃 (·), such as in the First-Year Law School
Success setting in Figure 5b if one were considering gender and
race as the axes for forming sensitive subpopulations. We record
this metric in our evaluations but we do not directly use it as a
benchmark method.

Example 2: In this example, we train an algorithmic decision-
maker, ℎ0/1

𝜃
(·), to minimize the balanced 0/1 loss for the simulated

mortgage dataset in Figure 1. In Figure 3, we see a sample of men
and women and their counterfactuals when a hard intervention is
performed using the SCM on their gender. (See Appendix B for
information on calculating counterfactuals for SCMs.) There are
men and women with the same outcome as their counterfactuals
( or ). For all men where this is not the case, the real-world
man is at an advantage compared to his counterfactual, either by
having lower recommendation cost than his counterfactual ( ) or
erroneously being granted the favorable outcome when his coun-
terfactual was not ( ). Conversely, for all women where their
counterfactual has a different outcome, they are at a disadvantage
compared to their counterfactual, for example:
• represents a true negative woman whose counterfactual,
which estimates what would have happened to her if she
was a man, would have been given the favorable outcome
• represents a true negativewomanwith no coveragewhose
counterfactual would have had access to recourse
• represents a false negative woman with no coverage
whose counterfactual would have been given the favorable
outcome
• represents a false negative woman with no coverage
whose counterfactual would have access to recourse

This highlights a key point: directionality matters when evalu-
ating the difference between the costs of recourse for an indi-
vidual and their counterfactual. The absolute value in 𝛼 ind-fair

(Equation 6) erases that directionality, which represents advantage
(negative direction) and disadvantage (positive direction) for real-
world individuals compared to their counterfactual, and could be
correlated with protected class membership, as shown in Figure 3.
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Figure 2: Plots of classification and recourse for 200 individuals from test data of the Simulated Mortgage Data (shown in
Figure 1) in total (50 sampled from each subplot) for algorithmic decision-maker, ℎeq-cost

𝜃
(·), where 𝛼eq-cost = 0.011 for test data.

Proportion with no coverage is calculated for all individuals in the subsample given the unfavorable outcome and mean cost is
calculated for all individuals in the subsample given the unfavorable outcome with recommendations (i.e., with coverage).

Figure 3: Sample of 40 individuals (upper row: 20 men, lower row: 20 women) for simulated mortgage setting in Figure 1
and their outcomes and recourse for ℎ0/1

𝜃
(·). The left-side shading of a circle represents individual 𝑥𝑖 , the right-side shading

represents their counterfactual 𝑥𝐶𝐹
𝑖

= 𝑥𝑖 | do(1 − 𝑥𝑖 𝑗 ), and 𝑥𝑖 𝑗 is the indicator variable representing membership in a sensitive
subpopulation. Lighter blue represents lower cost recommendations. For this sample, 𝛼 ind-fair = 0.094 and the dot in the green
highlighted background represents that value ( ) - a man is at an advantage compared to his counterfactual because he has
lower cost recommendations. The dot enclosed in the pink background represents the individual at the most disadvantage in
this sample: a false negative woman with no coverage whose counterfactual based on an hard intervention on gender would
have been given the favorable outcome ( ). 𝛼 ind-fair does not account for this individual because it only measures differences
for those who received unfavorable outcomes with coverage, whose counterfactual also received an unfavorable outcome with
coverage.
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3 Our Approach
In Section 3.1, we introduce an individual-level measure of bur-
den, which encapsulates predictive outcome (access to favorable
outcomes) and access to and cost of recommendations. We also
introduce an individual fairness measure (“excess burden”). We
then introduce a multi-objective loss function that utilizes, at its
core, the burden and excess burden measurements to train fair al-
gorithmic decision-makers with high access to recommendations
in Section 3.2.

3.1 Burden-Based Measurements of Access, Cost
of Algorithmic Recourse and Individual
Fairness

As shown in Section 2.2, systems that provide recourse, when ex-
amining misclassification rates and access to recommendations
(coverage rates), can have disparate impacts across sensitive sub-
populations. This is primarily because many frameworks for mea-
suring fair algorithmic recourse only examine the subset of data
that were given an unfavorable outcome and have a recommenda-
tion available. As shown in Figure 4, this might only cover a small
subset of the data. We propose a function 𝑏 (𝑥𝑖 ) that produces a
burden measurement that encapsulates all the possible scenarios
that could occur for an individual 𝑖 who interacts with a system
that provides recourse.

𝑏 (𝑥𝑖 ) =


0 if ℎ𝜃 (𝑥𝑖 ) = 1,
𝑒
𝑐𝑖
𝜆 −1

𝑒
𝑐𝑖
𝜆 +1

if ℎ𝜃 (𝑥𝑖 ) = 0 and 𝐴𝜃 (𝑥𝑖 ) ≠ ∅,

1 if ℎ𝜃 (𝑥𝑖 ) = 0 and 𝐴𝜃 (𝑥𝑖 ) = ∅,

(7)

where 𝑐𝑖 = cost(𝑥𝑖 , 𝛿∗𝑖 ) and 𝛿
∗
𝑖
= 𝐴𝜃 (𝑥𝑖 ).

As shown in Equation 7, if individual 𝑖 is given the favorable out-
come,ℎ𝜃 (𝑥𝑖 ) = 1, they have no burden to get the favorable outcome
and 𝑏 (𝑥𝑖 ) = 0. If individual 𝑖 is given the unfavorable outcome, and
they have a recommendation provided by the recommendation gen-
erator, 𝐴𝜃 (𝑥𝑖 ), the cost of their recommendation, 𝑐𝑖 = cost(𝑥𝑖 , 𝛿∗𝑖 ),
is mapped between 0 and 1 using a hyperbolic tangent function
scaled by 𝜆 (where 𝜆 > 0). If individual 𝑖 is given the unfavorable
outcome with no coverage, they are given the maximum burden of
1. Note, 𝜆 calibrates the burden measurement given the cost func-
tion and data setting. For the cost function defined in Equation 4
and our data settings, we use 𝜆 = 0.10.

Next, we define excess burden as the positive difference between
the burdens for individual 𝑥𝑖 and individual 𝑥𝑖 ’s counterfactual,
𝑥𝐶𝐹
𝑖

:

𝑒 (𝑥𝑖 ) = max(𝑏 (𝑥𝑖 ) − 𝑏 (𝑥𝐶𝐹𝑖 ), 0) where 𝑥
𝐶𝐹
𝑖 = 𝑥𝑖 | do(1 − 𝑥𝑖 𝑗 ). (8)

This is similar to 𝛼 ind-fair in that it is an individual fairness
measurement, but it only captures disadvantage for the real-world
individual compared to their counterfactual, as discussed in Ex-
ample 2 of Section 2.2. Additionally, 𝛼 ind-fair is only defined if an
individual and their counterfactual get the unfavorable outcome
with a recommendation (have coverage), while our burden measure-
ment 𝑏 (·) accounts for all scenarios for an individual 𝑥𝑖 and their
counterfactual 𝑥𝐶𝐹

𝑖
, such as being granted the favorable outcome

or having no coverage (Figure 4).

3.2 Training Fair Algorithmic Decision-Makers
that Provide High Access to Low-Cost
Recommendations

We use the individual-level burden and excess burden measure-
ments in Equations 7 and 8 to construct a multi-objective loss
function, incorporating loss terms for accuracy, accessibility and
low cost recommendations (minimizing overall burden), individual
fairness (minimizing excess burden), and group fairness (balanc-
ing excess burden). We then use this loss function to train algo-
rithmic decision-makers that provide high access to realistically
implementable recommendations (Principle A) and uphold various
fairness criteria (Principle F). Fulfilling Principle R is a matter of
adopting a recommendation definition that reliably results in a
favorable outcome, and is discussed in Section 2.1.

We propose the following loss function to minimize while train-
ing algorithmic decision-makers:

L∗
𝜃
(·) = Lacc

𝜃
(·) + Lburd

𝜃
(·) + Lexc-burd

𝜃
+ Lbal-exc-burd

𝜃
(·) (9)

Wewill walk through each component of Equation 9. ForLacc
𝜃
(·),

for our research, we use the balanced 0/1 loss:

Lacc
𝜃
(·) = (𝛽𝐹𝑃 + 𝜖corr) ∗ 𝐹𝑃𝑅 + 𝛽𝐹𝑁 ∗ 𝐹𝑁𝑅 (10)

Therefore, by minimizing Equation 10, the misclassification rates
(FPR and FNR) decrease. Other functions for predictive performance
could be substituted in Lacc

𝜃
(·), if one were concerned with calibra-

tion, etc. We will discuss the correction parameter, 𝜖corr, below. For
Lburd
𝜃
(·), we use the following:

Lburd
𝜃
(·) = 𝛽burd

𝐹𝑁
(E𝑥𝑖∼𝐹𝑁 [𝑏 (𝑥𝑖 )] ∗ 𝐹𝑁𝑅)

+𝛽burd
𝑇𝑁
(E𝑥 𝑗∼𝑇𝑁 [𝑏 (𝑥 𝑗 )] ∗𝑇𝑁𝑅) (11)

Therefore, for Equation 11, for instances that are classified as
negative (false negatives and true negatives), we minimize their bur-
den, which increases the expected coverage for predicted negative
instances, and also minimizes the average cost of recommendations
for individuals given the unfavorable outcome with coverage. This
aligns with Principle A which states that recommendations need to
be available at a high rate and at a low enough cost that they can
be realistically implemented. Note that, by multiplying by FNR and
TNR respectively, the terms in Equation 11 represent the average
burdens for all individuals with 𝑦𝑖 = 1 and 𝑦𝑖 = 0 respectively,
not only the individuals given the unfavorable decision, since indi-
viduals who are classified positive have zero burden. We provide
the functionality for practitioners to set different weights for false
negatives and true negatives through the parameters 𝛽burd

𝐹𝑁
and

𝛽burd
𝑇𝑁

, since one may be more concerned with low-cost recourse for
someone given the unfavorable outcome in error.

Next, we define the loss component forminimizing the individual-
fairness measure of excess burden:

Lexc-burd
𝜃

(·) = 𝛽exc-burd
𝐹𝑁

(E𝑥𝑖∼𝐹𝑁 [𝑒 (𝑥𝑖 )] ∗ 𝐹𝑁𝑅)

+𝛽exc-burd
𝑇𝑁

(E𝑥 𝑗∼𝑇𝑁 [𝑒 (𝑥 𝑗 )] ∗𝑇𝑁𝑅) (12)

Our L𝑒𝑥𝑐−𝑏𝑢𝑟𝑑
𝜃

(·) in Equation 12 takes a similar form in terms
of the parameterization by false negatives and true negatives using
𝛽exc-burd
𝐹𝑁

and 𝛽exc-burd
𝑇𝑁

, but is aimed at minimizing excess burden
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Figure 4: Diagram showing workflow of systems that provide algorithmic recourse. The pink box encapsulates the subset of
data that is examined by the fairness measures 𝛼eq-cost (Equation 5) and 𝛼 ind-fair (Equation 6). The green box shows all the
pieces of information (predictive outcome, coverage, and cost of recommendation) encapsulated in our burden measurements
and covers all the individuals in a population.

rather than burden. This term mitigates fairness issues related to
imbalances in coverage and cost of recommendations that disadvan-
tage an individual 𝑥𝑖 compared to their counterfactual 𝑥𝐶𝐹

𝑖
, which

addresses Principle F. Note that we minimize the population aver-
age of the excess burden, in contrast to constraining 𝛼 ind-fair = 0
as in [53], since the latter could greatly limit the features usable
for training. Next, we define the group-fairness measurement of
balanced excess burden:

Lbal-exc-burd
𝜃

(·) = 𝛽bal-exc-burd−
���E𝑥𝑖∼𝑆−𝑎 [𝑒 (𝑥𝑖 )] − E𝑥 𝑗∼𝑆−𝑎′ [𝑒 (𝑥 𝑗 )]

���
+𝛽bal-exc-burd+

���E𝑥𝑘∼𝑆+𝑎 [𝑒 (𝑥𝑘 )] − E𝑥𝑙∼𝑆+𝑎′ [𝑒 (𝑥𝑙 )]��� ,
(13)

where 𝑆−𝑎 = {𝑥𝑖 : 𝑦𝑖 = 0, 𝑥𝑖 𝑗 = 𝑎}, 𝑆−
𝑎′ = {𝑥𝑖 : 𝑦𝑖 = 0, 𝑥𝑖 𝑗 = 𝑎′}, 𝑆+𝑎 =

{𝑥𝑖 : 𝑦𝑖 = 1, 𝑥𝑖 𝑗 = 𝑎} and 𝑆+
𝑎′ = {𝑥𝑖 : 𝑦𝑖 = 1, 𝑥𝑖 𝑗 = 𝑎′}. Therefore,

𝐿bal-exc-burd
𝜃

(·) in Equation 13 serves to measure the imbalance in
excess burden across sensitive subpopulations 𝑎 and 𝑎′ stratified
by true label (positive and negative class), correcting the issue
pertaining to 𝛼eq-cost of comparing true negatives to false negatives
observed in Example 1 of Section 2.2. Given that excess burden
represents the disadvantage an individual 𝑖 faces compared to their
counterfactual, this term maintains that the excess burden should
be distributed equally across sensitive subpopulations conditional
on their true label. Importantly, since expectations are taken over
all individuals (not just those who receive negative outcomes with
coverage), minimizing Lbal-exc-burd

𝜃
also minimizes imbalances in

misclassification rates, which addresses issues of predictive fairness,
in relation to Principle F.

