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Abstract

Algorithmic recourse aims to provide individuals with actionable
recommendations to reverse unfavorable outcomes from algorith-
mic decision-makers. For these systems to foster agency and trust,
they must adhere to three principles: (1) recommendations, when
acted upon, reliably lead to favorable outcomes, (2) realistically
implementable recommendations are accessible at a high rate, and
(3) fairness considerations must be upheld. We propose a novel
training framework for algorithmic decision-makers that jointly
optimizes accessibility to recommendations, predictive fairness, and
fair algorithmic recourse, including equalized access to recommen-
dations and equalized cost of recommendations across sensitive
subpopulations, by using a burden-based multi-objective loss func-
tion. Evaluations across three data settings demonstrate significant
improvements in availability of recommendations, reduced rec-
ommendation costs, and improved individual and group fairness
properties compared to benchmarks. By imposing various con-
straints for generating recommendations, our approach ensures
that recommendations reliably lead to favorable outcomes. This
framework sets a new standard for algorithmic recourse by ensuring
that systems that provide recourse uphold reliability, accessibility,
and fairness standards, which is essential for materially increasing
agency for those subject to algorithmic decisions and growing trust
in algorithmic decision-making systems more broadly.
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1 Introduction

The field of algorithmic recourse within explainable machine learn-
ing aims to equip individuals who have received unfavorable out-
comes from an algorithmic decision-maker with the necessary in-
formation to achieve favorable outcomes in future interactions with
the same algorithmic decision-maker [54]. Systems that provide
recourse often consist of two components: an algorithmic decision-
maker (typically a fixed binary classifier) that decides which indi-
viduals are given (un)favorable outcomes, and a recommendation
generator that provides only those individuals who are given the
unfavorable outcome with a recommendation (in the form of an
action set) to perform and subsequently receive the favorable out-
come [20]. To illustrate this concretely, consider an individual who
applies for a mortgage with the following information: (Male, 55
years old, 57.5% of his cumulative credit line is still available, 586
credit score), and an algorithm determines that he is too high-risk
to be granted the mortgage. Along with the rejection, he is provided
with a recommendation to perform the following action: reduce his
credit utilization so that 79% of his cumulative credit line is avail-
able. If that action is performed, when he reapplies for a mortgage,
it will be approved.

Algorithmic recourse has been touted to support various prin-
ciples that are necessary for individuals’ well-being, including en-
abling individuals to assert agency through planning (i.e., tempo-
rally extended agency) and building societal trust in algorithmic
decision-makers at large [51]. However, for these promises to fully
materialize in practice, we argue that systems providing recourse
must adhere to the following three principles:

Principle R They must produce reliable recommendations, mean-
ing that when individuals perform the recommen-
dations provided by the system, and return to the
same algorithmic decision-maker, they should con-
sistently receive favorable outcomes.

Principle A The systems must provide access to realistically
implementable recommendations at a high rate for
those given unfavorable outcomes.

Principle F Systems that provide recourse must be fair with
regards to consistent treatment regardless of race,
gender, and other sensitive attributes.

Therefore, for systems that provide recourse to genuinely em-
power individuals to achieve favorable outcomes, fulfilling any
single criterion — whether fair algorithmic decision-making, or
reliability, accessibility, or fairness of recommendations - is insuffi-
cient because this is a multifaceted task and therefore requires a
multi-objective approach.

Much of algorithmic recourse research has focused primarily on
recommendation formulations and accompanying recommendation
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generator algorithms [3, 21, 27, 33, 39, 50, 54]. While we motivate
our choice of recommendation formulation, specifically regarding
Principle R, our research goal is to train algorithmic decision-
makers, in the form of gradient-based classification models,
that facilitate algorithmic recourse aligned with the above
principles of reliability, accessibility, and fairness. This is be-
cause, importantly, regardless of which recommendation definition
and accompanying generator one uses, algorithmic decision-makers
trained with recourse-agnostic objectives will often provide subpar
recourse when deployed in real-world settings. We demonstrate
this empirically by evaluating algorithmic decision-makers trained
with recourse-agnostic objectives, as shown in Section 4. Intuitively,
if a model heavily relies on features that individuals cannot mod-
ify (such as zip code at birth or race), this model will most likely
provide very little recourse to most individuals regardless of the
recommendation generator it is paired with.

We present a burden-based approach for reasoning about sys-
tems that provide recourse that considers all individuals in a target
population, not only those given the unfavorable outcome and
provided with recommendations. We formulate a multi-objective
loss function that integrates various metrics, formed from burden
measurements, to train algorithmic decision-makers, as outlined in
Section 3. Our technique addresses various issues affecting systems
that provide recourse, including non-reliable recommendations,
lack of access to recommendations, imbalanced erroneous access
to or denial of favorable outcomes, and imbalanced access to and
cost of recommendations across sensitive subpopulations.

Our novel contributions include:

e Providing a guiding set of principles pertaining to reliability
of recommendations, access to recommendations, and fairness
for systems that provide recourse (Section 1).

Iluminating a comprehensive set of fairness issues that affect
systems that provide recourse (Section 2.2).

Introducing a burden measurement that encapsulates predic-
tive outcomes, access to recommendations, and cost of rec-
ommendations for the full target population, as well as an
individual fairness measurement (“excess burden”) that forms
the foundation for a multi-objective loss function for training
algorithmic decision-makers (Section 3).

o An empirical evaluation of our method for three data settings
that highlights the statistically significant improvements for
relevant metrics of our method compared to the benchmark
methods (Section 4), including an ablation study (Section 4.1)
that empirically supports our claim that to materialize algo-
rithmic recourse’s full potential, systems must simultaneously
optimize multiple objectives.

By offering recommendations, systems that provide recourse
often subtly imply that the responsibility for achieving favorable
outcomes rests solely on individuals, deflecting the responsibility
away from the system itself [47]. Our research offers a principled
method to improve the algorithmic decision-maker itself (i.e., the
underlying decision model), emphasizing that designers of these sys-
tems share responsibility, through the algorithmic decision-maker
they provide, in enabling individuals to achieve favorable outcomes.
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2 Motivation

2.1 Formalizations of Recommendations with
Respect to Principle R and Principle A

As stated above, systems that provide recourse consist of an algo-
rithmic decision-maker, hg(-), which takes as input an individual i’s
feature values, x; = {x;;}. The algorithmic decision-maker either
assigns individual i a favorable outcome, hg(x;) = 1, or unfavor-
able outcome, hy(x;) = 0. If individual i is given the unfavorable
outcome, hy(x;) = 0, a recommendation generator algorithm, A(-),
produces a recommendation for individual i. These recommenda-
tion algorithms are often, at their core, optimization solvers for
minimization problems. For example, an early formulation of a
recommendation as a constrained minimization problem adapted
from [54] is displayed below:

rec—L
xi P

= arg min{dist(x;, x") | hg(x") = 1}
x'ex (1)
where dist(-, -) is a Lp distance function.

Therefore, a recommendation generator algorithm, A(-), that
employs the recommendation definition in Equation 1 takes as
input a point, x;, that falls on the negative side of hy(+)’s decision
boundary, and finds the nearest point to x; in the feature space,
as measured by a Lp distance function, that falls on the positive

side of hy(+)’s decision boundary. xirec_Lp

xirec_Lp = xj +5;ﬁ , where 5;* is treated as the action set an individual
i needs to perform to get a favorable outcome from hy(-) [20].

Ustun et al. [50] pointed out that when &* is unrestricted, an
individual could be recommended to change their race, decrease
their age, increase their age to 250, etc. Therefore, they proposed a
taxonomy for restricting action set spaces through additional con-
straints, encoded as §; € F(x;), to ensure that recommendations
are actionable and plausible. Additionally, they highlighted that
dist(-, -) as an Lp distance function might be an ill-suited measure-
ment to minimize in the context of algorithmic recourse because the
distance within a feature space might not be analogous to the effort
it requires for an individual to shift their features. Therefore, they
present various options for cost(-, -) as a parametric component of
the optimization problem. A formal definition, which is adapted
from [50], is presented below:

can be decomposed as

x;‘ec—cost =x; +5;‘
where §; = arg min{cost(x;, ;) | hg(x; + &;) = 1} @)
8;€F(x;)

The final formulation we explore was introduced by Karimi
et al. [21], who critique the assumption that features can change
independently of each other. They show that acting on a recommen-
dation to change one feature may unintentionally alter additional
features, and therefore cannot guarantee a favorable result in fu-
ture interactions with the algorithmic decision-maker unless these
causal relationships are taken into account.