Lastly, 𝜖corr in Equation 10 is added to the false positive rate
penalty to mitigate the risk of true negatives being flipped to false
positives to minimize L∗

𝜃
(·), given that true negatives often have

higher cost recommendations or no coverage, while the burden and
excess burden loss terms are 0 for a false positive. Therefore, we set
𝜖corr ≈ 𝛽burd

𝑇𝑁
E𝑥𝑖∼𝑇𝑁 [𝑏 (𝑥𝑖 )] where E𝑥𝑖∼𝑇𝑁 [𝑏 (𝑥𝑖 )] is estimated for

a data setting using a baseline classifier (logistic regression). We
note all values of 𝜖corr used for each data setting, as well as 𝛽𝐹𝑃
and 𝛽𝐹𝑁 , in Appendix D.3, Table 6.

Therefore, our overall objective is to learn the classifier parame-
ters 𝜃 for ℎ∗

𝜃
(·) that minimize L∗

𝜃
(·):

𝜃∗ = argmin
𝜃

(L∗
𝜃
(·)) where ℎ∗

𝜃
(·) and 𝐴𝜃 (·) are inputs for L∗𝜃 (·)

(14)
L∗
𝜃
(·) is calculated based on the predictions of ℎ∗

𝜃
(·) and the

algorithm that generates recommendations, 𝐴𝜃 (·), which takes
ℎ∗
𝜃
(·) as an input. The recommendation generator, and its corre-

sponding optimization problem (defined in Equation 3), forms the
constraints based on various pieces of information including 𝑥𝑖 and
ℎ𝜃 (·). The specific algorithm we use, MINT [19], forms and solves
the optimization problem independently for each recommendation
generated, and consequentially, as ℎ𝜃 (·) is modified the optimiza-
tion constraints change. Therefore, Equation 14 is a classic bi-level
optimization problem, where the outer optimization problem solves
Equation 14 and the inner problem finds the minimal cost recom-
mendation using 𝐴𝜃 (·) conditional on ℎ𝜃 (·). As a result, L∗𝜃 (·) is
not easily differentiable [13]. To make our approach recommen-
dation generator-agnostic, applicable for all differentiable models,
and flexible for variations of our loss function, we use a method re-
lated to finite differences method called Simultaneous Perturbation
Stochastic Approximation (SPSA) [45, 46]. This method is simi-
lar to stochastic finite differences approaches in that it produces

ˆ𝜕L∗
𝜃
( ·)

𝜕𝜃
, which can be used in a gradient descent algorithm, but

it provides certain advantages, such as fewer gradient estimates,
through simultaneous perturbations of multiple 𝜃 parameters at
once. This is especially important for computationally expensive
algorithms such as most recommendation generator algorithms. For
more information about SPSA and the parametric settings we used
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(which are the default values recommended for practical effective-
ness, theoretical soundness and convergence guarantees in [46]) see
Appendix C.1. For a given model, we perform gradient descent, us-

ing
ˆ𝜕L∗
𝜃
( ·)

𝜕𝜃
from SPSA to update ℎ∗

𝜃
(·) until convergence of L∗

𝜃
(·),

and then perform a random reset of the parameters 𝜃 . We repeat
this process of training until convergence and random resets itera-
tively for 12 hours for a given model, and then take the parameters
that produce the lowest training loss for L∗

𝜃
(·) as our final model

in terms of the 𝜃∗ parameters. We use 𝜃∗ to produce evaluation
metrics for our test data. For the exact parameters of our gradient
descent algorithm with random resets (convergence rule, batch size,
initialization scheme for 𝜃 , pseudocode (Algorithm 1), and expected
number of random resets), see Appendix C.1.

4 Evaluation
In Section 1, we outline a set of principles and illustrate in Section 2
various suboptimal scenarios that occur, even when utilizing exist-
ing fair algorithmic recourse methods. Our main argument is that,
for recourse to achieve its positive potential, algorithmic decision-
makers must be trained to satisfy multiple objectives. Therefore, we
propose a multi-objective loss, L∗

𝜃
(·), to minimize during training

of algorithmic decision-makers in Section 3.
Therefore, we will show that the algorithmic decision-makers,

ℎ∗
𝜃
(·), trained with our loss function, L∗

𝜃
(·), outperform other algo-

rithmic decision-makers. We use the following algorithmic decision-
makers as benchmarks:
• ℎ

0/1
𝜃
(·) - Algorithmic decision-makers trained to minimize

balanced 0/1 loss.
• ℎ

eq-cost
𝜃

(·) - Algorithmic decision-makers trained to minimize
balanced 0/1 loss and equalize the cost of recommendations
across sensitive subpopulations, as defined by 𝛼eq-cost in Equa-
tion 5 and used in Example 1 (Section 2.2).
• ℎbal-err

𝜃
(·) - Algorithmic decision-makers trained to minimize

balanced 0/1 loss and equalize the error rates (FPR and FNR)
across sensitive subpopulations. We use this benchmark to
address the issue of differential erroneous access to or denial
of the favorable outcome across sensitive subpopulations, as
motivated in Example 1.
• ℎ

bal+eq
𝜃

(·) - Algorithmic decision-makers trained to minimize
balanced 0/1 loss and equalize the error rates and recommen-
dation costs across sensitive subpopulations.

We note that ℎ0/1
𝜃
(·) and ℎbal-err

𝜃
(·) are trained with recourse-

agnostic objectives, as we discuss further below. We train the bench-
mark algorithmic decision-makers using SPSA. For exact loss func-
tions and more details about these benchmark methods, please
reference Appendix D.2.

We train these algorithmic decision makers in three data set-
tings: (1) the simulated mortgage lending setting introduced in
Section 1 (Figure 1) where the sensitive feature is gender; (2) the
German Credit Data [16] setting where the sensitive feature is
gender, the other features are age, credit amount and duration of
months for repayment, and the outcome variable for training is
whether an individual is creditworthy (Appendix D.1, Figure 5a);
and (3) the First-Year Law School Success [55] setting where the
sensitive feature is race (Black or white), the other features are LSAT

score, gender, and undergraduate GPA, and the outcome variable
for training is whether the individual performed above average
in their first-year of law school (Appendix D.1, Figure 5b). One
can imagine algorithmic decision-makers being used in these set-
tings for making mortgage lending, credit lending, and law school
acceptance decisions, respectively.

Lastly, we test three differentiablemodels as algorithmic decision-
makers: logistic regression (lr); a multi-layer perceptron classifier
with one layer and two hidden units (MLP(1x2)); and a multi-
layer perceptron classifier with one layer and four hidden units
(MLP(1x4)).

Table 1 displays the results for the MLP(1x2) classifiers for all the
data settings for the benchmarks and for our method (using default
coefficient values 𝛽 = 1 for all burden, excess burden, and balanced
excess burden terms). This table contains establishedmetrics related
to algorithmic recourse and predictive accuracy such as expected
cost of recommendations (E(Cost)), coverage, 𝛼eq-cost (Equation 5),
etc. Critically, we note that these metrics are distinct from the
components of our loss function or burden measurements, which
we directly use for optimization. For full results for all the model
classes, which are comparable in performance to the MLP(1x2)
classifiers, as well as results for models that place more emphasis
on false negatives rather than true negatives, see Appendix D.4,
Table 9. We review the results in Table 1 in relation to Principle A
for accessibility and Principle F for fairness:

In regards to Principle A. Our method, ℎ∗
𝜃
(·), statistically signifi-

cantly increases access to recommendations for those with the unfa-
vorable outcomes (Coverage) compared to the benchmark methods
for the Simulated Mortgage Lending and First-Year Law School Suc-
cess settings. It also increases coverage compared to the benchmarks
for the German Credit Data setting, but this dataset achieves higher
coverage at baseline and therefore the increase is not statistically
significant. Furthermore, for all settings, our method statistically
significantly decreases the expected cost of recommendations for
those with unfavorable outcomes compared to the benchmarks.

In regards to Principle F. Our method, ℎ∗
𝜃
(·), statistically signifi-

cantly decreases the absolute difference for mean cost across sensi-
tive subpopulations (|Δ𝑎 | for E(cost)) compared to the benchmarks
for all data settings. Importantly, our method, ℎ∗

𝜃
(·), statistically

significantly outperforms ℎeq-cost
𝜃

(·) in minimizing |Δ𝑎 | for E(cost)
for all data settings, even though ℎ

eq-cost
𝜃

(·) is directly trained to
minimize this value. As motivated by Example 1 in Section 2.2,
different rates of coverage across sensitive subpopulations create a
fairness issue. Our method statistically significantly decreases the
absolute difference in rate of coverage compared to the benchmarks
for all data settings (|Δ𝑎 | for Coverage).

Additionally, as mentioned in Example 1, comparing costs across
subpopulations agnostic of their observed 𝑦𝑖 value (i.e., positive
class or negative class) could result in the issue of equalizing the
cost for false negative individuals in one subpopulation compared
to true negative individuals in the other subpopulation. Our method
lowers |Δ𝑎 | for E(cost) when stratified by positive and negative
class (𝑦𝑖 = 1 and 𝑦𝑖 = 0) compared to all the benchmarks for all
data settings, with statistically significant reductions except in the
Simulated Mortgage Lending setting for the positive class. While
our method does not explicitly aim to achieve 𝛼 ind-fair = 0 for the
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Data Setting
Algorithmic
Decision-
Maker

Balanced 0/1
Loss

Coverage |Δ𝑎 | for
Coverage

E(Cost) |Δ𝑎 | for
E(Cost)
(𝛼eq-cost)

|Δ𝑎 | for
E(Cost)
∀𝑦𝑖 = 1

|Δ𝑎 | for
E(Cost)
∀𝑦𝑖 = 0

𝛼 ind-fair |Δ𝑎 | for FPR |Δ𝑎 | for
FNR

Simulated
Mortgage
Lending

ℎ0/1 0.514 0.653 0.203† 0.089† 0.026† 0.027† 0.029† 0.088‡ 0.294 0.311
ℎeq-cost 0.511 0.771 0.117† 0.089 0.013† 0.018† 0.018† 0.051‡ 0.268 0.271
ℎbal-err 0.505 0.763 0.031 0.093 0.018† 0.014† 0.019† 0.014‡ 0.056 0.055
ℎbal+eq 0.504 0.812 0.035 0.088 0.011 0.012 0.017 0.012 0.053 0.053
ℎ∗ 0.511 0.999 0.001 0.058 0.007 0.010 0.011 0.004* 0.054 0.047

German
Credit
Data

ℎ0/1 0.408 0.975 0.014 0.083 0.018 0.017 0.025 0.135 0.411 0.383
ℎeq-cost 0.414 0.957 0.031 0.078 0.012 0.012 0.017 0.110‡ 0.337 0.306
ℎbal-err 0.424 0.892 0.043 0.083 0.015 0.015 0.024 0.069 0.077 0.068
ℎbal+eq 0.431 0.891 0.037 0.078 0.014 0.016 0.023 0.054 0.089 0.078
ℎ∗ 0.429 0.993 0.005 0.055 0.007 0.007 0.013 0.034* 0.143 0.113

First-Year
Law School
Success

ℎ0/1 0.414 0.766 0.507 0.194 0.298† 0.239† 0.301† 0.600‡ 0.656 0.707
ℎeq-cost 0.419 0.681 0.931 0.149 0.343† 0.120† 0.318† ——–‡ 0.664 0.741
ℎbal-err 0.454 0.661 0.097 0.215† 0.071† 0.112† 0.059† 0.133‡ 0.070 0.099
ℎbal+eq 0.447 0.848† 0.062† 0.180† 0.051† 0.089† 0.042† 0.145‡ 0.080 0.130
ℎ∗ 0.450 1.000 0.000 0.119 0.018 0.033*† 0.017 0.140‡ 0.124 0.137

Table 1: Results are shown for MLP(1x2) classifiers, ℎ∗
𝜃
(·), trained by minimizing L∗

𝜃
(·), where 𝛽burd

𝐹𝑁
= 𝛽burd

𝑇𝑁
= 𝛽exc-burd

𝐹𝑁
=

𝛽exc-burd
𝑇𝑁

= 𝛽bal-exc-burd− = 𝛽bal-exc-burd+ = 1. For readability, we omit the 𝜃 subscript and (·) notation as well as standard deviations
of all metrics. The settings for 𝛽𝐹𝑃 , 𝛽𝐹𝑁 , and 𝜖𝑐𝑜𝑟𝑟 differ per data setting and appear in Appendix D.3, Table 6. Each value is
averaged over 50 runs, each with a unique seed for a 70-30 train-test split. Classifiers are fit on training data, and results in the
table reflect test data metrics. Benchmarks (ℎ0/1

𝜃
(·), ℎeq-cost

𝜃
(·), ℎbal-err

𝜃
(·), and ℎ

bal+eq
𝜃

(·) ) are described in Section 4. Balanced
0/1 is 1

2𝐹𝑃𝑅 +
1
2𝐹𝑁𝑅. Coverage is the proportion of individuals with unfavorable outcomes who received a recommendation.

E(Cost) is average cost for those with unfavorable outcomes and coverage. |Δ𝑎 | is the absolute difference in the relevant metric
across sensitive subpopulations, stratified by positive class (𝑦𝑖 = 1) and negative class (𝑦𝑖 = 0), where applicable. 𝛼 ind-fair is
defined in Equation 6. The bold values indicate statistically significant improvements (𝑝 < 0.05, one-tailed t-test) over all the
benchmark methods. No statistically significant reductions in performance were observed in this subset of results. † represents
missingness (e.g. no individuals with recommendations for some runs) . ‡ represents no values found for 𝛼 ind-fair for some
runs. * represents statistical significance was evaluated against all benchmarks that were not missing but not the full set of
benchmarks. – represents for all runs 𝛼 ind-fair could not be calculated (insufficient coverage for 𝑥𝑖 or 𝑥𝐶𝐹𝑖

).

reasons noted in Section 2.2, our method statistically significantly
lowers 𝛼 ind-fair for the German Credit Data and Simulated Mort-
gage Lending settings compared to the benchmark methods. Lastly,
while our method does not balance error rates as well as the bench-
marks that explicitly perform this task, ℎbal-err

𝜃
(·) and ℎ

bal+eq
𝜃

(·),
our method drastically decreases the absolute difference in error
rates across sensitive subpopulations for all data settings compared
to the benchmark trained for predictive accuracy, ℎ0/1

𝜃
(·), and the

benchmark trained to equalize the costs of recommendations across
sensitive subpopulations, ℎeq-cost

𝜃
(·).

ℎ0/1
𝜃
(·) and ℎbal-err

𝜃
(·) are not trained with any information pro-

vided by the recommendation generator, including the cost or avail-
ability of recommendations. Therefore, they are models that are
trained with recourse-agnostic objectives. We observe that these
models provide less coverage and higher expected cost recommen-
dations, demonstrating that thesemodels are less ideal for providing
recourse compared to the other models trained with objectives that
incorporate recommendation information.

Lastly,ℎbal+eq
𝜃

(·)—which aims to equalize both error rates and ex-
pected costs of recommendations across subpopulations—does not
outperform our method, indicating that fair prediction objectives
combined with equalized recourse costs are insufficient to capture
all the scenarios addressed by our multi-objective approach.

4.1 Ablation Evaluation for Multi-Objective
Loss Function

We provide an ablation studywhich demonstrates that our loss func-
tion,L∗

𝜃
(·), a multi-objective function with termsLacc

𝜃
(·),Lburd

𝜃
(·),

Lexc-burd
𝜃

(·), andLbal-exc-burd
𝜃

(·), outperforms these terms individu-
ally. These results support the claim that a single criterion, whether
it be optimizing for a singular metric of fairness, Lexc-burd

𝜃
(·) or

Lbal-exc-burd
𝜃

(·), or accessibility, Lburd
𝜃
(·), is insufficient, and our

multi-objective approach provides substantial performance im-
provements. Thus, we train the following models:
• ℎburd

𝜃
(·) - Algorithmic decision-makers trained to minimize

balanced 0/1 loss with Lacc
𝜃
(·) and minimize burden with

Lburd
𝜃
(·), where 𝛽burd

𝐹𝑁
= 𝛽burd

𝑇𝑁
= 3.

• ℎexc-burd
𝜃

(·) - Algorithmic decision-makers trained to minimize
balanced 0/1 loss with Lacc

𝜃
(·) and minimize excess burden

with Lexc-burd
𝜃

(·), where 𝛽exc-burd
𝐹𝑁

= 𝛽exc-burd
𝑇𝑁

= 3.
• ℎbal-exc-burden

𝜃
(·) - Algorithmic decision-makers trained to min-

imize balanced 0/1 loss withLacc
𝜃
(·) and balance excess burden

with Lbal-exc-burd
𝜃

(·), where 𝛽bal-exc-burd− = 𝛽bal-exc-burd+ = 3.
In reviewing the results of the ablation study in Table 2, while the

algorithmic decision-makers trained to minimize burden and excess
burden, ℎburd

𝜃
(·) and ℎexc-burd

𝜃
(·), statistically significantly increase

coverage for the First-Year Law School Success setting, and all the
models show improvements in terms of coverage and minimizing
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Data Setting
Algorithmic
Decision-
Maker

Balanced 0/1
Loss

Coverage |Δ𝑎 | for
Coverage

E(Cost) |Δ𝑎 | for
E(Cost)
(𝛼eq-cost)

|Δ𝑎 | for
E(Cost)
∀𝑦𝑖 = 1

|Δ𝑎 | for
E(Cost)
∀𝑦𝑖 = 0

𝛼 ind-fair |Δ𝑎 | for FPR |Δ𝑎 | for
FNR

First-Year
Law School
Success

ℎ0/1 0.414 0.766 0.507 0.194 0.298† 0.239† 0.301† 0.600‡ 0.656 0.707
ℎeq-cost 0.419 0.681 0.931 0.149 0.343† 0.120† 0.318† ——–‡ 0.664 0.741
ℎbal-err 0.454 0.661 0.097 0.215† 0.071† 0.112† 0.059† 0.133‡ 0.070 0.099
ℎbal+eq 0.447 0.848† 0.062† 0.180† 0.051† 0.089† 0.042† 0.145‡ 0.080 0.130
ℎburd 0.417 0.985 0.042 0.166 0.215 † 0.218 † 0.206 † 0.369 ‡ 0.654 0.552
ℎexc-burd 0.423 0.971 0.112 0.151 0.180 † 0.166 † 0.177 † 0.368 ‡ 0.618 0.519
ℎbal-exc-burd 0.449 0.783 0.080 0.192 0.065 † 0.092 † 0.057 † 0.173 ‡ 0.059 0.121
ℎ∗ 0.450 1.000 0.000 0.119 0.018 0.033*† 0.017 0.140‡ 0.124 0.137

Table 2: Results for ablation evaluation in Section 4.1 for the MLP(1x2) classifiers, ℎ∗
𝜃
(·), and ablated classifiers, ℎburd

𝜃
(·),

ℎexc-burd
𝜃

(·), and ℎbal-exc-burd
𝜃

(·) for the First-Year Law School Success setting (Appendix D.1, Figure 5b). The benchmarks (ℎ0/1
𝜃
(·),

ℎ
eq-cost
𝜃

(·), ℎbal-err
𝜃

(·), and ℎ
bal+eq
𝜃

(·) ) are described in Section 4 with technical details in Appendix D.2. Ablated classifiers are
described in Section 4.1. Columns, formatting in relation to statistical testing and symbols are identical in description to those
provided in Table 1.

cost of recommendations, and equalizing coverage, cost, and access
compared to the other benchmarks, none of them provide the level
of statistically significant improvements that our method, ℎ∗

𝜃
(·),

trained with L∗
𝜃
(·), provides.

5 Limitations
Both the definition we adopt for recommendations in Equation 3,
and our excess burden measure in Equation 8, utilize structural
causal models. As in other research using SCMs [21, 26, 30, 53],
we adopt standard causal assumptions including causal sufficiency,
positivity, etc. The SCM we use for our simulated mortgage lending
setting fully satisfies the necessary assumptions for SCMs. The SCM
we use for the German Credit Data setting has been used in prior
research including [21]. The SCM we use for the First-Year Law
School Success setting adopts a graph from prior research [53], and
we derive the structural equations. Our work demonstrates that our
method outperforms benchmarks that do not use SCMs in a variety
of settings, with different assurances around these assumptions and
proper model specificity. With that said, more research about how
robust SCMs are to these assumptions and model specifications,
similar to [4] and [22], would greatly enhance all fairness research
that uses SCMs, including ours.

We assume binary sensitive subpopulation membership. Many
real-world datasets, including the First-Year Law School Success
setting, have multiple sensitive attributes with more than two cat-
egories. Extending our approach to multi-categorical or intersec-
tional subpopulations would be a valuable direction for future work.
This could be done through incorporating pattern detection meth-
ods to find multidimensional and intersectional disparities in bur-
den measurements to dynamically define sensitive subpopulations
during training.

The SPSA method, a stochastic generalization of the finite differ-
ences method, was used to train our algorithmic decision-makers
with gradient descent. SPSA assumes a smooth loss function, which
requires use of a sufficiently smooth cost function for recommen-
dations. Substituting a different fitting method, such as a genetic
algorithm, would allow our method to apply to discrete cost func-
tions as well. Similarly, our proposed loss function for minimization,
L∗
𝜃
(·), is only applicable for differentiable models. An interesting

extension of our research could be to use the components of our
loss function,Lburd

𝜃
(·),Lexc-burd

𝜃
(·) andLbal-exc-burd

𝜃
(·), to develop

a model-agnostic method for fitting algorithmic decision-makers,
using iterative training with instance weighting and/or data aug-
mentation.

We utilize one recommendation generator algorithm in our re-
search. As argued in Section 2.1, we do not consider all recom-
mendation definitions, including [54], [50], and [42], inline with
Principle R’s goal of reliable recommendations, and therefore test-
ing other recommendation generator algorithms seems tangential
to our overall research goal of training algorithmic decision-makers
that satisfy our three principles. Additionally, while we use multiple
benchmark methods, we use only one fairness definition [15] from
the fair algorithmic recourse literature. While others exist [1, 42],
they do not address issues of lack of coverage or encapsulate all
scenarios that could occur for a full population and rather focus
on the subset of data with unfavorable outcomes as shown in Fig-
ure 4. Therefore, we anticipate they would perform similarly to
[15] on the relevant metrics of interest. Finally, we note that the
fairness principles and metrics proposed in [3] are reliant on oppor-
tunity sets rather than intervention-based counterfactuals, making
it challenging to compare them to our method without extensive
modifications to their formulation of fairness.

For limitations that pertain to the framing of algorithmic re-
course at large, please reference Appendix A. The topics discussed
in Appendix A include issues of model drift in relation to reliable
recommendations, social and epistemic norms including deflection
of responsibility inherent to the framing of algorithmic recourse,
limitations of fixed cost functions, issues of shifting of population
distributions in unintended, and potentially harmful, ways, and
privacy concerns.

6 Related Work
Algorithmic recourse is an emerging field within explainable ma-
chine learning. Previous research has developed methods for gen-
erating recommendations, including gradient optimization tech-
niques [18, 28, 29, 54], integer programming [50], graph-basedmeth-
ods [3, 39], genetic algorithms [24, 42], autoencoder-based meth-
ods [5, 7, 33], and SAT solvers [19]. For surveys of these methods,
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see [20, 52]. Additionally, [32] provides a tool for benchmarking rec-
ommendation generators, and [25] introduces a verification process
for determining if a model has no coverage for a given individual.

Some research has proposed desiderata for recourse, includ-
ing actionability of recommendations [50], robustness to model
drift [10, 14, 23, 31, 49], robustness to small input changes [6, 9, 43],
and diversity of recommendations [29, 48]. We specifically refer-
ence the fairness criteria of Gupta et al. [15] and von Kügelgen et al.
[53] above; other research on fair recourse includes [1, 3, 9, 42].
While previous research notes the connection between predictive
fairness and fair algorithmic recourse, to the best of our knowledge,
our research is the first to frame fairness of algorithmic recourse as
a multi-objective issue that must consider all scenarios (imbalanced
error rates, rates of coverage, imbalanced cost of recommendations,
etc.) for a full target population.

Research focused on training algorithmic decision-makers for
recourse with similar goals to our research include Gupta et al. [15],
which we use as a benchmark, and Ross et al. [41], who specif-
ically focus on training models for high coverage. Our research
focuses on issues of coverage, as well as fairness and reliability of
recommendations.

Venkatasubramanian and Alfano [51] present a philosophical
basis for algorithmic recourse and Karimi et al. [21] argue for using
SCMs in generating recommendations. Both papers were influen-
tial in forming our research goals. Lastly, we reference additional
research pertaining to the ethics of algorithmic recourse in Appen-
dix A.

7 Conclusion
Systems that provide recourse have the potential to improve the
lives of individuals who interact (sometimes in compulsory settings)
with algorithmic decision-makers when pursuing important life
goals, such as attempting to obtain credit and education. While
technically any model paired with a recommendation generator
could be considered a system that provides recourse, for these
systems to realize the potential of algorithmic recourse, the right
model needs to be used in this system. We provide an approach,
motivated by a set of principles, for training algorithmic decision-
makers, given a recommendation generator, that results in fair
systems that provide access to reliable recommendations.
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A Challenges in Algorithmic Recourse
Our research, and much of the algorithmic recourse literature, re-
lies on the assumption that an individual will revisit the identical
algorithmic decision-maker. While research, including [1, 10, 40],
explores challenges related to stability across different algorith-
mic decision-makers (often referred to as model drift), we strongly
advocate for policy and legislative measures to ensure model con-
sistency or to mandate the endorsement of recommendations. This
is essential because even the most promising research cannot fully
eliminate this issue, and the reliability of recommendations is es-
sential for any system providing recourse. Having these kinds of
assurances changes the framing of algorithmic recourse, both in
regards to Principle R and in relation to issues of model drift. For
example, a recommendation provided by a system that provides re-
course, if legislatively endorsed, does not need to necessarily result
in a favorable decision from the original algorithmic decision-maker
or future algorithmic decision-makers. Rather, the endorsement is
sufficient to guarantee that if an individual follows the recommen-
dation then they will receive a favorable outcome. This points to an
emerging but promising area of algorithmic recourse research that
deconstructs the assumption that the algorithmic decision-maker
is the final arbitrator of favorable outcomes [1].