For concreteness, we introduce a simulated mortgage lending
setting, which we use throughout the paper. Consider a dataset for
a mortgage lending scenario where the features for each individual
are gender (X;), age (Xz), proportion of cumulative credit line avail-
able (X3), and credit score (X4). These features relate to each other
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X;:=U;

Xy =Uy

X3:= f3(X2) +Us

Xy = fa(X1, X2, X3) + Uy

Figure 1: The structural causal model (SCM) M for a simple simulated mortgage lending setting. Endogenous variables: X
is gender. X, is age. X3 is proportion of cumulative credit line available. X4 is credit score. Exogenous variable distributions:
U; ~ Bernoulli(0.50). U, ~ N(38,22) truncated to [18,75] N Z. U3 ~ Uniform(0.40,1.09). Uy ~ Uniform(200,400). Structural
functions: f3(X2) = —0.005 = Xo. fa(X1,X2,X3) = X1 + 50 * X5 + 400 * X3. Outcome variable (not shown): whether an individual
is trustworthy for a mortgage. Note, this is a simplified, simulated scenario rather than a complete and accurate model of
mortgage lending. For more information about this data setting, including simulation algorithm, reference Appendix D.1.1. For

more information on SCMs, reference Appendix B.

through the causal relationships shown in a structural causal model
(SCM), M = (U, X, F), in Figure 1 [21, 36], which takes the form
of an additive noise model [35]. Here U are exogenous variables,
X are endogenous variables, and ¥ are functional relationships
between variables. If an individual who was denied a mortgage was
given a recommendation that involved solely modifying variable X»
to x” (equivalently, performing do(X2 = x”) using the do-operator),
this would result in variables X3 and X3 being modified as well
because X» is a parent of both variables in M, as shown in Fig-
ure 1. (For a primer on SCMs and the abduction-action-prediction
framework using the do-operator, please reference Appendix B.)
Therefore, the following definition, adapted from [21], accounts
for the causal effects of recommendations when determining if a
recommendation results in a favorable outcome:

x[7SM = x; | do(xij + Sipvjes:
where 87 = argmin{cost(x;, 8) | hg(xi | do(xij + 6ij)vjes,) = 1}
8;€F(x;)
®)

For Equation 3, we assume J; only contains the recommended
actions, indexed by j, for individual i, and the do-operator uses the
specific SCM, M, for the given data setting. A recommendation gen-
erator algorithm that assumes the recommendation formulation in
Equation 3 could be represented as 8; = A(x;, hg(-), cost(, -), F(-), M)

where x'¢¢—SCM
1

= x; | do(x;; + 5;})Vjeéj- Unlike Equation 2,
xirec_SCM # x;+0}, since modifying the variables in 6] also impacts
their descendants in the SCM.

We present the evolutionary nature of these recommendation
formulations (Equations 1-3) to highlight the following phenome-
non in algorithmic recourse research, which is supported by proofs
in [21, 50]: as the definition of a valid recommendation be-
comes more parametric and the corresponding optimization
problem becomes more constrained, the recommendations
become more reliable in terms of their realistic mapping
to low-effort actions for individuals and their execution re-
sulting in favorable outcomes in the future. Therefore, to en-
sure that recommendations result in favorable outcomes, which
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fully addresses Principle R, and are executable for individuals,
which partially addresses Principle A, we adopt Equation 3 as
the recommendation definition we utilize in this research, and
we use the accompanying recommendation generator algorithm,
MINT [19]. For conciseness, for the remainder of the paper, we use
Ag(xi) = A(xi, hg(+), cost(-,-), F(-), M), where Ag(-) assumes the
recommendation definition in Equation 3 and takes the classifier’s
output hy(+) as its input.

Additionally, we use the following cost function which is com-
monly used in algorithmic recourse research [19-21]:

1
EVZ(S wjl6ij
J€0; (4)
1

maxy; (x;j) — miny; (x;;)

cost(xj, d;)

where w; =

In Equation 4, as described in [19-21], m is the number of action-
able features in the dataset. Actionable refers to features that can
be used in action sets, excluding unmodifiable features such as race
and zip code at birth [20, 50]. This cost function normalizes the cost
of an action independently for each feature based on its observed
data distribution, allowing for diverse data types and settings. For
the feasibility and plausibility constraints we used, F(-), for each
data setting, see Appendix D.1.

As the recommendation definitions become more complex and
the corresponding optimization problems become more constrained,
two non-ideal scenarios can occur that are antithetical to Principle
A: (1) individuals given unfavorable outcomes have no access to
recommendations, and will continue to receive the unfavorable out-
come regardless of what future actions they take; or (2) individuals
are provided with very high-cost recommendations.

When scenario (1) occurs for individual i, we say that there
is no coverage for individual i, and denote this as Ag(x;) = O,
as defined in [20, 25]. An inadequate recommendation generator
could result in low coverage of recommendations. However, if the
algorithmic decision-maker relies solely on non-actionable features,
such as race, zip code at birth, or number of past late payments, then
regardless of the recommendation generator, all individuals with
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unfavorable outcomes will have no recommendations available
to them. For scenario (2), as noted in [47], providing high-cost
recommendations could effectively prevent many individuals from
being able to act upon them, therefore, there are ethical motivations
for designing systems that provide low-cost recommendations.

2.2 Fair Algorithmic Recourse in Relation
to Principle F

As mentioned in Principle F, systems that provide recourse should
conform to some notation of fairness. Gupta et al. [15] proposed a
group parity measurement for fair algorithmic recourse:

1
|52

% 1 5
Z cost(xi,csl-)—s—, Z cost(x;, 6;)|, (5)

a | xiES;,

eq-cost _

x; €S,

where a binary sensitive attribute j is used to partition the set of
individuals given unfavorable outcomes into two groups, S; =
{xi € x : hg(x;) = 0,x;5 = a} and .§a_, ={x; € x : hyp(xj) =
0,x;j = a’}. Fairness is measured by the absolute difference between
subpopulations a and a’ of the average cost of recommendations for
individuals given unfavorable outcomes. Higher a®3¢°5t represents
a larger disparity in costs of recommendations.

Example 1: Let’s say we have an algorithmic decision-maker,

h(;q—COSt(), that is trained to minimize the balanced 0/1 loss and

a®9cost (defined in Equation 5) for the simulated mortgage data
setting introduced in Section 2.1 and shown in Figure 1. In Fig-
ure 2 we show a plot of the misclassification rates and recourse for
heq—cost
0
Below are some observations for Figure 2:

(+) for a balanced sample of the simulated mortgage data.

e For those individuals with negative ground truth labels (who
should be given the unfavorable outcome), men are erro-
neously and advantageously being granted the favorable
outcome at a higher rate (0.18 FPR for men vs. 0 FPR for
women). Women have a lower rate of coverage by 30%: they
have no access to the favorable outcome regardless of their
future actions.

For those individuals with positive ground truth labels (who
should be given the favorable outcome), women are erro-
neously (and to their disadvantage) being granted the unfa-
vorable outcome at a higher rate (0.90 FNR for women vs.
0.70 FNR for men). Women have a lower rate of coverage
by 24%: even though they should have been given the favor-
able outcome, they have no access to the favorable outcome
regardless of their future actions .

These observations about Figure 2 reveal three fairness issues
overlooked by a®47¢°st: (1) imbalanced misclassification rates across
sensitive subpopulations, creating disparities in erroneous access
to or denial of favorable outcomes; (2) disparities in recommen-
dation coverage rates across sensitive subpopulations; and (3) the
lack of stratification by the true label (positive and negative class)
when equalizing recommendation costs across sensitive subpopu-
lations. This allows for expected costs of recommendations to be
equalized in suboptimal ways, such as by equalizing the cost of
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recommendations for individuals who are false negatives in sen-
sitive subpopulation A with individuals who are true negatives in
sensitive subpopulation B.

An additional fairness metric was proposed in [53] that defines
individual fair algorithmic recourse as an equal cost of recommen-
dations for an individual and a counterfactual estimation of that
individual if they were a member of the complement sensitive sub-
population (formally defined in Equation 6). This definition assumes
that there is an underlying SCM, M, and the counterfactual for
xj is xl.CF = x; | do(1 — x;j), as proposed in [26], and hy(-) is fair
if ¢ "d-fair = 0 Here 5;‘CF =Ap (xiCF ). (To clarify, while the same
SCM for a given setting is used to generate counterfactual estimates,
xiCF , and recommendations, xl.r ec—SCM (Equation 3), xl.CF is not a
recommendation.)

ind-fair _ max cost(x;, 87) — COSt(xiCF’ 5?CF)

x;€x:hg(x;)=0

[24

(6)
As explained in [53], to ensure ®dfir = o the sensitive at-
tribute x;; and all descendants of x;; in M must be ignored when
training hg(-). In many contexts, this results in very few or no fea-
tures available to train hy(+), such as in the First-Year Law School
Success setting in Figure 5b if one were considering gender and
race as the axes for forming sensitive subpopulations. We record
this metric in our evaluations but we do not directly use it as a
benchmark method.

Example 2: In this example, we train an algorithmic decision-
maker, hg/ ! (), to minimize the balanced 0/1 loss for the simulated
mortgage dataset in Figure 1. In Figure 3, we see a sample of men
and women and their counterfactuals when a hard intervention is
performed using the SCM on their gender. (See Appendix B for
information on calculating counterfactuals for SCMs.) There are
men and women with the same outcome as their counterfactuals
((D or @). For all men where this is not the case, the real-world
man is at an advantage compared to his counterfactual, either by
having lower recommendation cost than his counterfactual (@) or
erroneously being granted the favorable outcome when his coun-
terfactual was not ((])). Conversely, for all women where their
counterfactual has a different outcome, they are at a disadvantage
compared to their counterfactual, for example:

e () represents a true negative woman whose counterfactual,
which estimates what would have happened to her if she
was a man, would have been given the favorable outcome

o (D represents a true negative woman with no coverage whose
counterfactual would have had access to recourse

o ([ represents a false negative woman with no coverage
whose counterfactual would have been given the favorable
outcome

o (D represents a false negative woman with no coverage
whose counterfactual would have access to recourse

This highlights a key point: directionality matters when evalu-
ating the difference between the costs of recourse for an indi-
vidual and their counterfactual. The absolute value in o"d-fair
(Equation 6) erases that directionality, which represents advantage
(negative direction) and disadvantage (positive direction) for real-
world individuals compared to their counterfactual, and could be
correlated with protected class membership, as shown in Figure 3.
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Figure 2: Plots of classification and recourse for 200 individuals from test data of the Simulated Mortgage Data (shown in
Figure 1) in total (50 sampled from each subplot) for algorithmic decision-maker, hzq_mSt(-), where a®47¢°5t = 0,011 for test data.
Proportion with no coverage is calculated for all individuals in the subsample given the unfavorable outcome and mean cost is

calculated for all individuals in the subsample given the unfavorable outcome with recommendations (i.e., with coverage).

TP FP N FN
Men L X X | L

Women 0od @4
CF Favorable Unfavorable Unfavorable
SC?, 46}7 xz Outcome Outcome with Outcome with No
Recourse Coverage

Figure 3: Sample of 40 individuals (upper row: 20 men, lower row: 20 women) for simulated mortgage setting in Figure 1
and their outcomes and recourse for hg/ ! (). The left-side shading of a circle represents individual x;, the right-side shading
represents their counterfactual xiCF = x; | do(1 — xjj), and x;; is the indicator variable representing membership in a sensitive
subpopulation. Lighter blue represents lower cost recommendations. For this sample, aind-fair — o 094 and the dot in the green
highlighted background represents that value (@) - a man is at an advantage compared to his counterfactual because he has
lower cost recommendations. The dot enclosed in the pink background represents the individual at the most disadvantage in
this sample: a false negative woman with no coverage whose counterfactual based on an hard intervention on gender would
have been given the favorable outcome (). o 4-fair does not account for this individual because it only measures differences
for those who received unfavorable outcomes with coverage, whose counterfactual also received an unfavorable outcome with
coverage.
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3 Our Approach

In Section 3.1, we introduce an individual-level measure of bur-
den, which encapsulates predictive outcome (access to favorable
outcomes) and access to and cost of recommendations. We also
introduce an individual fairness measure (“excess burden”). We
then introduce a multi-objective loss function that utilizes, at its
core, the burden and excess burden measurements to train fair al-
gorithmic decision-makers with high access to recommendations
in Section 3.2.

3.1 Burden-Based Measurements of Access, Cost
of Algorithmic Recourse and Individual
Fairness

As shown in Section 2.2, systems that provide recourse, when ex-
amining misclassification rates and access to recommendations
(coverage rates), can have disparate impacts across sensitive sub-
populations. This is primarily because many frameworks for mea-
suring fair algorithmic recourse only examine the subset of data
that were given an unfavorable outcome and have a recommenda-
tion available. As shown in Figure 4, this might only cover a small
subset of the data. We propose a function b(x;) that produces a
burden measurement that encapsulates all the possible scenarios
that could occur for an individual i who interacts with a system
that provides recourse.

0 if hg(xi) =1,

b(xi) = {271 ifhg(x;) =0and Ag(x)) £, (1)
el +1
1 if hg(x;) = 0 and Ag(x;) = 9,

where ¢; = cost(x;, 67) and 8 = Ag(x;).

As shown in Equation 7, if individual i is given the favorable out-
come, hg(x;) = 1, they have no burden to get the favorable outcome
and b(x;) = 0. If individual i is given the unfavorable outcome, and
they have a recommendation provided by the recommendation gen-
erator, Ag(x;), the cost of their recommendation, ¢; = cost(x;, 5;‘),
is mapped between 0 and 1 using a hyperbolic tangent function
scaled by A (where A > 0). If individual i is given the unfavorable
outcome with no coverage, they are given the maximum burden of
1. Note, A calibrates the burden measurement given the cost func-
tion and data setting. For the cost function defined in Equation 4
and our data settings, we use A = 0.10.

Next, we define excess burden as the positive difference between
the burdens for individual x; and individual x;’s counterfactual,

xCF,

e(x;) = max(b(x;) — b(xEF), 0) where xF' = x; | do(1 - x;7). (8)

This is similar to M9 in that it is an individual fairness

measurement, but it only captures disadvantage for the real-world
individual compared to their counterfactual, as discussed in Ex-
ample 2 of Section 2.2. Additionally, 42" js only defined if an
individual and their counterfactual get the unfavorable outcome
with a recommendation (have coverage), while our burden measure-
ment b(-) accounts for all scenarios for an individual x; and their
counterfactual xiCF , such as being granted the favorable outcome
or having no coverage (Figure 4).
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3.2 Training Fair Algorithmic Decision-Makers
that Provide High Access to Low-Cost
Recommendations

We use the individual-level burden and excess burden measure-
ments in Equations 7 and 8 to construct a multi-objective loss
function, incorporating loss terms for accuracy, accessibility and
low cost recommendations (minimizing overall burden), individual
fairness (minimizing excess burden), and group fairness (balanc-
ing excess burden). We then use this loss function to train algo-
rithmic decision-makers that provide high access to realistically
implementable recommendations (Principle A) and uphold various
fairness criteria (Principle F). Fulfilling Principle R is a matter of
adopting a recommendation definition that reliably results in a
favorable outcome, and is discussed in Section 2.1.

We propose the following loss function to minimize while train-
ing algorithmic decision-makers:

LZ() — LZCC(.) +£Burd(.) +£gxc-burd+£gal-exc—burd(.) )

We will walk through each component of Equation 9. For L3(+),
for our research, we use the balanced 0/1 loss:

LZCC(') = (Brp + €corr) * FPR+ frpn * FNR (10)

Therefore, by minimizing Equation 10, the misclassification rates
(FPR and FNR) decrease. Other functions for predictive performance
could be substituted in LZCC(-), if one were concerned with calibra-
tion, etc. We will discuss the correction parameter, €corr, below. For
Lg“rd(-), we use the following:

L57() = FR (Be-pn [b(xi)] * FNR)

PPN (B, -7 [b(x))] * TNR) (1)

Therefore, for Equation 11, for instances that are classified as
negative (false negatives and true negatives), we minimize their bur-
den, which increases the expected coverage for predicted negative
instances, and also minimizes the average cost of recommendations
for individuals given the unfavorable outcome with coverage. This
aligns with Principle A which states that recommendations need to
be available at a high rate and at a low enough cost that they can
be realistically implemented. Note that, by multiplying by FNR and
TNR respectively, the terms in Equation 11 represent the average
burdens for all individuals with y; = 1 and y; = 0 respectively,
not only the individuals given the unfavorable decision, since indi-
viduals who are classified positive have zero burden. We provide
the functionality for practitioners to set different weights for false

negatives and true negatives through the parameters ﬁ}’,‘;\?d and

ﬁ?‘ﬁd, since one may be more concerned with low-cost recourse for

someone given the unfavorable outcome in error.
Next, we define the loss component for minimizing the individual-
fairness measure of excess burden:

L) = PR (B, -pn Le(xi)] « FNR)
+ﬂ§3ﬁ_burd(Exj~TN[e(xj)] * TNR) (12)

Our Lgxc_b”rd(~) in Equation 12 takes a similar form in terms
of the parameterization by false negatives and true negatives using
ﬁ;’ﬁ‘burd and ﬁ%’j\‘}‘burd, but is aimed at minimizing excess burden
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Figure 4: Diagram showing workflow of systems that provide algorithmic recourse. The pink box encapsulates the subset of
data that is examined by the fairness measures ¢®4°°t (Equation 5) and «"4-f2i* (Equation 6). The green box shows all the
pieces of information (predictive outcome, coverage, and cost of recommendation) encapsulated in our burden measurements

and covers all the individuals in a population.

rather than burden. This term mitigates fairness issues related to
imbalances in coverage and cost of recommendations that disadvan-
tage an individual x; compared to their counterfactual xiCF , which
addresses Principle F. Note that we minimize the population aver-
age of the excess burden, in contrast to constraining "d-fair = o
as in [53], since the latter could greatly limit the features usable
for training. Next, we define the group-fairness measurement of
balanced excess burden:

Lbal—exc-burd(.) _ ﬁbal-exc-burd
0 =pZ

Bupesz [e(xi)] = By s, ()]

bal-exc-burd
+f;

Bsg [e0i)] — By sy, Lo
(13)

where S; = {x; :yi = 0,x;; = a}, S, = {x; 1 yi = 0,x;5 = al},st=
{xi : yi = 1, x;; = a} and S;’, = {xj : yi = 1,x;j = a’}. Therefore,
Lzal'exc'burd(-) in Equation 13 serves to measure the imbalance in
excess burden across sensitive subpopulations a and a’ stratified
by true label (positive and negative class), correcting the issue
pertaining to a®4°¢°%t of comparing true negatives to false negatives
observed in Example 1 of Section 2.2. Given that excess burden
represents the disadvantage an individual i faces compared to their
counterfactual, this term maintains that the excess burden should
be distributed equally across sensitive subpopulations conditional
on their true label. Importantly, since expectations are taken over
all individuals (not just those who receive negative outcomes with
coverage), minimizing Lgal'exc'burd
misclassification rates, which addresses issues of predictive fairness,
in relation to Principle F.

Lastly, e€corr in Equation 10 is added to the false positive rate
penalty to mitigate the risk of true negatives being flipped to false
positives to minimize £} (+), given that true negatives often have
higher cost recommendations or no coverage, while the burden and
excess burden loss terms are 0 for a false positive. Therefore, we set

€corr X ﬂ?‘ﬁdExiNTN[b(xi)] where E,, 7N [b(x;)] is estimated for

also minimizes imbalances in
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a data setting using a baseline classifier (logistic regression). We
note all values of €corr used for each data setting, as well as frp
and Sry, in Appendix D.3, Table 6.

Therefore, our overall objective is to learn the classifier parame-
ters 6 for h2(~) that minimize Lg(-):

0" = argmin(L,(-)) where hy(-) and Ag(-) are inputs for L (-)
0

(14)

LZ(-) is calculated based on the predictions of h:;(-) and the
algorithm that generates recommendations, Ag(-), which takes
hZ(-) as an input. The recommendation generator, and its corre-
sponding optimization problem (defined in Equation 3), forms the
constraints based on various pieces of information including x; and
hg(+). The specific algorithm we use, MINT [19], forms and solves
the optimization problem independently for each recommendation
generated, and consequentially, as hg(-) is modified the optimiza-
tion constraints change. Therefore, Equation 14 is a classic bi-level
optimization problem, where the outer optimization problem solves
Equation 14 and the inner problem finds the minimal cost recom-
mendation using Ag(-) conditional on hgy(+). As a result, LZ(-) is
not easily differentiable [13]. To make our approach recommen-
dation generator-agnostic, applicable for all differentiable models,
and flexible for variations of our loss function, we use a method re-
lated to finite differences method called Simultaneous Perturbation
Stochastic Approximation (SPSA) [45, 46]. This method is simi-
lar to stochastic finite differences approaches in that it produces
aL; ()

El

it provides certain advantages, such as fewer gradient estimates,
through simultaneous perturbations of multiple § parameters at
once. This is especially important for computationally expensive
algorithms such as most recommendation generator algorithms. For
more information about SPSA and the parametric settings we used

, which can be used in a gradient descent algorithm, but
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(which are the default values recommended for practical effective-
ness, theoretical soundness and convergence guarantees in [46]) see
Appendix C.1. For a given model, we perform gradient descent, us-

*

ing 61:390(‘) from SPSA to update hy(-) until convergence of L, (-),
and then perform a random reset of the parameters 6. We repeat
this process of training until convergence and random resets itera-
tively for 12 hours for a given model, and then take the parameters
that produce the lowest training loss for L;(-) as our final model
in terms of the 0* parameters. We use 0" to produce evaluation
metrics for our test data. For the exact parameters of our gradient
descent algorithm with random resets (convergence rule, batch size,
initialization scheme for 6, pseudocode (Algorithm 1), and expected
number of random resets), see Appendix C.1.

4 Evaluation

In Section 1, we outline a set of principles and illustrate in Section 2
various suboptimal scenarios that occur, even when utilizing exist-
ing fair algorithmic recourse methods. Our main argument is that,
for recourse to achieve its positive potential, algorithmic decision-
makers must be trained to satisfy multiple objectives. Therefore, we
propose a multi-objective loss, LZ(), to minimize during training
of algorithmic decision-makers in Section 3.

Therefore, we will show that the algorithmic decision-makers,
h’(;(-), trained with our loss function, LZ(-), outperform other algo-
rithmic decision-makers. We use the following algorithmic decision-
makers as benchmarks:

. hg l() - Algorithmic decision-makers trained to minimize

balanced 0/1 loss.

° heq’COSt(-) - Algorithmic decision-makers trained to minimize
balanced 0/1 loss and equalize the cost of recommendations
across sensitive subpopulations, as defined by a®4°%t in Equa-
tion 5 and used in Example 1 (Section 2.2).

. hzal'err(~) - Algorithmic decision-makers trained to minimize
balanced 0/1 loss and equalize the error rates (FPR and FNR)
across sensitive subpopulations. We use this benchmark to
address the issue of differential erroneous access to or denial
of the favorable outcome across sensitive subpopulations, as
motivated in Example 1.

. hbal+eq(-) - Algorithmic decision-makers trained to minimize
balanced 0/1 loss and equalize the error rates and recommen-
dation costs across sensitive subpopulations.

We note that hg/ 1(-) and hzal‘e”(-) are trained with recourse-
agnostic objectives, as we discuss further below. We train the bench-
mark algorithmic decision-makers using SPSA. For exact loss func-
tions and more details about these benchmark methods, please
reference Appendix D.2.

We train these algorithmic decision makers in three data set-
tings: (1) the simulated mortgage lending setting introduced in
Section 1 (Figure 1) where the sensitive feature is gender; (2) the
German Credit Data [16] setting where the sensitive feature is
gender, the other features are age, credit amount and duration of
months for repayment, and the outcome variable for training is
whether an individual is creditworthy (Appendix D.1, Figure 5a);
and (3) the First-Year Law School Success [55] setting where the
sensitive feature is race (Black or white), the other features are LSAT
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score, gender, and undergraduate GPA, and the outcome variable
for training is whether the individual performed above average
in their first-year of law school (Appendix D.1, Figure 5b). One
can imagine algorithmic decision-makers being used in these set-
tings for making mortgage lending, credit lending, and law school
acceptance decisions, respectively.

Lastly, we test three differentiable models as algorithmic decision-
makers: logistic regression (Ir); a multi-layer perceptron classifier
with one layer and two hidden units (MLP(1x2)); and a multi-
layer perceptron classifier with one layer and four hidden units
(MLP(1x4)).