As noted in [47], there are various assumptions and potential pit-
falls that are inherent to the framing of algorithmic recourse. They
notably discuss that counterfactuals in their early conception in
explainable AI were supposed to help individuals understand how
a decision was reached, offer grounds for contesting the decision,
and understand how to reverse an unfavorable decision [54]. Sulli-
van and Kasirzadeh [47] explain that the “recourse-first” norm that
focuses on understanding how to reverse an unfavorable decision
neglects an important aspect of understanding how the algorith-
mic decision-maker makes decisions in the first place, and this is
a harmful oversight. They cite various reasons for this, and we
will briefly review the ones that are most notable in relation to
our research. They assert that by providing only actionable rec-
ommendations for individuals, individuals are not provided with
essential information like, for example, the most heavily weighted
feature in this model is race. Other research, including [2], would
provide explanations like this. They argue for the importance of the
norm of the epistemology of understanding, which they believe is
overlooked when recommendations are the main focus. While it is
challenging to endorse an epistemological norm agnostic of context
and population input, it is clear that only focusing on actionable
recommendations at an individual-level for systems that provide
recourse runs the risk of placing all the burden of unfavorable out-
comes on individuals rather than the underlying systems that are
distributing unfavorable outcomes or socio-structural issues that
are preventing favorable outcomes. Sullivan and Kasirzadeh [47]
refer to this as deflecting responsibility. In regard to our research,
on an aesthetic level, we refer to recourse as providing recommenda-
tions not explanations. This is to ensure that we are not presenting
the illusion that these recommendations serve as explanations as
well. Additionally, our research focuses on how to find optimal
algorithmic decision-makers, while holding the recommendation
generator mechanism fixed, which has the built-in assertion that
the designers of a system that provides recourse are responsible for

examining how their system is affecting a population in regards
to fairness, and access and reliability of recommendations. Lastly,
we are extremely careful to be selective about the contexts we use
as examples in this paper. This is not to say that education and
financial customer lending contexts do not have socio-structural
issues, but more so to stress that some contexts, such as judicial and
correctional settings, present such a high level of socio-structural
issues that it is implausible to entertain that systems that provide
algorithmic recourse might expand a sense of agency or trust to
those subject to them.

Sullivan and Kasirzadeh [47] also discuss that using a singular
cost function imposes a social norm as to what is considered more
challenging to act upon. They mention that, for example, for a
recommendation that asks an individual to attain more education,
let us say to move from having a high school degree to an asso-
ciate’s degree, this might be more challenging to perform for some
individuals than others. To the best of our knowledge, all algo-
rithmic recourse research, including ours, use some kind of fixed
mechanism for assigning cost of recommendations. This suggests
that it might be useful to incorporate participatory mechanisms
into systems that provide algorithmic recourse. One form of that
could be to provide a set of recommendations, which could allow
individuals to pick what they consider to be low-cost, similar to
that presented in [29]. Another could be, through incorporating
survey feedback, to learn user-calibrated cost functions. The point
is, having one cost function for a full population presents not only
limitations to algorithmic recourse but, given its probable miscali-
bration across different sensitive subpopulations, could advantage
some subpopulations and disadvantage others.

Systems that provide recourse, by providing a recommendation,
present the risk of shifting population distributions in unintended
and potentially harmful ways. We note, however, that all algorith-
mic systems that individuals interact with and have impacts on
individuals’ lives shift population distributions. Therefore, it is not
a question of if the population distribution is shifting because of
the system but how the population distribution is shifting. We stress
this to ground the issue within a larger phenomenon that should
be a consideration for all algorithmic decision-makers in socio-
technical settings, not just systems that provide recourse. In the
context of algorithmic recourse, the issue of exacerbation of social
segregation has been discussed in [11, 53]. This specifically pertains
to the idea that recommendations differ substantially enough across
sensitive subpopulations that the result of individuals acting upon
them would be subpopulations differing even more substantially
over time. This points to larger questions which are at the crux of
most fair machine learning research, such as what the expectations
should be for algorithmic decision-makers when subpopulations,
defined by protected class membership, have differing data distri-
butions? Should their data distributions, post-interaction with a
system (traditional algorithmic decision-makers, an algorithm with
human-in-the-loop, or a system that provides recourse), be shifted
closer to each other, remain the same distance, or be further apart?
In the case of algorithmic recourse, there are recommendation gen-
erator algorithms, including those utilizing methods for robust
recommendations as formulated by [9], which minimize this issue
by making the recommendations robust to protected class member-
ship – meaning similar recommendations, not just recommendation
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costs, for similar individuals across sensitive subpopulations. This
requires a much deeper, most likely context-specific, evaluation
by domain experts to determine when these kind of recommenda-
tion generators should be enforced. For example, in some contexts,
access to the favorable outcome might be so essential to the well-
being of individuals’ lives that the tradeoff of higher-cost recourse
for all individuals versus low-cost differing recommendation sets
across subpopulations presents a challenging decision. Regardless,
these kinds of robust recommendation generator algorithms could
be paired with our method because these recommendation genera-
tors do not address the underlying issue of whether the algorithmic
decision-maker is the right model to achieve reliability, accessibility,
and fairness for a system that provides recourse.

Lastly, there are various privacy issues concerning algorithmic
recourse, including revealing the underlying model [44]. There are
also concerns about being able to infer which individuals were
in a training data set by the recommendation costs provided by
the system that provides recourse [12, 34, 44]. Privacy-preserving
solutions, including [17, 38], for algorithmic recourse represent a
newer line of research that is critical for addressing these issues
and for the safe deployment of systems that provide recourse to be
adopted in real-world settings.

B Select Primer on Structural Causal Models
Structural causal models (SCMs) are a subclass of structural equa-
tion models that are used to model causal relations. A structural
causal model (SCM) consists of two components: (1) a directed
acyclic graph (DAG) with directed edges and nodes; and (2) a set
of structural equations which dictate how nodes interact through
edges causally.

Nodes consist of two types, exogenous variables (U) and en-
dogenous variables (X). Exogenous variables have no parent nodes,
whereas endogenous variables have parents and/or a causal mecha-
nism within the graph. For example, in the SCM for the German
Credit Data setting (Figure 5a), 𝑈1, 𝑈2, 𝑈3, and 𝑈4 are exogenous
variables and 𝑋1 (gender), 𝑋2 (age), 𝑋3 (credit amount), and 𝑋4 (re-
payment duration in months) are endogenous variables. The set
of structural equations, F , dictate how the endogenous variables
are derived. Some might take the form directly of an exogenous
variable distribution, such as gender, 𝑋1, and age, 𝑋2, as shown
for the German Credit Data setting in Figure 5a. Other structural
equations might be a combination of an exogenous variable and
other endogenous variables, like 𝑋3 (credit amount) and 𝑋4 (repay-
ment duration). The causal mechanism of these variables’ parents
is dictated by structural functions. For the German Credit Data,
these are 𝑓3 (·) and 𝑓4 (·). While these causal mechanisms are de-
terministic, the exogenous variables introduce randomness. For
our simulated mortgage lending setting, we provide the parametric
settings for the exogenous variables in Figure 1. For our real-world
data settings, German Credit Data and First-Year Law School Suc-
cess, we allow the exogenous distributions to be observed and in
a non-parametric form. Therefore, SCMs are defined by all their
components asM = (U,X, F ).

To both calculate the recommendations, 𝑥𝑟𝑒𝑐−𝑆𝐶𝑀
𝑖

, for Equa-
tion 3 and the counterfactuals, 𝑥𝐶𝐹

𝑖
, we utilize in Equation 8 for ex-

cess burden, we perform a hard intervention using the do-operator

for observed data, and therefore, we use the abduction-action-
prediction process [37]. We will discuss this in the form of the
process for a singular instance, 𝑥𝑖 , dictated by the German Credit
Data in Figure 5a, where we perform an intervention on age to
determine what would have happened to individual 𝑖 if their age
was 𝑥 ′. However, this process could take place for all instances
of the dataset and for various different interventions (not just the
intervention on age that we demonstrate below). The process takes
the form of:
Abduction. Using the observed data for 𝑥𝑖 , we calculate the exoge-
nous variables.

𝑢𝑖1 = 𝑥𝑖1

𝑢𝑖2 = 𝑥𝑖2

𝑢𝑖3 = 𝑥𝑖3 − 𝑓3 (𝑥𝑖1, 𝑥𝑖2)
𝑢𝑖4 = 𝑥𝑖4 − 𝑓4 (𝑥𝑖3)

Action. We update the structural equations to reflect the hard
intervention of setting 𝑥𝑖 ’s age to 𝑥 ′. This is expressed notationally
as do(𝑋2 = 𝑥 ′) and some literature would refer to this new model
as a “surgically modified” submodel,M𝑥 ′ , [37] where:

𝑋1 := 𝑈1

𝑋2 := 𝑥 ′

𝑋3 := 𝑓3 (𝑋1, 𝑋2) +𝑈3

𝑋4 := 𝑓4 (𝑋3) +𝑈4

Predict. Use the modified model from the ‘action’ step,M𝑥 ′ , and
the exogenous variables calculated in the ‘abduction’ step to com-
pute 𝑥𝑖 | do(𝑋2 = 𝑥 ′):

𝑥𝑖1 := 𝑢𝑖1

𝑥𝑖2 := 𝑥 ′

𝑥𝑖3 := 𝑓3 (𝑥𝑖1, 𝑥𝑖2) + 𝑢𝑖3
𝑥𝑖4 := 𝑓4 (𝑥𝑖3) + 𝑢𝑖4

Therefore, performing do(𝑋2 = 𝑥 ′) results in changes to 𝑥𝑖2,
𝑥𝑖3, and 𝑥𝑖4. Our research utilizes hard interventions, meaning that
all intervened variables are overridden and all causal influences
from parent nodes are not retained. This is the convention in the
algorithmic recourse literature because discrete actions are imposed
in the form of recommendations. With that said, other intervention
mechanisms are discussed in [8].

Next, we will discuss the two functions we use SCMs for in our
research, calculating 𝑥𝐶𝐹

𝑖
and 𝑥𝑟𝑒𝑐−𝑆𝐶𝑀

𝑖
:

Calculating counterfactuals, 𝑥𝐶𝐹
𝑖

: To calculate the counterfactual
for an individual, 𝑥𝑖 , we perform an intervention on the binary
variable that defines a sensitive subpopulation for each data setting.
This notationally takes the form of 𝑥𝐶𝐹

𝑖
= 𝑥𝑖 | do(𝑥𝑖 𝑗 = 1 − 𝑥𝑖 𝑗 ) or

𝑥𝐶𝐹
𝑖

= 𝑥𝑖 | do(1 − 𝑥𝑖 𝑗 ), for short. To ensure that all data types and
ranges for the counterfactuals match the observed data types and
ranges, we stochastically round all mismatched data types using
a Bernoulli distribution with a fixed seed to ensure that identical
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recommendations are rounded to the same values across our ex-
periments for the same data settings. For example, for the German
Credit Data, we rounded variable 𝑋4 (duration of repayment in
months) to integers for all counterfactuals. Additionally, we clipped
all counterfactual values to ensure they were within the observed
range for each variable in the original data distribution. We did this
to ensure that we were using consistent data types and constraints
to those we utilize for calculating the recommendations.

Calculating recommendations, 𝑥𝑟𝑒𝑐−𝑆𝐶𝑀
𝑖

: As noted in Section 2.1,
the recommendation generator, 𝐴𝜃 (·), identifies the recommen-
dation, 𝛿∗

𝑖
, such that 𝑥𝑖 | do(𝑥𝑖 𝑗 + 𝛿∗𝑖 𝑗 )∀ 𝑗∈𝛿∗𝑖 results in a favorable

outcome. Therefore, the action set, 𝛿∗
𝑖
, could consist of multiple

interventions, unlike 𝑥𝐶𝐹
𝑖

, which is solely an intervention on pro-
tected class membership. With that said, 𝛿∗

𝑖
is constrained by a func-

tion, 𝐹 (·), that ensures all action sets are actually implementable
as noted in Section 2.1. For example, for all of our data settings, an
action set could not consist of recommending that someone change
their group membership for a protected class attribute like gender
or race. For documentation of all the constraints encoded in 𝐹 (·)
for each data setting, reference Appendix D.1.

C Our Approach Appendices
C.1 Simultaneous Perturbation Stochastic

Approximation (SPSA) and Gradient
Descent Algorithm

We discuss stochastic finite difference methods conceptually, then
Simultaneous Perturbation Stochastic Approximation (SPSA), and
then how we incorporate SPSA into our gradient descent algorithm.