Table 1 displays the results for the MLP(1x2) classifiers for all the
data settings for the benchmarks and for our method (using default
coefficient values f = 1 for all burden, excess burden, and balanced
excess burden terms). This table contains established metrics related
to algorithmic recourse and predictive accuracy such as expected
cost of recommendations (E(Cost)), coverage, a®4¢°t (Equation 5),
etc. Critically, we note that these metrics are distinct from the
components of our loss function or burden measurements, which
we directly use for optimization. For full results for all the model
classes, which are comparable in performance to the MLP(1x2)
classifiers, as well as results for models that place more emphasis
on false negatives rather than true negatives, see Appendix D.4,
Table 9. We review the results in Table 1 in relation to Principle A
for accessibility and Principle F for fairness:

In regards to Principle A. Our method, hj (-), statistically signifi-
cantly increases access to recommendations for those with the unfa-
vorable outcomes (Coverage) compared to the benchmark methods
for the Simulated Mortgage Lending and First-Year Law School Suc-
cess settings. It also increases coverage compared to the benchmarks
for the German Credit Data setting, but this dataset achieves higher
coverage at baseline and therefore the increase is not statistically
significant. Furthermore, for all settings, our method statistically
significantly decreases the expected cost of recommendations for
those with unfavorable outcomes compared to the benchmarks.

In regards to Principle F. Our method, h;('), statistically signifi-
cantly decreases the absolute difference for mean cost across sensi-
tive subpopulations (|A4| for E(cost)) compared to the benchmarks
for all data settings. Importantly, our method, hy(-), statistically
eq4eost () iy minimizing |A,| for E(cost)

0
for all data settings, even though hzq_COSt(-) is directly trained to

minimize this value. As motivated by Example 1 in Section 2.2,
different rates of coverage across sensitive subpopulations create a
fairness issue. Our method statistically significantly decreases the
absolute difference in rate of coverage compared to the benchmarks
for all data settings (JA4| for Coverage).

Additionally, as mentioned in Example 1, comparing costs across
subpopulations agnostic of their observed y; value (i.e., positive
class or negative class) could result in the issue of equalizing the
cost for false negative individuals in one subpopulation compared
to true negative individuals in the other subpopulation. Our method
lowers |A4| for E(cost) when stratified by positive and negative
class (y; = 1 and y; = 0) compared to all the benchmarks for all
data settings, with statistically significant reductions except in the
Simulated Mortgage Lending setting for the positive class. While

significantly outperforms h

our method does not explicitly aim to achieve a4 = ¢ for the
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Algorithmic
Data Setting Decision- Balanced 0/1 Coverage |Ag| for E(Cost) |Ag| for |Ag| for |Ag| for qind-fair |Ag| for FPR | |Ag4] for
Maker Loss Coverage E(Cost) E(Cost) E(Cost) FNR
@veos) | vy =1 Vyi=0
RO/ 0.514 0.653 0.2037 0.089T 0.0267 0.0277 0.029T 0.088% 0.294 0.311
Simulated peq-eost 0.511 0.771 01177 0.089 0.0137 00187 0.0187 0.051% 0.268 0.271
Mortgage pbal-err 0.505 0.763 0.031 0.093 0.018" 0.014T 0.019T 0.014% 0.056 0.055
Lending pbal+eq 0.504 0.812 0.035 0.088 0.011 0.012 0.017 0.012 0.053 0.053
h* 0.511 0.999 0.001 0.058 0.007 0.010 0.011 0.004" 0.054 0.047
RO/t 0.408 0.975 0.014 0.083 0.018 0.017 0.025 0.135 0.411 0.383
German heq-eost 0.414 0.957 0.031 0.078 0.012 0.012 0.017 0.110% 0.337 0.306
Credit pbal-err 0.424 0.892 0.043 0.083 0.015 0.015 0.024 0.069 0.077 0.068
Data pbal+eq 0.431 0.891 0.037 0.078 0.014 0.016 0.023 0.054 0.089 0.078
R* 0.429 0.993 0.005 0.055 0.007 0.007 0.013 0.034" 0.143 0.113
RO/t 0.414 0.766 0.507 0.194 0.208T 0.2397 03017 0.600% 0.656 0.707
First-Year heqreost 0.419 0.681 0.931 0.149 0.3437 01207 03187 -3 0.664 0.741
Law School | pbal-err 0.454 0.661 0.097 02157 o071t 0112t 0.059T 0.133% 0.070 0.099
Success pbal+eq 0.447 0.8a8T 0.0627 01807 0.051T 0.0897 0.0a27 0.1a5% 0.080 0.130
R* 0.450 1.000 0.000 0.119 0.018 0.033 T 0.017 0.140% 0.124 0.137
Table 1: Results are shown for MLP(1x2) classifiers, h;('), trained by minimizing L;(-), where ﬂg‘]{[rd = %gd = ;’ﬁ'b“rd =

ﬁ%’l‘\?‘burd = phal-exc-burd _ ghal-exc-burd _ | Eor readability, we omit the 0 subscript and (-) notation as well as standard deviations
of all metrics. The settings for frp, frN, and €.orr differ per data setting and appear in Appendix D.3, Table 6. Each value is
averaged over 50 runs, each with a unique seed for a 70-30 train-test split. Classifiers are fit on training data, and results in the

table reflect test data metrics. Benchmarks (hg/ ! ), hgq_cmt( 9, hgal'e”(~), and hga“eq(-) ) are described in Section 4. Balanced

0/1is %FPR + %FNR. Coverage is the proportion of individuals with unfavorable outcomes who received a recommendation.
E(Cost) is average cost for those with unfavorable outcomes and coverage. |A,| is the absolute difference in the relevant metric
across sensitive subpopulations, stratified by positive class (y; = 1) and negative class (y; = 0), where applicable. o"d-fair jg
defined in Equation 6. The bold values indicate statistically significant improvements (p < 0.05, one-tailed t-test) over all the
benchmark methods. No statistically significant reductions in performance were observed in this subset of results. | represents
missingness (e.g. no individuals with recommendations for some runs) .  represents no values found for omd-fair £6, some

runs. * represents statistical significance was evaluated against all benchmarks that were not missing but not the full set of

benchmarks. - represents for all runs "d-fair

reasons noted in Section 2.2, our method statistically significantly
lowers 42" for the German Credit Data and Simulated Mort-
gage Lending settings compared to the benchmark methods. Lastly,
while our method does not balance error rates as well as the bench-
marks that explicitly perform this task, hzal'err(-) and hga“eq(-),
our method drastically decreases the absolute difference in error
rates across sensitive subpopulations for all data settings compared
to the benchmark trained for predictive accuracy, hg/ ! (+), and the

benchmark trained to equalize the costs of recommendations across
eq-cost ( )

9 .

hg/ 1(\) and hg"l'e”(-) are not trained with any information pro-

sensitive subpopulations, h

vided by the recommendation generator, including the cost or avail-
ability of recommendations. Therefore, they are models that are
trained with recourse-agnostic objectives. We observe that these
models provide less coverage and higher expected cost recommen-
dations, demonstrating that these models are less ideal for providing
recourse compared to the other models trained with objectives that
incorporate recommendation information.

Lastly, hzal+eq(-)—which aims to equalize both error rates and ex-
pected costs of recommendations across subpopulations—does not
outperform our method, indicating that fair prediction objectives
combined with equalized recourse costs are insufficient to capture
all the scenarios addressed by our multi-objective approach.
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could not be calculated (insufficient coverage for x; or x;

CF)'

4.1 Ablation Evaluation for Multi-Objective
Loss Function

We provide an ablation study which demonstrates that our loss func-
tion, L; (), a multi-objective function with terms .Cg“ (), Lgurd(-),
Lgxc’b“rd (+),and Lzal’exc’b“rd (+), outperforms these terms individu-
ally. These results support the claim that a single criterion, whether
it be optimizing for a singular metric of fairness, Lg"c'b“rd(J or
Lzal'exc'b“rd(-), or accessibility, Lzmd(-), is insufficient, and our
multi-objective approach provides substantial performance im-
provements. Thus, we train the following models:

. hzurd(») - Algorithmic decision-makers trained to minimize
balanced 0/1 loss with Lgcc(-) and minimize burden with
Lhd(.), where ppard = phurd = 3,

° hgxc'burd(-) - Algorithmic decision-makers trained to minimize
balanced 0/1 loss with LZCC(-) and minimize excess burden
with Lgxc—burd(,), where ﬂ;};&-burd — ﬁ;};\cf—burd =3

. hgal'exc'burde“() - Algorithmic decision-makers trained to min-
imize balanced 0/1 loss with chc () and balance excess burden
with Lléal-exc—burd(.), where ‘Bllal—exc—burd — ﬁkal—exc—burd =3

In reviewing the results of the ablation study in Table 2, while the

algorithmic decision-makers trained to minimize burden and excess
burden, hgurd(«) and hzxc'burd(«), statistically significantly increase
coverage for the First-Year Law School Success setting, and all the
models show improvements in terms of coverage and minimizing
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Algorithmic
Data Setting Decision- Balanced 0/1 Coverage |Ag| for E(Cost) |Aq| for |Ag| for |Ag| for oind-fair |Ag| for FPR | |Ag] for
Maker Loss Coverage E(Cost) E(Cost) E(Cost) FNR
(acaeost) Yyi=1 Yyi =0
RO/t 0.414 0.766 0.507 0.194 0.2987 0.239T 03017 0.600% 0.656 0.707
peqeost 0.419 0.681 0.931 0.149 03437 01207 03187 % 0.664 0.741
First-Year pbal-err 0.454 0.661 0.097 02157 0.0717 01127 0.0597 0.133% 0.070 0.099
Law School | APal*eq 0.447 0.848" 0.0627 01807 0.0517 0.0897 0.0427 0.145% 0.080 0.130
Success pburd 0.417 0.985 0.042 0.166 0215 1 0218 T 0206 T 0369 ¥ 0.654 0.552
pexe-burd 0.423 0.971 0.112 0.151 0180 T 0.166 T 0177 F 0368 ¥ 0.618 0.519
pbal-excburd | ¢ 449 0.783 0.080 0.192 0.065 T 0.002 0.057 T 0173 % 0.059 0.121
h* 0.450 1.000 0.000 0.119 0.018 0.033 T 0.017 0.140% 0.124 0.137

Table 2: Results for ablation evaluation in Section 4.1 for the MLP(1x2) classifiers, h’g(-), and ablated classifiers, hg“rd(-),
hgxc'b“rd(-), and hgal'exc'burd(-) for the First-Year Law School Success setting (Appendix D.1, Figure 5b). The benchmarks (hg/ ! ),

eq-cost
h6’

), hgal'e“(-), and hgaheq(-) ) are described in Section 4 with technical details in Appendix D.2. Ablated classifiers are

described in Section 4.1. Columns, formatting in relation to statistical testing and symbols are identical in description to those

provided in Table 1.

cost of recommendations, and equalizing coverage, cost, and access
compared to the other benchmarks, none of them provide the level
of statistically significant improvements that our method, hg(-),
trained with LZ(-), provides.

5 Limitations

Both the definition we adopt for recommendations in Equation 3,
and our excess burden measure in Equation 8, utilize structural
causal models. As in other research using SCMs [21, 26, 30, 53],
we adopt standard causal assumptions including causal sufficiency,
positivity, etc. The SCM we use for our simulated mortgage lending
setting fully satisfies the necessary assumptions for SCMs. The SCM
we use for the German Credit Data setting has been used in prior
research including [21]. The SCM we use for the First-Year Law
School Success setting adopts a graph from prior research [53], and
we derive the structural equations. Our work demonstrates that our
method outperforms benchmarks that do not use SCMs in a variety
of settings, with different assurances around these assumptions and
proper model specificity. With that said, more research about how
robust SCMs are to these assumptions and model specifications,
similar to [4] and [22], would greatly enhance all fairness research
that uses SCMs, including ours.

We assume binary sensitive subpopulation membership. Many
real-world datasets, including the First-Year Law School Success
setting, have multiple sensitive attributes with more than two cat-
egories. Extending our approach to multi-categorical or intersec-
tional subpopulations would be a valuable direction for future work.
This could be done through incorporating pattern detection meth-
ods to find multidimensional and intersectional disparities in bur-
den measurements to dynamically define sensitive subpopulations
during training.

The SPSA method, a stochastic generalization of the finite differ-
ences method, was used to train our algorithmic decision-makers
with gradient descent. SPSA assumes a smooth loss function, which
requires use of a sufficiently smooth cost function for recommen-
dations. Substituting a different fitting method, such as a genetic
algorithm, would allow our method to apply to discrete cost func-
tions as well. Similarly, our proposed loss function for minimization,
L;() is only applicable for differentiable models. An interesting
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extension of our research could be to use the components of our
loss function, Lgurd(-), Lgxc'b‘" d(.) and Lgal'exc'b“rd(-), to develop
a model-agnostic method for fitting algorithmic decision-makers,
using iterative training with instance weighting and/or data aug-
mentation.

We utilize one recommendation generator algorithm in our re-
search. As argued in Section 2.1, we do not consider all recom-
mendation definitions, including [54], [50], and [42], inline with
Principle R’s goal of reliable recommendations, and therefore test-
ing other recommendation generator algorithms seems tangential
to our overall research goal of training algorithmic decision-makers
that satisfy our three principles. Additionally, while we use multiple
benchmark methods, we use only one fairness definition [15] from
the fair algorithmic recourse literature. While others exist [1, 42],
they do not address issues of lack of coverage or encapsulate all
scenarios that could occur for a full population and rather focus
on the subset of data with unfavorable outcomes as shown in Fig-
ure 4. Therefore, we anticipate they would perform similarly to
[15] on the relevant metrics of interest. Finally, we note that the
fairness principles and metrics proposed in [3] are reliant on oppor-
tunity sets rather than intervention-based counterfactuals, making
it challenging to compare them to our method without extensive
modifications to their formulation of fairness.

For limitations that pertain to the framing of algorithmic re-
course at large, please reference Appendix A. The topics discussed
in Appendix A include issues of model drift in relation to reliable
recommendations, social and epistemic norms including deflection
of responsibility inherent to the framing of algorithmic recourse,
limitations of fixed cost functions, issues of shifting of population
distributions in unintended, and potentially harmful, ways, and
privacy concerns.

6 Related Work

Algorithmic recourse is an emerging field within explainable ma-
chine learning. Previous research has developed methods for gen-
erating recommendations, including gradient optimization tech-
niques [18, 28, 29, 54], integer programming [50], graph-based meth-
ods [3, 39], genetic algorithms [24, 42], autoencoder-based meth-
ods [5, 7, 33], and SAT solvers [19]. For surveys of these methods,
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see [20, 52]. Additionally, [32] provides a tool for benchmarking rec-
ommendation generators, and [25] introduces a verification process
for determining if a model has no coverage for a given individual.

Some research has proposed desiderata for recourse, includ-
ing actionability of recommendations [50], robustness to model
drift [10, 14, 23, 31, 49], robustness to small input changes [6, 9, 43],
and diversity of recommendations [29, 48]. We specifically refer-
ence the fairness criteria of Gupta et al. [15] and von Kiigelgen et al.
[53] above; other research on fair recourse includes [1, 3, 9, 42].
While previous research notes the connection between predictive
fairness and fair algorithmic recourse, to the best of our knowledge,
our research is the first to frame fairness of algorithmic recourse as
a multi-objective issue that must consider all scenarios (imbalanced
error rates, rates of coverage, imbalanced cost of recommendations,
etc.) for a full target population.

Research focused on training algorithmic decision-makers for
recourse with similar goals to our research include Gupta et al. [15],
which we use as a benchmark, and Ross et al. [41], who specif-
ically focus on training models for high coverage. Our research
focuses on issues of coverage, as well as fairness and reliability of
recommendations.

Venkatasubramanian and Alfano [51] present a philosophical
basis for algorithmic recourse and Karimi et al. [21] argue for using
SCMs in generating recommendations. Both papers were influen-
tial in forming our research goals. Lastly, we reference additional
research pertaining to the ethics of algorithmic recourse in Appen-
dix A.

7 Conclusion

Systems that provide recourse have the potential to improve the
lives of individuals who interact (sometimes in compulsory settings)
with algorithmic decision-makers when pursuing important life
goals, such as attempting to obtain credit and education. While
technically any model paired with a recommendation generator
could be considered a system that provides recourse, for these
systems to realize the potential of algorithmic recourse, the right
model needs to be used in this system. We provide an approach,
motivated by a set of principles, for training algorithmic decision-
makers, given a recommendation generator, that results in fair
systems that provide access to reliable recommendations.
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A Challenges in Algorithmic Recourse

Our research, and much of the algorithmic recourse literature, re-
lies on the assumption that an individual will revisit the identical
algorithmic decision-maker. While research, including [1, 10, 40],
explores challenges related to stability across different algorith-
mic decision-makers (often referred to as model drift), we strongly
advocate for policy and legislative measures to ensure model con-
sistency or to mandate the endorsement of recommendations. This
is essential because even the most promising research cannot fully
eliminate this issue, and the reliability of recommendations is es-
sential for any system providing recourse. Having these kinds of
assurances changes the framing of algorithmic recourse, both in
regards to Principle R and in relation to issues of model drift. For
example, a recommendation provided by a system that provides re-
course, if legislatively endorsed, does not need to necessarily result
in a favorable decision from the original algorithmic decision-maker
or future algorithmic decision-makers. Rather, the endorsement is
sufficient to guarantee that if an individual follows the recommen-
dation then they will receive a favorable outcome. This points to an
emerging but promising area of algorithmic recourse research that
deconstructs the assumption that the algorithmic decision-maker
is the final arbitrator of favorable outcomes [1].