Finite difference methods are commonly used for gradient ap-
proximation for equations that are not easily differentiable. This is
the case for training algorithmic decision-makers with loss func-
tions that utilize the output of recommendation generator algo-
rithms, such as L∗

𝜃
(·) in Section 3.2, which depends on the output

of 𝐴𝜃 (·), where 𝐴𝜃 (·) is a black-box system that is not easily dif-
ferentiable. L∗

𝜃
(·) becomes non-differentiable with respect to 𝜃

because the function for𝐴𝜃 (·) is unknown, and𝐴𝜃 (·) depends on 𝜃
for ℎ∗

𝜃
(·). Therefore, it is possible to compute L∗

𝜃
(·), but 𝜕L∗

𝜃
( ·)

𝜕𝜃
is

not easily calculable. Given that our optimization goal is to find the
𝜃 parameters for ℎ∗

𝜃
(·) that minimize L∗

𝜃
(·), the general premise of

finite difference methods is to evaluate L∗
𝜃
(·) with a slight fluctua-

tion by a small value, 𝑐 , also known as a perturbation, to a singular
dimension of 𝜃 , denoted as 𝜃pert

𝑖
= 𝜃𝑖 + 𝑐 . If one were to envision

L∗
𝜃
(·) as a function of that singular dimension, 𝜃𝑖 , and L∗𝜃 (·) is

a smooth function in relation to 𝜃𝑖 , then the perturbation, 𝜃pert
𝑖

,
either increases or decreases L∗

𝜃
(·) compared to the original setting

for 𝜃𝑖 . Therefore, if we denote the loss function for 𝜃𝑖 as L∗base𝜃
(·)

and L∗pert
𝜃
(·) for 𝜃pert

𝑖
, then the slope for L∗

𝜃
(·) in relation to the

domain 𝜃𝑖 to 𝜃
pert
𝑖

is
L∗pert
𝜃
( ·)−L∗base

𝜃
( ·)

𝑐 . Therefore, this slope calcu-

lation serves nicely as an approximation of
𝜕L∗

𝜃
( ·)

𝜕𝜃𝑖
, without the

need to directly take the partial derivative of L∗
𝜃
(·) with respect to

𝜃𝑖 . Therefore, to find all the parameters of 𝜃 for ℎ∗
𝜃
(·), one could

imagine using the approximation of the gradient
ˆ𝜕L∗
𝜃
( ·)

𝜕𝜃𝑖
, in a gradi-

ent descent algorithm where for each update, a random dimension
of 𝜃 is chosen, and a random perturbation size or/and perturbation

direction is chosen for 𝑐 , and for each update 𝜃𝑖 = 𝜃𝑖 − 𝜂
ˆ𝜕L∗
𝜃
( ·)

𝜕𝜃𝑖
,

where 𝜂 is a learning rate and
ˆ𝜕L∗
𝜃
( ·)

𝜕𝜃𝑖
is calculated from the per-

turbation method described directly above. If L∗
𝜃
(·) were convex,

with enough gradient updates, this process would be guaranteed
to find the 𝜃 for the global minimum of L∗

𝜃
(·). This is not the case

for L∗
𝜃
(·) , and we discuss this further below. Note that the specific

process we describe in this paragraph for illustrative purposes re-
lates to the process of stochastic forward difference perturbations
for finite differences. There are various different schemes for fi-
nite differences for gradient approximation, not limited to the one
described above.

The process described above of performing a perturbation for a
single dimension of 𝜃 using a singular record requires that L∗

𝜃
(·)

be calculated twice: once for L∗base
𝜃

and once for L∗perturb
𝜃

. As
mentioned in Section 6, many of the recommendation generator
algorithms are optimization solvers that use genetic algorithms,
mixed integer programming or SAT solvers, therefore, they are
computationally prohibitive to call for every update to a singular di-
mension of 𝜃 . Simultaneous perturbation stochastic approximation
(SPSA) utilizes perturbations to approximate gradients, similarly to
stochastic finite difference methods, but allows for simultaneous
perturbations to occur at once, greatly reducing the number of
times one needs to compute L∗

𝜃
(·) and subsequently call𝐴𝜃 (·) [45].

More concretely,
ˆ𝜕L∗
𝜃
( ·)

𝜕𝜃
requires 2𝑛 calculations of L∗

𝜃
(·) and 4𝑛

calls to 𝐴𝜃 (·) if a singular perturbation of 𝜃 is performed at a time
for a singular record. (Recall that, to calculate L∗

𝜃
(·) we must com-

pute 𝐴𝜃 (𝑥𝑖 ) and 𝐴𝜃 (𝑥𝐶𝐹𝑖
).) When simultaneous perturbations are

performed to estimate
ˆ𝜕L∗
𝜃
( ·)

𝜕𝜃
, 2 calculations of L∗

𝜃
(·) and 4 calls

to 𝐴𝜃 (·) are required . Obviously, this is scaled by the number of
records in the training data.

To explain the SPSA algorithm, we provide the full pseudocode
we use to train algorithmic decision-makers in Algorithm 1, which
consists of a gradient descent algorithm using SPSA gradient ap-
proximation to update 𝜃 with random resets upon convergence.

The SPSA gradient approximation process happens iteratively, in
Lines 19-22 of Algorithm 1. Importantly, in Line 19, Δ𝑘 cannot have
infinite inverse moments, meaning that sampling from a normal
or uniform distribution is prohibited [46]. As is common practice,
we sample Δ𝑘 from a symmetric Rademacher distribution, which
functions like a Bernoulli distribution set to 𝑝 = 0.50 that produces
either [−1, +1]. The necessity of this requirement follows from the
inversion of Δ𝑘 in Line 21.

To calculate 𝑐𝑘 depending on the gradient update count, 𝑘 , we
use the following calculation from [46]:

𝑐𝑘 =
𝑐

(𝑘 + 1)𝜆

We use 𝜆 = 0.101, because, as noted by [46], this guarantees
practical effectiveness and theoretical validity. Additionally, we
use 𝑐 = 0.10, as is common practice. To calculate 𝜂𝑘 depending
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Algorithm 1 Algorithm for Training Algorithmic Decision-Makers using Gradient Descent with SPSA for Gradient Approximation and
Random Restarts upon Convergence

1: L∗min
𝜃

= ∞
2: 𝜃∗ = None
3: while time elapsed < 12 hours do
4: L∗prev

𝜃
= ∞

5: Randomly initialize 𝜃 using Glorot Uniform distribution for ℎ𝜃 (·)
6: 𝑘 = 0
7: for 𝑗 ← 0 to𝑚 − 1 do
8: Calculate L∗

𝜃
(·)∀𝑥𝑖

9: if L∗
𝜃
(·) < L∗min

𝜃
then ⊲ Keeping track of global minimum for L∗

𝜃
(·).

10: L∗min
𝜃

= L∗
𝜃
(·)

11: 𝜃∗ = 𝜃

12: end if
13: if |L∗prev

𝜃
− L∗

𝜃
(·) | < 𝜖conv then ⊲ Checking for convergence.

14: break ⊲ Exit for-loop.
15: else
16: L∗prev

𝜃
= L∗

𝜃
(·)

17: end if
18: for each batch 𝑥𝑏 in ∀𝑥𝑖 of size 𝑛batch do ⊲ The batch division is randomized.
19: Δ𝑘 = {Δ𝑘1,Δ𝑘2, ...,Δ𝑘𝑛} ⊲Where each Δ𝑘𝑖 is independently sampled from a mean-zero

distribution, and |Δ𝑘 | = |𝜃 |. (Note, the Δ symbol is common
in the SPSA literature, and does not have the same meaning
as those in Section 4 or Appendix D.4)

20: Calculate L∗
𝜃+𝑐𝑘Δ𝑘

(·) and L∗
𝜃−𝑐𝑘Δ𝑘

(·) for 𝑥𝑏 ⊲ All the dimensions of 𝜃 are being perturbed simultaneously,
for both ℎ∗

𝜃+𝑐𝑘Δ𝑘
(·) and ℎ∗

𝜃−𝑐𝑘Δ𝑘
(·). Therefore, 𝐴𝜃 (·) is only

called four times in this step for each record, rather than 4𝑛
times. 𝑐𝑘 is an adaptive value per gradient update, 𝑘 , we will
define below.

21:
ˆ𝜕L∗
𝜃
( ·)

𝜕𝜃
=
L∗
𝜃+𝑐𝑘Δ𝑘

( ·)−L∗
𝜃−𝑐𝑘Δ𝑘

( ·)
2𝑐𝑘


1/Δ𝑘1
1/Δ𝑘2
...

1/Δ𝑘𝑛


22: 𝜃 = 𝜃 − 𝜂𝑘

ˆ𝜕L∗
𝜃
( ·)

𝜕𝜃
⊲ Note that 𝜂𝑘 is an adaptive learning rate per gradient update,
𝑘 , which we will define below.

23: 𝑘 = 𝑘 + 1
24: end for
25: end for
26: end while
27: return {L∗min

𝜃
, 𝜃∗} ⊲ Returns model with global lowest loss, L∗min

𝜃
.

on the gradient update count, 𝑘 , we use the following calculation
from [46]:

𝜂𝑘 =
𝑎

(𝐴 + 𝑘 + 1)𝛼
Similarly, we use 𝛼 = 0.602, because, as noted by [46], this

guarantees practical effectiveness and theoretical validity. We use
the common choice of 𝑎 = 0.16, and to encourage more aggressive
exploration of the 𝜃 domain in early iterations, we set 𝐴 = 0, given
that 𝐴 is a stabilizing term that specifically impacts the learning
rate for early iterations.

Spall [45] provides a proof of convergence to local minimum if
L∗
𝜃
(·) is non-convex and to a global minimum if L∗

𝜃
(·) is convex,

that adopts a set of assumptions. Therefore, our parametric choices

satisfy the assumptions pertaining to the parameters listed above
stated in [45].

The loss function, L∗
𝜃
(·), we propose in Section 3 is not convex,

therefore, a singular run of the gradient descent algorithm will
most likely not find a near-global minimum for L∗

𝜃
(·). As shown

in Algorithm 1, we perform a random reset to the parameters, 𝜃 ,
once our loss function L∗

𝜃
(·) converges. The convergence criterion

that we utilize is 𝜖conv = 0.01 for all our results to allow for more
random resets, and therefore, more aggressive searching of the
parameter space for 𝜃 . Across all our models displayed in Table 9, a
model is expected to perform a random reset 23.63 times within the
12 hour timeframe. While this does not guarantee that the global
minimum or near-global minimum is found for all algorithmic
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decision-makers, which is the case for all stochastic approximation
methods for non-convex loss functions, it is inline with common
practitioner heuristics for the number of random restarts necessary
to find a near-optimal solution for low dimensional data settings
like the ones utilized in this research. Lastly, we use a batch size of
𝑛batch = 350 across all our data settings. This was dictated by the
computational resources that we had available (60 GB of memory
and 25 cores per training each algorithmic decision-maker) for
parallel calls to our recommendation generator, 𝐴𝜃 (·).

D Evaluation Appendices
D.1 Data Settings
D.1.1 Simulated Mortgage Lending Setting. Given that our method
utilizes structural causal models (SCMs), it is important to have a
setting where all necessary assumptions are satisfied. This provides
a baseline for how our method would perform in a well-behaved
scenario where we can guarantee all necessary assumptions. There-
fore, these data are synthetic and produced by a simulation outline
in Algorithm 2. Algorithm 2 shows the same underlying data gener-
ation process displayed in Figure 1. An important aspect to note is
that the outcome variable of whether an individual is trustworthy
for mortgage lending is directly estimated using solely an indi-
vidual’s credit score, but given the causal relationship of all the
features, the outcome variable is correlated with gender, age, and
proportion of cumulative credit available.

As described in Section 2.1, in Equation 2 and Equation 3, action
sets must satisfy data setting-specific criteria to ensure that they
are realistic and implementable for individuals. This is encoded as
the constraint 𝛿𝑖 ∈ 𝐹 (𝑥𝑖 ). We include the constraints on action sets
for the Simulated Mortgage Lending Data setting in Table 3.

We note that this is a simplified, simulated scenario rather than a
complete and accurate model of mortgage lending. We do not make
any claims here about the true functional relationships between
variables that determine whether an individual is trustworthy for
mortgage lending.

D.1.2 German Credit Data Setting. The SCM, including graph and
structural equations, we use for the German Credit Data setting
is displayed in Figure 5a. Note, this is the identical SCM for the
German Credit Data setting that was used in [21] and we use the
same constraints for action sets, 𝐹 (·), utilized in [21], as well, as
displayed in Table 4.

D.1.3 First-Year Law School Success Setting. The graph of the SCM
we utilize for the First-Year Law School Success setting, displayed
in Figure 5b, has been utilized in prior research including [3, 26]. It
is important to note that we opt to exclude the outcome variable
from the graph. In other research, this is often included, but it is a
non-consequential choice, given that this outcome variable is a leaf
node with no descendants, and therefore, no causal influence on any
part of the data distribution. Additionally, we filter the First-Year
Law School Success dataset [55] to only include students from the
Southeast region of the United States, and only include Black and
White students. The first choice is to ensure that the region is not
an unaccounted-for confounder in our causal model. The second
choice was determined by the current state of our research design.
To fit each structural function, 𝑓3 (·) and 𝑓4 (·), we train two linear

regressions with the features 𝑋1 (race) and 𝑋2 (gender). One linear
regression is fitted with outcome variable 𝑋3 (LSAT score) and
the other with the outcome variable 𝑋4 (undergraduate GPA). The
coefficients for 𝑋1 and 𝑋2 for each linear regression were rounded
to the nearest 0.5, to ensure that realistic values for GPA and LSAT
score were produced, and adopted in the structural functions 𝑓3 (·)
and 𝑓4 (·). Given that the intercepts for these linear regressions
are estimates of signal that is not correlated with race or gender,
we assume this signal is represented in the exogenous variable
distributions for LSAT score and undergraduate GPA, which are
observed and do not need codifying in the SCM. To the best of our
knowledge, Bynum et al. [3] use a similar process for modeling
structural functions.