As noted in [47], there are various assumptions and potential pit-
falls that are inherent to the framing of algorithmic recourse. They
notably discuss that counterfactuals in their early conception in
explainable Al were supposed to help individuals understand how
a decision was reached, offer grounds for contesting the decision,
and understand how to reverse an unfavorable decision [54]. Sulli-
van and Kasirzadeh [47] explain that the “recourse-first” norm that
focuses on understanding how to reverse an unfavorable decision
neglects an important aspect of understanding how the algorith-
mic decision-maker makes decisions in the first place, and this is
a harmful oversight. They cite various reasons for this, and we
will briefly review the ones that are most notable in relation to
our research. They assert that by providing only actionable rec-
ommendations for individuals, individuals are not provided with
essential information like, for example, the most heavily weighted
feature in this model is race. Other research, including [2], would
provide explanations like this. They argue for the importance of the
norm of the epistemology of understanding, which they believe is
overlooked when recommendations are the main focus. While it is
challenging to endorse an epistemological norm agnostic of context
and population input, it is clear that only focusing on actionable
recommendations at an individual-level for systems that provide
recourse runs the risk of placing all the burden of unfavorable out-
comes on individuals rather than the underlying systems that are
distributing unfavorable outcomes or socio-structural issues that
are preventing favorable outcomes. Sullivan and Kasirzadeh [47]
refer to this as deflecting responsibility. In regard to our research,
on an aesthetic level, we refer to recourse as providing recommenda-
tions not explanations. This is to ensure that we are not presenting
the illusion that these recommendations serve as explanations as
well. Additionally, our research focuses on how to find optimal
algorithmic decision-makers, while holding the recommendation
generator mechanism fixed, which has the built-in assertion that
the designers of a system that provides recourse are responsible for
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examining how their system is affecting a population in regards
to fairness, and access and reliability of recommendations. Lastly,
we are extremely careful to be selective about the contexts we use
as examples in this paper. This is not to say that education and
financial customer lending contexts do not have socio-structural
issues, but more so to stress that some contexts, such as judicial and
correctional settings, present such a high level of socio-structural
issues that it is implausible to entertain that systems that provide
algorithmic recourse might expand a sense of agency or trust to
those subject to them.

Sullivan and Kasirzadeh [47] also discuss that using a singular
cost function imposes a social norm as to what is considered more
challenging to act upon. They mention that, for example, for a
recommendation that asks an individual to attain more education,
let us say to move from having a high school degree to an asso-
ciate’s degree, this might be more challenging to perform for some
individuals than others. To the best of our knowledge, all algo-
rithmic recourse research, including ours, use some kind of fixed
mechanism for assigning cost of recommendations. This suggests
that it might be useful to incorporate participatory mechanisms
into systems that provide algorithmic recourse. One form of that
could be to provide a set of recommendations, which could allow
individuals to pick what they consider to be low-cost, similar to
that presented in [29]. Another could be, through incorporating
survey feedback, to learn user-calibrated cost functions. The point
is, having one cost function for a full population presents not only
limitations to algorithmic recourse but, given its probable miscali-
bration across different sensitive subpopulations, could advantage
some subpopulations and disadvantage others.

Systems that provide recourse, by providing a recommendation,
present the risk of shifting population distributions in unintended
and potentially harmful ways. We note, however, that all algorith-
mic systems that individuals interact with and have impacts on
individuals’ lives shift population distributions. Therefore, it is not
a question of if the population distribution is shifting because of
the system but how the population distribution is shifting. We stress
this to ground the issue within a larger phenomenon that should
be a consideration for all algorithmic decision-makers in socio-
technical settings, not just systems that provide recourse. In the
context of algorithmic recourse, the issue of exacerbation of social
segregation has been discussed in [11, 53]. This specifically pertains
to the idea that recommendations differ substantially enough across
sensitive subpopulations that the result of individuals acting upon
them would be subpopulations differing even more substantially
over time. This points to larger questions which are at the crux of
most fair machine learning research, such as what the expectations
should be for algorithmic decision-makers when subpopulations,
defined by protected class membership, have differing data distri-
butions? Should their data distributions, post-interaction with a
system (traditional algorithmic decision-makers, an algorithm with
human-in-the-loop, or a system that provides recourse), be shifted
closer to each other, remain the same distance, or be further apart?
In the case of algorithmic recourse, there are recommendation gen-
erator algorithms, including those utilizing methods for robust
recommendations as formulated by [9], which minimize this issue
by making the recommendations robust to protected class member-
ship - meaning similar recommendations, not just recommendation
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costs, for similar individuals across sensitive subpopulations. This
requires a much deeper, most likely context-specific, evaluation
by domain experts to determine when these kind of recommenda-
tion generators should be enforced. For example, in some contexts,
access to the favorable outcome might be so essential to the well-
being of individuals’ lives that the tradeoff of higher-cost recourse
for all individuals versus low-cost differing recommendation sets
across subpopulations presents a challenging decision. Regardless,
these kinds of robust recommendation generator algorithms could
be paired with our method because these recommendation genera-
tors do not address the underlying issue of whether the algorithmic
decision-maker is the right model to achieve reliability, accessibility,
and fairness for a system that provides recourse.

Lastly, there are various privacy issues concerning algorithmic
recourse, including revealing the underlying model [44]. There are
also concerns about being able to infer which individuals were
in a training data set by the recommendation costs provided by
the system that provides recourse [12, 34, 44]. Privacy-preserving
solutions, including [17, 38], for algorithmic recourse represent a
newer line of research that is critical for addressing these issues
and for the safe deployment of systems that provide recourse to be
adopted in real-world settings.

B Select Primer on Structural Causal Models

Structural causal models (SCMs) are a subclass of structural equa-
tion models that are used to model causal relations. A structural
causal model (SCM) consists of two components: (1) a directed
acyclic graph (DAG) with directed edges and nodes; and (2) a set
of structural equations which dictate how nodes interact through
edges causally.

Nodes consist of two types, exogenous variables (U) and en-
dogenous variables (X). Exogenous variables have no parent nodes,
whereas endogenous variables have parents and/or a causal mecha-
nism within the graph. For example, in the SCM for the German
Credit Data setting (Figure 5a), Uy, Uz, Us, and Uy are exogenous
variables and X; (gender), X (age), X3 (credit amount), and Xy (re-
payment duration in months) are endogenous variables. The set
of structural equations, ¥, dictate how the endogenous variables
are derived. Some might take the form directly of an exogenous
variable distribution, such as gender, Xj, and age, Xz, as shown
for the German Credit Data setting in Figure 5a. Other structural
equations might be a combination of an exogenous variable and
other endogenous variables, like X3 (credit amount) and Xy (repay-
ment duration). The causal mechanism of these variables’ parents
is dictated by structural functions. For the German Credit Data,
these are f3(-) and f(-). While these causal mechanisms are de-
terministic, the exogenous variables introduce randomness. For
our simulated mortgage lending setting, we provide the parametric
settings for the exogenous variables in Figure 1. For our real-world
data settings, German Credit Data and First-Year Law School Suc-
cess, we allow the exogenous distributions to be observed and in
a non-parametric form. Therefore, SCMs are defined by all their
components as M = (U, X, F).

To both calculate the recommendations, x] ec=SCM  for Equa-
tion 3 and the counterfactuals, xiCF , we utilize in Equation 8 for ex-
cess burden, we perform a hard intervention using the do-operator
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for observed data, and therefore, we use the abduction-action-
prediction process [37]. We will discuss this in the form of the
process for a singular instance, x;, dictated by the German Credit
Data in Figure 5a, where we perform an intervention on age to
determine what would have happened to individual i if their age
was x’. However, this process could take place for all instances
of the dataset and for various different interventions (not just the
intervention on age that we demonstrate below). The process takes
the form of:

Abduction. Using the observed data for x;, we calculate the exoge-
nous variables.