Lastly, the constraints we impose on the action sets for the First-
Year Law School Success data setting are displayed in Table 5.

D.2 Benchmark Methods
The four benchmarkmethodswe use in Section 4,ℎ0/1

𝜃
(·),ℎeq-cost

𝜃
(·),

ℎbal-err
𝜃

(·), and ℎbal+eq
𝜃

(·), are explained in this appendix.

The benchmark method, ℎ0/1
𝜃
(·), only minimizes balanced 0/1

loss, therefore the loss we minimize for these models take the form
of the following:

L0/1
𝜃
(·) = Lacc

𝜃
(·) = 𝛽𝐹𝑃 ∗ 𝐹𝑃𝑅 + 𝛽𝐹𝑁 ∗ 𝐹𝑁𝑅 (15)

For Equation 15,Lacc
𝜃
(·) is identical to Equation 10 when 𝛽burd

𝑇𝑁
=

0. The 𝛽𝐹𝑃 and 𝛽𝐹𝑁 parameters we use for all data settings are
defined in Table 6.

The benchmark method, ℎeq-cost
𝜃

(·), is trained to minimize bal-
anced 0/1 loss and equalize the cost of recommendations across
sensitive subpopulations, using the formulation in Equation 5. It is
important to note that the original formulation proposed in [15]
is directly incorporated into a optimization problem, rather than
an isolated fairness measurement. This means that Equation 5 was
originally displayed as a constraint for training a classifier, with a
parametric upper bound for the tolerated value of Equation 5. In
reviewing our results for the German Credit Data, in comparison
to their results for the German Credit Data, specifically in terms
of the measurement for Equation 5, which is referred to as ‘Δ𝑎 for
E(Cost)’ in Table 1, our adaption seems empirically neutral, if not
beneficial. We train ℎeq-cost

𝜃
(·) using the following loss function:

Leq-cost
𝜃

(·) =Lacc
𝜃
(·) + 𝛽eq-cost ∗ 𝛼eq-cost,

where 𝛼eq-cost =

������� 1��𝑆−𝑎 �� ∑︁
𝑥𝑖 ∈𝑆−𝑎

cost(𝑥𝑖 , 𝛿∗𝑖 ) −
1��𝑆−
𝑎′

�� ∑︁
𝑥 𝑗 ∈𝑆−𝑎′

cost(𝑥 𝑗 , 𝛿∗𝑗 )

������� ,
(16)

as defined in Equation 5.
In Equation 16, as in Equation 5, for a sensitive attribute 𝑥𝑖 𝑗 ∈ 𝑥𝑖 ,

𝑆−𝑎 = {𝑥𝑖 ∈ 𝑥 : ℎ𝜃 (𝑥𝑖 ) = 0, 𝑥𝑖 𝑗 = 𝑎} and 𝑆−
𝑎′ = {𝑥𝑖 ∈ 𝑥 : ℎ𝜃 (𝑥𝑖 ) =

0, 𝑥𝑖 𝑗 = 𝑎′}. We provide the setting for 𝛽eq-cost of ℎeq-cost
𝜃

(·) in
Table 8.

The benchmark method, ℎbal-err
𝜃

(·), is trained to minimize bal-
anced 0/1 loss and equalize the error rates (false positive rate and
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𝑈1 𝑋1

𝑈2 𝑋2

𝑈3 𝑋3

𝑋4

𝑈4

𝑋1 := 𝑈1

𝑋2 := 𝑈2

𝑋3 := 𝑓3 (𝑋1, 𝑋2) +𝑈3

𝑋4 := 𝑓4 (𝑋3) +𝑈4

(a) The structural causal model (SCM)M for the German Credit
Data setting. Endogenous variables: 𝑋1 is gender. 𝑋2 is age. 𝑋3 is
credit amount.𝑋4 is repayment duration in months. Endogenous
variables are non-parametric observed data distributions. Struc-
tural functions: 𝑓3 (𝑋1, 𝑋2 ) = 550 ∗𝑋1 + 4.5 ∗𝑋2. 𝑓4 (𝑋3 ) = .0025 ∗𝑋3.
Outcome variable (not shown above): whether an individual is
trustworthy for credit.

𝑈1 𝑋1

𝑈2 𝑋2 𝑋3

𝑈3

𝑋4

𝑈4

𝑋1 := 𝑈1

𝑋2 := 𝑈2

𝑋3 := 𝑓3 (𝑋1, 𝑋2) +𝑈3

𝑋4 := 𝑓4 (𝑋1, 𝑋2) +𝑈4

(b) The structural causal model (SCM) M for First-Year Law
School Success Data setting. Endogenous variables: 𝑋1 is race
(Black orWhite).𝑋2 is gender.𝑋3 is LSAT score.𝑋4 is undergradu-
ate GPA. Endogenous variables are non-parametric observed data
distributions. Structural functions: 𝑓3 (𝑋1, 𝑋2 ) = −8.5∗𝑋1+0.5∗𝑋2.
𝑓4 (𝑋1, 𝑋2 ) = −0.3 ∗ 𝑋1 − 0.2 ∗ 𝑋2. Outcome variable (not shown
above): whether an individual performs above average in their
first-year of law school.

Figure 5: Structural Causal Models (SCM) for German Credit Data and First-Year Law School Success settings. The SCM for
the Simulated Mortgage Lending setting is shown in Figure 1. For more information on structural causal models, reference
Appendix B.

Algorithm 2 Process for Generating Simulated Mortgage Lending Data

1: for i = {1,2,...,1000} do
2: 𝑥𝑖1 = 𝑢𝑖1 ∼ Bernoulli(0.50) ⊲ Sampling gender for individual 𝑖 .
3: 𝑥𝑖2 = 𝑢𝑖2 = ∞
4: while 𝑥𝑖2 < 18 or 𝑥𝑖2 > 75 do
5: 𝑥𝑖2 = 𝑢𝑖2 ∼ N(38, 22) ⊲ Sampling age for individual 𝑖 , rounded to integer values.
6: end while
7: 𝑢𝑖3 ∼ Uniform(0.40, 1.09) ⊲ Rounded to the hundredths place value.
8: 𝑥𝑖3 = −0.005 ∗ 𝑥𝑖2 + 𝑢𝑖3 ⊲ Calculating proportion of cumulative credit line available.
9: 𝑢𝑖4 ∼ Uniform(200, 400) ⊲ Rounded to integer value.
10: 𝑥𝑖4 = 𝑥𝑖1 + 50 ∗ 𝑥𝑖2 + 400 ∗ 𝑥𝑖3 + 𝑢𝑖4 ⊲ Calculating credit score for individual 𝑖 .
11: end for
12: 𝜇4 = E∀𝑥𝑖 [𝑥𝑖 ] ⊲ Calculate mean of credit scores across all individuals.
13: 𝑠4 = std∀𝑥𝑖 (𝑥𝑖 ) ⊲ Calculate standard deviation of credit scores for all individu-

als.
14: for i = {1,2,...,1000} do
15: 𝑧𝑖4 =

𝑥𝑖4−𝜇4
𝑠4

⊲ Standardizing credit score for individual 𝑖 .
16: 𝑦𝑖 ∼ Bernoulli(𝜎 (N (0.05 ∗ 𝑧𝑖4, 0.20))) ⊲ Drawing outcome variable of mortgage trustworthiness using

credit score for individual 𝑖 . 𝜎 is the sigmoid function.
17: end for
18: return {𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, 𝑥𝑖4, 𝑦𝑖 }∀𝑖 ∈ {1, 2, ..., 1000}

false negative rate) across sensitive subpopulations. Given that part
of our method is aimed at addressing the issue of imbalanced rates
of erroneously granting and denying access to the favorable deci-
sion across sensitive subpopulation, as motivated in Example 1 of

Section 2.2, this takes the form of imbalanced error rates across sen-
sitive subpopulations, and therefore, is an appropriate benchmark.
We train ℎbal-err

𝜃
(·) using the following loss functions:
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Variable Description Actionability Direction Mutability Min Max Data Type
𝑋1 gender non-actionable non-mutable
𝑋2 age actionable increase mutable 75 years-old integer
𝑋3 prop. of cuml. credit available actionable any direction mutable 0.045 0.99 real
𝑋4 credit score non-actionable mutable 321 847 integer

Table 3: Feasibility and plausibility constraints for action sets encoded in 𝐹 (·) for the Simulated Mortgage Lending setting
(𝑛 = 1000). Actionability refers to whether a feature can be used as an action in a recommendation. Direction describes how a
feature can be modified. Mutability describes whether a feature can change due to a hard intervention. All actionable features
are mutable, but some mutable features are not actionable. Min and max constraints are set for mutable features based on the
bounds observed in the data distribution for each feature. Data type refers to data type constraints placed on feature values.

Variable Description Actionability Direction Mutability Min Max Data Type
𝑋1 gender non-actionable non-mutable
𝑋2 age actionable increase mutable 75 years-old integer
𝑋3 credit (in Deutsche Marks) actionable any direction mutable 250 18424 real
𝑋4 loan duration (in months) non-actionable mutable 4 72 integer

Table 4: Feasibility and plausibility constraints for action sets encoded in 𝐹 (·) for the German Credit Data setting (𝑛 = 1000).
Actionability refers to whether a feature can be used as an action in a recommendation. Direction describes how a feature
can be modified. Mutability describes whether a feature can change due to a hard intervention. All actionable features are
mutable, but some mutable features are not actionable. Min and max constraints are set for mutable features based on the
bounds observed in the data distribution for each feature. Data type refers to data type constraints placed on feature values.

Variable Description Actionability Direction Mutability Min Max Data Type
𝑋1 race (Black or White) non-actionable non-mutable
𝑋2 gender non-actionable non-mutable
𝑋3 LSAT score actionable any direction mutable 17 48 real
𝑋4 undergraduate GPA non-actionable non-mutable

Table 5: Feasibility and plausibility constraints for action sets encoded in 𝐹 (·) for the First-Year Law School Success Data setting
(𝑛 = 2421). Note, the LSAT score uses the scoring schema between 1995-2005. Actionability refers to whether a feature can be
used as an action in a recommendation. Direction describes how a feature can be modified. Mutability describes whether a
feature can change due to a hard intervention. All actionable features are mutable, but somemutable features are not actionable.
Min and max constraints are set for mutable features based on the bounds observed in the data distribution for each feature.
Data type refers to data type constraints placed on feature values.

Lbal-err
𝜃

(·) =Lacc
𝜃
(·) + 𝛽bal-err

(
𝛼𝑏𝑎𝑙−𝐹𝑃𝑅 + 𝛼𝑏𝑎𝑙−𝐹𝑁𝑅

2

)
,

where 𝛼bal-FPR =

���E𝑥𝑖∼𝑆−𝑎 [I(ℎ𝜃 (𝑥𝑖 ) = 1)] − E𝑥 𝑗∼𝑆−𝑎′ [I(ℎ𝜃 (𝑥 𝑗 ) = 1)]
���

and 𝛼bal-FNR =

���E𝑥𝑘∼𝑆+𝑎 [I(ℎ𝜃 (𝑥𝑘 ) = 0)] − E𝑥𝑙∼𝑆+𝑎′ [I(ℎ𝜃 (𝑥𝑙 ) = 0)]
��� .

(17)

For Equation 17, similarly to Equation 13, 𝑆−𝑎 = {𝑥𝑖 : 𝑦𝑖 = 0, 𝑥𝑖 𝑗 =
𝑎}, 𝑆−

𝑎′ = {𝑥𝑖 : 𝑦𝑖 = 0, 𝑥𝑖 𝑗 = 𝑎′}, 𝑆+𝑎 = {𝑥𝑖 : 𝑦𝑖 = 1, 𝑥𝑖 𝑗 = 𝑎} and
𝑆+
𝑎′ = {𝑥𝑖 : 𝑦𝑖 = 1, 𝑥𝑖 𝑗 = 𝑎′}. We provide the setting for 𝛽bal-err of
ℎbal-err
𝜃

(·) in Table 8.

Lastly, for the benchmark method, ℎbal+eq
𝜃

(·), we minimize bal-
anced 0/1 loss, and equalize cost of recommendations and error
rates across sensitive subpopulations. As mentioned in Section 4,
this benchmark serves to demonstrate that jointly optimizing for
predictive fairness and equalized cost of recommendations is not

competitive compared to our method. Therefore, we use the follow-
ing loss function to train ℎbal+eq

𝜃
(·):

Lbal+eq
𝜃

= Lacc
𝜃
(·) + 𝛽eq-cost ∗ 𝛼eq-cost

+ 𝛽bal-err
(
𝛼𝑏𝑎𝑙−𝐹𝑃𝑅 + 𝛼𝑏𝑎𝑙−𝐹𝑁𝑅

2

)
(18)

For Equation 18, 𝛼eq-cost is defined in Equation 16 and Equation 5.
𝛼𝑏𝑎𝑙−𝐹𝑃𝑅 and 𝛼𝑏𝑎𝑙−𝐹𝑁𝑅 are defined in Equation 17. 𝛽eq-cost and
𝛽bal-err for ℎbal+eq

𝜃
(·) are shown in Table 8.

The loss functions,L0/1
𝜃
(·),Leq-cost

𝜃
(·),Lbal-err

𝜃
(·), andLbal+eq

𝜃
(·)

for ℎ0/1
𝜃
(·), ℎeq-cost

𝜃
(·), ℎbal-err

𝜃
(·), and ℎbal+eq

𝜃
(·), respectively, take a

similar form to the loss function, L∗
𝜃
(·), we use to train our method,

ℎ∗
𝜃
(·). Therefore, we use the identical training method we discussed

in Section 4 of gradient descent using SPSA for gradient approxi-
mation with random sets of 𝜃 post-convergence. We outline this
process in detail in Appendix C.1, with pseudocode in Algorithm 1.
For Algorithm 1 for these benchmark methods, as well as all other
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models that use loss functions other than L∗
𝜃
(·), we substitute the

respective loss function in the pseudocode for L∗
𝜃
(·). Note that

all other parameters pertaining to the gradient descent algorithm,
including batch size and convergence criterion, and SPSA gradient
approximation method are identical across all models, including
those for these benchmark methods.

D.3 Model Parameters
For each data setting, across all models used in our research, the
same 𝛽𝐹𝑃 and 𝛽𝐹𝑁 are utilized. These are displayed in Table 6.
Additionally, as discussed in Section 3.2, a 𝜖corr penalty is added
to the false positive rate, where 𝜖corr ≈ 𝛽burd

𝑇𝑁
E𝑥𝑖∼𝑇𝑁 [𝑏 (𝑥𝑖 )] when

𝛽burd
𝑇𝑁

> 0. We approximate a fixed E𝑥𝑖∼𝑇𝑁 [𝑏 (𝑥𝑖 )] for each data
setting, using a default logistic regression classifier, that we use
across all models per data setting when 𝛽burd

𝑇𝑁
> 0. These values of

E𝑥𝑖∼𝑇𝑁 [𝑏 (𝑥𝑖 )] for 𝜖corr are also displayed in Table 6.
In determining the weights we used for each data setting, dis-

played in Table 6, the weights 𝛽𝐹𝑃 and 𝛽𝐹𝑁 must be set accordingly
to ensure there exists a 𝜃 for L∗

𝜃
(·) where:

𝛽𝐹𝑃 ≫ 𝛽𝐹𝑁 ∗𝐹𝑁𝑅+Lburd
𝜃
(·) +Lexc-burd

𝜃
(·) +Lbal-exc-burd

𝜃
(·) (19)

If a solution for 𝜃 does not exist that satisfies Equation 19, given
𝛽𝐹𝑃 and 𝛽𝐹𝑁 , the model that minimizes L∗

𝜃
(·) will provide all or

nearly all positive predictions. Therefore, the different parameter
weights for each data setting in Table 6 were determined to ensure
the constraint in Equation 19 was met. Note that we use 𝜖corr to
solely mitigate the issue discussed in Section 3.2 of minimization of
burden through flipping true negatives to false positives, therefore,
specifically addressing an issue the Lburd

𝜃
(·) component presents,

in isolation. The weights for 𝛽𝐹𝑃 and 𝛽𝐹𝑁 are chosen to address
an issue that is present for L∗

𝜃
(·) at large. We frame this specifi-

cally in Equation 19 as a consideration for L∗
𝜃
(·) for the weights

assigned in Table 6, because 𝛽𝐹𝑁 ∗ 𝐹𝑁𝑅 +Lburd
𝜃
(·) + Lexc-burd

𝜃
(·) +

Lbal-exc-burd
𝜃

(·) serves as an upper bound across all our models for
each data setting, but it is clear that this consideration exists for all
loss functions we utilize in our research, and therefore, this is why
we use fixed 𝛽𝐹𝑃 and 𝛽𝐹𝑁 weights across all models given the data
setting.

Table 7 presents all the weights we utilize forℎ∗
𝜃
(·), all the ablated

models, ℎburd
𝜃
(·), ℎexc-burd

𝜃
(·), and ℎbal-exc-burd

𝜃
(·), and models that

are trained to prioritize access for false negatives over true negatives
by placing more weight on minimizing burden for false negatives
over true negatives. These models are denoted as ℎburd

𝜃,FN>TN (·) and
ℎ∗
𝜃,FN>TN (·), and their weights are displayed in Table 7 and the
results of these models are displayed in Table 9. Lastly, we present
the weights for all benchmark methods in Table 8, and discuss the
loss functions used for these benchmark methods in Appendix D.2.
All models, including those displayed in Table 7 and Table 8,
use the weights per data setting displayed in Table 6.

For all models other than ℎ
0/1
𝜃
(·), all weights not pertaining to

𝛽𝐹𝑃 and 𝛽𝐹𝑁 sum to 6. This can easily be observed by looking at the
sum of the rows for all models in Table 7 and Table 8, besides the
row for ℎ0/1

𝜃
(·). Additionally, the metrics, including burden, excess

burden, and the benchmark metrics have a minimum value of 0
and maximum value of 1. This presents a level of stability across

all models per data setting, making them relatively comparable to
each other in terms of the weight they assign to objectives other
than predictive accuracy in the loss functions.

D.4 Full Results
Table 9 contains the full set of results across of all our evalua-
tion settings and benchmark methods. We describe the benchmark
methods, ℎ0/1

𝜃
(·), ℎeq-cost

𝜃
(·), ℎbal-err

𝜃
(·) and ℎbal+eq

𝜃
(·), extensively

in Section 4 and Appendix D.2. Our method, ℎ∗
𝜃
(·), is described thor-

oughly in Section 3.2 and Section 4. The ablated classifiers, ℎburd
𝜃
(·),

ℎexc-burd
𝜃

(·), andℎbal-exc-burd
𝜃

(·), are described in Section 4.1. Models
trained to prioritize accessibility for those who are false negatives,
ℎburd
𝜃,FN>TN (·) and ℎ

∗
𝜃,FN>TN (·), are discussed in Appendix D.3. It is

important to note that false negatives are the result of an algorith-
mic decision-maker being unable to detect a substantial enough
signal in their features to discern them from true negatives. There-
fore, in many regards, these models’ (ℎburd

𝜃,FN>TN (·) and ℎ
∗
𝜃,FN>TN (·))

ability to give more access to false negatives relies on the assump-
tion that they are able to fit for a signal of these false negatives. If
the models were effectively able to do that, they would be classify-
ing these false negatives as true positives. Regardless, these models
present a specific functionality of our method that could be useful
to practitioners in other contexts.

Lastly, we present an algorithmic decision-maker that is trained
to only minimize excess burden and balance excess burden across
sensitive subpopulations. Therefore, this model is not concerned
with lowering the cost of recommendations or maximizing access
to recommendations. We denote these algorithmic decision-makers
as ℎall-exc-burd

𝜃
(·) in Table 9 with the weights they utilize specified

in Table 7. We provide this setting for the use-case where access to
realistically implementable recommendations is not a goal, mean-
ing, Principle A is not applicable. Adopting this criterion for a
data setting should be taken with caution for two reasons. First, all
objectives we use to train ℎ∗

𝜃
(·) work in tandem. For example, low-

ering the expected cost of recommendations, often, also lowers the
absolute difference of expected costs of recommendations across
sensitive subpopulations. Second, as pointed out in Section 3.2 and
cited in [47], there are ethical issues associated with providing chal-
lenging (high-cost) recommendations for individuals to implement.
We address this in our work by minimizing expected burden. There-
fore, ℎall-exc-burd

𝜃
(·) should only be used in select settings where it

has been evaluated as essential by domain experts.
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Data Setting 𝛽𝐹𝑃 𝛽𝐹𝑁 𝜖corr for all models where 𝛽burd
𝑇𝑁

> 0 in Table 7
Simulated Mortgage Lending 4 4 0.70𝛽burd

𝑇𝑁

German Credit Data 6 6 0.30𝛽burd
𝑇𝑁

First-Year Law School Success 8 8 0.85𝛽burd
𝑇𝑁

Table 6: Weights for false positive rates and false negative rates used for each data setting across all models. 𝜖corr is used when
𝛽burd
𝑇𝑁

> 0, where 𝜖corr ≈ 𝛽burd
𝑇𝑁
E𝑥𝑖∼𝑇𝑁 [𝑏 (𝑥𝑖 )] and E𝑥𝑖∼𝑇𝑁 [𝑏 (𝑥𝑖 )] is calculated using a default classifier and is fixed for each data

setting. These values of E𝑥𝑖∼𝑇𝑁 [𝑏 (𝑥𝑖 )] are displayed in the right-most column of this table.

Algorithmic Decision-Maker 𝛽burd
𝐹𝑁

𝛽burd
𝑇𝑁

𝛽exc-burd
𝐹𝑁

𝛽exc-burd
𝑇𝑁

𝛽bal-exc-burd− 𝛽bal-exc-burd+
ℎburd 3 3 0 0 0 0

ℎexc-burd 0 0 3 3 0 0
ℎbal-exc-burd 0 0 0 0 3 3
ℎall-exc-burd 0 0 1.5 1.5 1.5 1.5
ℎburdFN>TN 4 2 0 0 0 0
ℎ∗FN>TN 1.33 0.67 1 1 1 1

ℎ∗ 1 1 1 1 1 1
Table 7:Weights utilized in the loss functions for allmodels, including ourmethod,ℎ∗

𝜃
(·), the ablatedmodels,ℎburd

𝜃
(·),ℎexc-burd

𝜃
(·),

and ℎbal-exc-burd
𝜃

(·), models that prioritize access to recommendations for false negatives over true negatives, ℎburd
𝜃,FN>TN (·) and

ℎ∗
𝜃,FN>TN (·), and an algorithmic decision-maker that only minimizes excess burden and balances excess burden across sensitive
subpopulations, ℎall-exc-burd

𝜃
(·) (discussed more in Appendix D.4). For readability in the table, we neglect the 𝜃 subscript and (·)

notation. Note that all algorithmic decision-makers in this table use the weights listed in Table 6, as well.

Algorithmic Decision-Maker 𝛽eq-cost 𝛽bal-err

ℎ0/1 0 0
ℎeq-cost 6 0
ℎbal-err 0 6
ℎbal+eq 3 3

Table 8: Weights used for each algorithmic decision-maker used as a benchmark for our methods. These weights are used in
the loss functions described in Appendix D.2. These benchmark methods are also described at a high-level in Section 4. For
readability in the table, we neglect the 𝜃 subscript and (·) notation. Note that all algorithmic decision-makers in this table use
the weights listed in Table 6, as well.
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Data Setting Model Algorithmic
Decision-
Maker

Balanced
0/1 Loss

Coverage |Δ𝑎 | for
Coverage

E(Cost) |Δ𝑎 | for
E(Cost)
(𝛼eq-cost)

|Δ𝑎 | for
E(Cost)
∀𝑦𝑖 = 1

|Δ𝑎 | for
E(Cost)
∀𝑦𝑖 = 0

𝛼 ind-fair |Δ𝑎 | for
FPR

|Δ𝑎 | for
FNR

Simulated
Mortgage
Lending

lr

ℎ0/1 0.508 0.684 0.156 0.094 0.036 † 0.042 † 0.034 † 0.108 ‡ 0.289 0.272
ℎeq-cost 0.511 0.729 0.225 † 0.090 † 0.013 † 0.015 † 0.016 † 0.052 ‡ 0.240 0.232
ℎbal-err 0.501 0.667 0.049 0.100 0.022 † 0.025 † 0.027 † 0.026 ‡ 0.047 0.053
ℎbal+eq 0.498 0.738 0.046 0.082 0.010 † 0.015 † 0.016 † 0.013 ‡ 0.062 0.044
ℎburd 0.505 1.000 0.000 † 0.051 0.012 † 0.013 † 0.013 † 0.030 ‡ 0.153 0.138
ℎexc-burd 0.509 0.761 0.030 0.087 0.015 0.018 † 0.020 † 0.006 0.057 0.055
ℎbal-exc-burd 0.509 0.794 0.023 0.084 † 0.011 † 0.015 † 0.016 † 0.004 ‡ 0.052 0.055
ℎall-exc-burd 0.507 0.810 0.024 0.086 0.012 0.018 0.017 0.004 0.057 0.052
ℎburdFN>TN 0.508 1.000 0.000 † 0.047 0.014 † 0.017 † 0.016 † 0.046 ‡ 0.204 0.188
ℎ∗FN>TN 0.507 0.987 0.005 0.053 0.008 0.012 0.010 † 0.008 0.063 0.052
ℎ∗ 0.509 0.998 0.000 0.059 0.006 0.008 0.010 0.003 0.058 0.052

MLP (1x2)

ℎ0/1 0.514 0.653 0.203 † 0.089 † 0.026 † 0.027 † 0.029 † 0.088 ‡ 0.294 0.311
ℎeq-cost 0.511 0.771 0.117 † 0.089 0.013 † 0.018 † 0.018 † 0.051 ‡ 0.268 0.271
ℎbal-err 0.505 0.763 0.031 0.093 0.018 † 0.014 † 0.019 † 0.014 ‡ 0.056 0.055
ℎbal+eq 0.504 0.812 0.035 0.088 0.011 0.012 0.017 0.012 0.053 0.053
ℎburd 0.510 1.000 0.000 0.051 0.010 0.012 0.011 0.023 0.112 0.124
ℎexc-burd 0.508 0.770 0.035 0.081 0.012 0.013 † 0.017 † 0.013 0.054 0.060
ℎbal-exc-burd 0.506 0.795 0.028 0.084 0.014 0.018 † 0.014 † 0.002* 0.062 0.053
ℎall-exc-burd 0.509 0.870 0.035 0.083 0.010 0.017 0.017 0.006* 0.060 0.050
ℎburdFN>TN 0.511 1.000 0.000 † 0.044 0.013 † 0.015 † 0.014 † 0.041 ‡ 0.167 0.187
ℎ∗FN>TN 0.514 0.992 0.003 0.054 0.008 0.010 0.011 0.009 0.063 0.050
ℎ∗ 0.511 0.999 0.001 0.058 0.007 0.010 0.011 0.004* 0.054 0.047

MLP (1x4)

ℎ0/1 0.515 0.585 0.196 † 0.095 0.029 † 0.030 † 0.034 † 0.113 ‡ 0.296 0.300
ℎeq-cost 0.510 0.717 0.212 † 0.082 † 0.014 † 0.019 † 0.016 † 0.080 ‡ 0.257 0.258
ℎbal-err 0.507 0.805 0.034 0.090 † 0.012 † 0.013 † 0.017 † 0.013 ‡ 0.051 0.057
ℎbal+eq 0.508 0.809 0.039 0.089 0.010 0.018 0.015 0.017 0.057 0.059
ℎburd 0.512 1.000 0.000 0.050 0.011 0.014 0.012 † 0.027 0.132 0.124
ℎexc-burd 0.507 0.800 0.041 0.084 0.011 0.017 0.015 † 0.006* 0.055 0.053
ℎbal-exc-burd 0.510 0.789 0.024 0.088 0.016 0.014 † 0.025 † 0.006* 0.054 0.047
ℎall-exc-burd 0.509 0.839 0.021 0.083 0.011 0.016 0.016 0.005* 0.054 0.057
ℎburdFN>TN 0.515 1.000 0.000 † 0.042 0.017 † 0.017 † 0.014 † 0.048 ‡ 0.172 0.194
ℎ∗FN>TN 0.511 0.988 0.004 0.054 0.008 0.012 † 0.012 † 0.010 0.061 0.054
ℎ∗ 0.514 1.000 0.000 0.054 0.006 0.009 0.009 0.003* 0.067 0.059

German
Credit
Data

lr

ℎ0/1 0.412 0.992 0.006 0.083 0.019 0.019 0.022 0.123 0.388 0.353
ℎeq-cost 0.414 0.966 0.027 0.078 0.014 0.012 0.022 0.110 ‡ 0.318 0.281
ℎbal-err 0.433 0.936 0.026 0.082 0.013 0.014 0.022 0.054 0.081 0.060
ℎbal+eq 0.430 0.952 0.032 0.086 0.012 0.015 0.021 0.048 0.077 0.067
ℎburd 0.419 0.998 0.003 0.043 0.007 0.009 0.009 0.066 0.304 0.252
ℎexc-burd 0.424 0.985 0.012 0.074 0.010 0.010 0.018 0.044 0.18 0.126
ℎbal-exc-burd 0.430 0.966 0.016 0.073 0.010 0.011 0.016 0.033* 0.138 0.088
ℎall-exc-burd 0.427 0.956 0.021 0.080 0.009 0.010 0.017 0.035* 0.145 0.092
ℎburdFN>TN 0.424 0.996 0.006 0.049 0.010 0.011 0.013 0.070 0.311 0.243
ℎ∗FN>TN 0.431 0.993 0.006 0.054 0.007 0.008 0.012 0.040 0.153 0.111
ℎ∗ 0.423 0.996 0.006 0.057 0.008 0.009 0.015 0.036* 0.165 0.107

MLP (1x2)

ℎ0/1 0.408 0.975 0.014 0.083 0.018 0.017 0.025 0.135 0.411 0.383
ℎeq-cost 0.414 0.957 0.031 0.078 0.012 0.012 0.017 0.110 ‡ 0.337 0.306
ℎbal-err 0.424 0.892 0.043 0.083 0.015 0.015 0.024 0.069 0.077 0.068
ℎbal+eq 0.431 0.891 0.037 0.078 0.014 0.016 0.023 0.054 0.089 0.078
ℎburd 0.423 0.997 0.006 0.041 0.007 0.008 0.010 0.052 0.277 0.231
ℎexc-burd 0.420 0.978 0.017 0.077 0.008 0.009 0.014 0.057 0.176 0.110
ℎbal-exc-burd 0.426 0.943 0.023 0.078 0.010 0.012 0.016 † 0.029* 0.128 0.087
ℎall-exc-burd 0.420 0.966 0.019 0.081 0.010 0.012 0.017 0.036* 0.148 0.085
ℎburdFN>TN 0.421 0.998 0.003 0.048 0.013 0.014 0.014 0.078 0.362 0.299
ℎ∗FN>TN 0.431 0.994 0.007 0.054 0.008 0.008 0.016 0.040 0.170 0.120
ℎ∗ 0.429 0.993 0.005 0.055 0.007 0.007 0.013 0.034* 0.143 0.113

This table continues onto the next page.
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Data Setting Model Algorithmic
Decision-
Maker

Balanced
0/1 Loss

Coverage |Δ𝑎 | for
Coverage

E(Cost) |Δ𝑎 | for
E(Cost)
(𝛼eq-cost)

|Δ𝑎 | for
E(Cost)
∀𝑦𝑖 = 1

|Δ𝑎 | for
E(Cost)
∀𝑦𝑖 = 0

𝛼 ind-fair |Δ𝑎 | for
FPR

|Δ𝑎 | for
FNR

German
Credit
Data

MLP (1x4)

ℎ0/1 0.409 0.978 0.010 0.083 0.014 0.014 0.021 0.134 0.377 0.359
ℎeq-cost 0.408 0.964 0.029 0.077 0.011 † 0.011 † 0.017 † 0.107 ‡ 0.344 0.307
ℎbal-err 0.427 0.877 0.046 0.083 0.015 0.016 0.024 0.058 0.070 0.064
ℎbal+eq 0.426 0.909 0.040 0.084 0.013 0.014 0.021 0.062 0.091 0.058
ℎburd 0.426 0.998 0.003 0.045 0.009 0.010 0.013 0.067 0.320 0.261
ℎexc-burd 0.418 0.958 0.019 0.078 0.009 0.011 0.016 0.055 0.188 0.135
ℎbal-exc-burd 0.427 0.969 0.017 0.080 0.008 0.010 0.016 0.035* 0.133 0.079
ℎall-exc-burd 0.428 0.960 0.013 0.078 0.010 0.010 0.017 0.029* 0.140 0.088
ℎburdFN>TN 0.424 0.997 0.005 0.048 0.010 0.011 0.013 0.081 0.347 0.268
ℎ∗FN>TN 0.428 0.991 0.009 0.052 0.007 0.007 0.013 0.038* 0.153 0.117
ℎ∗ 0.427 0.993 0.005 0.054 0.007 0.008 0.013 0.029* 0.170 0.103

First-Year
Law School
Success

lr

ℎ0/1 0.417 0.734 0.529 0.196 0.288 † 0.267 † 0.285 † ——– ‡ 0.635 0.678
ℎeq-cost 0.419 0.684 0.898 † 0.145 † 0.311 † 0.066 † 0.301 † 0.219 ‡ 0.669 0.746
ℎbal-err 0.450 0.718 0.123 0.215 † 0.099 † 0.106 † 0.093 † 0.156 ‡ 0.076 0.116
ℎbal+eq 0.449 0.886 0.098 0.189 † 0.053 † 0.091 † 0.045 † 0.139 ‡ 0.092 0.121
ℎburd 0.416 0.978 0.079 0.168 0.238 † 0.217 † 0.233 † 0.362 ‡ 0.673 0.602
ℎexc-burd 0.426 0.976 0.088 0.154 0.187 † 0.175 † 0.182 † 0.358 ‡ 0.595 0.514
ℎbal-exc-burd 0.451 0.795 0.102 0.193 0.069 0.112 † 0.061 0.151 ‡ 0.068 0.100
ℎall-exc-burd 0.460 0.961 0.043 0.135 0.036 0.049 † 0.039 0.153 ‡ 0.084 0.118
ℎburdFN>TN 0.414 0.949 0.132 0.191 0.293 † 0.264 † 0.287 † 0.557 ‡ 0.746 0.682
ℎ∗FN>TN 0.450 1.000 0.000 0.115 0.024 0.035 † 0.024 0.140 ‡ 0.140 0.142
ℎ∗ 0.448 1.000 0.000 † 0.120 0.022 † 0.042 † 0.021 † 0.141 ‡ 0.143 0.138

MLP (1x2)

ℎ0/1 0.414 0.766 0.507 0.194 0.298 † 0.239 † 0.301 † 0.600 ‡ 0.656 0.707
ℎeq-cost 0.419 0.681 0.931 0.149 0.343 † 0.120 † 0.318 † ——– ‡ 0.664 0.741
ℎbal-err 0.454 0.661 0.097 0.215 † 0.071 † 0.112 † 0.059 † 0.133 ‡ 0.070 0.099
ℎbal+eq 0.447 0.848 † 0.062 † 0.180 † 0.051 † 0.089 † 0.042 † 0.145 ‡ 0.080 0.130
ℎburd 0.417 0.985 0.042 0.166 0.215 † 0.218 † 0.206 † 0.369 ‡ 0.654 0.552
ℎexc-burd 0.423 0.971 0.112 0.151 0.180 † 0.166 † 0.177 † 0.368 ‡ 0.618 0.519
ℎbal-exc-burd 0.449 0.783 0.080 0.192 0.065 † 0.092 † 0.057 † 0.173 ‡ 0.059 0.121
ℎall-exc-burd 0.461 0.995 0.005 0.125 0.017 0.043* † 0.021 0.153 ‡ 0.080 0.123
ℎburdFN>TN 0.415 0.973 0.079 0.181 0.260 † 0.237 † 0.256 † 0.536 ‡ 0.731 0.684
ℎ∗FN>TN 0.450 0.999 0.001 0.113 0.022 0.039* † 0.020 0.136 ‡ 0.158 0.150
ℎ∗ 0.450 1.000 0.000 0.119 0.018 0.033* † 0.017 0.140 ‡ 0.124 0.137

MLP (1x4)

ℎ0/1 0.415 0.786 0.507 0.187 0.297 † 0.233 † 0.306 † 0.452 ‡ 0.650 0.696
ℎeq-cost 0.420 0.670 0.878 † 0.148 † 0.244 † 0.283 † 0.302 † ——– ‡ 0.646 0.711
ℎbal-err 0.447 0.787 0.104 0.203 0.075 † 0.107 † 0.065 † 0.200 ‡ 0.087 0.106
ℎbal+eq 0.445 0.883 0.095 0.185 † 0.054 † 0.082 † 0.049 † 0.119 ‡ 0.107 0.125
ℎburd 0.417 0.987 0.039 0.166 0.220 0.216 † 0.211 0.322 ‡ 0.658 0.545
ℎexc-burd 0.424 0.985 0.051 0.151 0.179 † 0.172 † 0.175 † 0.345 ‡ 0.615 0.515
ℎbal-exc-burd 0.449 0.851 0.080 0.185 0.055 0.080 † 0.052 0.163 ‡ 0.057 0.119
ℎall-exc-burd 0.459 0.977 0.016 0.130 0.032 0.051 † 0.033 0.152 ‡ 0.089 0.122
ℎburdFN>TN 0.417 0.966 0.095 0.186 0.259 † 0.248 † 0.251 † 0.386 ‡ 0.744 0.657
ℎ∗FN>TN 0.448 1.000 0.000 0.110 0.025 0.042 0.023 0.131 ‡ 0.158 0.156
ℎ∗ 0.446 1.000 0.000 † 0.120 0.021 † 0.031 † 0.020 † 0.148 ‡ 0.144 0.143

Table 9: Results are shown for all classifiers: logistic regression (lr); multi-layer perceptron with 1 layer and 2 hidden units
(MLP (1x2)); and multi-layer perceptron with 1 layer and 4 hidden units, (MLP (1x4)). For readability, we neglect the 𝜃 subscript
and (·) notation. All weight settings are displayed in Table 7. Settings for 𝛽𝐹𝑃 , 𝛽𝐹𝑁 , and 𝜖𝑐𝑜𝑟𝑟 differ per data setting and appear
in Table 6. Each value is averaged over 50 runs, each with a unique seed for a 70-30 train-test split. Classifiers are fit on training
data, and results in the table reflect test data metrics. Balanced 0/1 is 1

2𝐹𝑃𝑅 +
1
2𝐹𝑁𝑅. Coverage is the proportion of individuals

with unfavorable outcomes who received a recommendation. E(Cost) is average cost for those with unfavorable outcomes and
coverage. |Δ𝑎 | is the absolute difference in the relevant metric across sensitive subpopulations, stratified by positive class (𝑦𝑖 = 1)
and negative class (𝑦𝑖 = 0), where applicable. 𝛼 ind-fair is defined in Equation 6. Bolded values indicate statistically significant
improvements (𝑝 < 0.05, one-tailed t-test) over all the benchmark methods, except in the ‘Balanced 0/1 Loss’ column, where
bold represents significant increases (i.e., decreases in predictive accuracy). † represents missingness (e.g. no individuals with
recommendations for some runs) . ‡ represents no values found for 𝛼 ind-fair for some runs. * represents statistical significance
was evaluated against all benchmarks that were not missing but not the full set of benchmarks. – represents for all runs 𝛼 ind-fair
could not be calculated (insufficient coverage for 𝑥𝑖 or 𝑥𝐶𝐹𝑖

).
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