Uil = Xi1
Ui2 = Xj2
uiz = xi3 — f3(xi1, xi2)

uiq = xiq — fa(xi3)

Action. We update the structural equations to reflect the hard
intervention of setting x;’s age to x’. This is expressed notationally
as do(Xz = x’) and some literature would refer to this new model
as a “surgically modified” submodel, M,, [37] where:

X1 :=U;

X = x

X3 = f3(X1,X2) + U3
Xq = fa(X3) + Uy

Predict. Use the modified model from the ‘action’ step, My, and
the exogenous variables calculated in the ‘abduction’ step to com-
pute x; | do(Xz = x’):

Xi1 ‘= Uj1
xig = x’
xi3 = f3(xi1, Xi2) + ui3

xig = fa(xi3) + Uig

Therefore, performing do(Xz = x’) results in changes to xa,
xi3, and xj4. Our research utilizes hard interventions, meaning that
all intervened variables are overridden and all causal influences
from parent nodes are not retained. This is the convention in the
algorithmic recourse literature because discrete actions are imposed
in the form of recommendations. With that said, other intervention
mechanisms are discussed in [8].

Next, we will discuss the two functions we use SCMs for in our
research, calculating xl.CF and x] ec—SCM,

Calculating counterfactuals, xiCF : To calculate the counterfactual
for an individual, x;, we perform an intervention on the binary
variable that defines a sensitive subpopulation for each data setting.
This notationally takes the form of xl.CF = x; | do(xjj = 1 - x;j) or
xiCF = x;i | do(1 - x;j), for short. To ensure that all data types and
ranges for the counterfactuals match the observed data types and
ranges, we stochastically round all mismatched data types using
a Bernoulli distribution with a fixed seed to ensure that identical
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recommendations are rounded to the same values across our ex-
periments for the same data settings. For example, for the German
Credit Data, we rounded variable X4 (duration of repayment in
months) to integers for all counterfactuals. Additionally, we clipped
all counterfactual values to ensure they were within the observed
range for each variable in the original data distribution. We did this
to ensure that we were using consistent data types and constraints
to those we utilize for calculating the recommendations.

Calculating recommendations, xl.'“_SCM: As noted in Section 2.1,
the recommendation generator, Ag(-), identifies the recommen-
dation, &7, such that x; | do(x;; + 5;‘].)\/1-65;_« results in a favorable
outcome. Therefore, the action set, 61.* , could consist of multiple
interventions, unlike xl.CF , which is solely an intervention on pro-
tected class membership. With that said, 5;‘ is constrained by a func-
tion, F(-), that ensures all action sets are actually implementable
as noted in Section 2.1. For example, for all of our data settings, an
action set could not consist of recommending that someone change
their group membership for a protected class attribute like gender
or race. For documentation of all the constraints encoded in F(-)
for each data setting, reference Appendix D.1.

C Our Approach Appendices

C.1 Simultaneous Perturbation Stochastic
Approximation (SPSA) and Gradient
Descent Algorithm

We discuss stochastic finite difference methods conceptually, then
Simultaneous Perturbation Stochastic Approximation (SPSA), and
then how we incorporate SPSA into our gradient descent algorithm.

Finite difference methods are commonly used for gradient ap-
proximation for equations that are not easily differentiable. This is
the case for training algorithmic decision-makers with loss func-
tions that utilize the output of recommendation generator algo-
rithms, such as LZ() in Section 3.2, which depends on the output
of Ag(+), where Ay(+) is a black-box system that is not easily dif-
ferentiable. LZ(-) becomes non-differentiable with respect to 0
because the function for Ag(-) is unknown, and Ay(-) depends on 6
for hZ() Therefore, it is possible to compute .E;(-), but aia%(-) is
not easily calculable. Given that our optimization goal is to find the
0 parameters for hZ() that minimize LZ(-), the general premise of

finite difference methods is to evaluate L;(-) with a slight fluctua-
tion by a small value, c, also known as a perturbation, to a singular
dimension of 0, denoted as Q?ﬂt = 6; + c. If one were to envision
L} () as a function of that singular dimension, 0;, and Lj(-) is
a smooth function in relation to 6;, then the perturbation, errt,
either increases or decreases L; (-) compared to the original setting

for 0;. Therefore, if we denote the loss function for 6; as L;ba“()
and L;pert(~) for Glpert, then the slope for L;(-) in relation to the

pert . L;pert(')*lzzbase(')
i

domain 6; to 0, is =————%——. Therefore, this slope calcu-

c
. . . . 9Ly ( .
lation serves nicely as an approximation of 62»( ), without the

need to directly take the partial derivative of .CZ(S with respect to
0;. Therefore, to find all the parameters of 6 for h;() one could
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L5()
69,-

ent descent algorithm where for each update, a random dimension
of 0 is chosen, and a random perturbation size or/and perturbation

imagine using the approximation of the gradient ,in a gradi-

AL (-
direction is chosen for c, and for each update 6; = 6; — n f;é_( ),
where 7 is a learning rate and Laz(.) is calculated from the per-

turbation method described directly above. If .[:2() were convex,
with enough gradient updates, this process would be guaranteed
to find the 0 for the global minimum of .EZ() This is not the case
for L;(') , and we discuss this further below. Note that the specific
process we describe in this paragraph for illustrative purposes re-
lates to the process of stochastic forward difference perturbations
for finite differences. There are various different schemes for fi-
nite differences for gradient approximation, not limited to the one
described above.

The process described above of performing a perturbation for a
single dimension of 0 using a singular record requires that L;(-)

. turb
be calculated twice: once for Lgbase and once for szer U0 As

mentioned in Section 6, many of the recommendation generator
algorithms are optimization solvers that use genetic algorithms,
mixed integer programming or SAT solvers, therefore, they are
computationally prohibitive to call for every update to a singular di-
mension of 6. Simultaneous perturbation stochastic approximation
(SPSA) utilizes perturbations to approximate gradients, similarly to
stochastic finite difference methods, but allows for simultaneous
perturbations to occur at once, greatly reducing the number of
times one needs to compute LZ(-) and subsequently call Ag(-) [45].

3

9L . .
More concretely, 3—90() requires 2n calculations of LZ(-) and 4n
calls to Ag(+) if a singular perturbation of € is performed at a time
for a singular record. (Recall that, to calculate L;() we must com-

pute Ag(x;) and Ag (xiCF ),2 When simultaneous perturbations are

*

performed to estimate ageg(.) , 2 calculations of L;() and 4 calls
to Ag(+) are required . Obviously, this is scaled by the number of
records in the training data.

To explain the SPSA algorithm, we provide the full pseudocode
we use to train algorithmic decision-makers in Algorithm 1, which
consists of a gradient descent algorithm using SPSA gradient ap-
proximation to update 6 with random resets upon convergence.

The SPSA gradient approximation process happens iteratively, in
Lines 19-22 of Algorithm 1. Importantly, in Line 19, A cannot have
infinite inverse moments, meaning that sampling from a normal
or uniform distribution is prohibited [46]. As is common practice,
we sample Ay from a symmetric Rademacher distribution, which
functions like a Bernoulli distribution set to p = 0.50 that produces
either [—1, +1]. The necessity of this requirement follows from the
inversion of Ay in Line 21.

To calculate c; depending on the gradient update count, k, we
use the following calculation from [46]:

Cc

We use A = 0.101, because, as noted by [46], this guarantees
practical effectiveness and theoretical validity. Additionally, we
use ¢ = 0.10, as is common practice. To calculate n; depending
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Algorithm 1 Algorithm for Training Algorithmic Decision-Makers using Gradient Descent with SPSA for Gradient Approximation and

Random Restarts upon Convergence

1: Lgmin - oo
2: 0% = None
3: while time elapsed < 12 hours do

> Keeping track of global minimum for L;()

> Checking for convergence.
> Exit for-loop.

> The batch division is randomized.

> Where each Ag; is independently sampled from a mean-zero
distribution, and |Ag| = |0]. (Note, the A symbol is common
in the SPSA literature, and does not have the same meaning
as those in Section 4 or Appendix D.4)

> All the dimensions of 6 are being perturbed simultaneously,
for both hZ+CkAk (+) and hg—ckAk (). Therefore, Ag(-) is only
called four times in this step for each record, rather than 4n
times. ¢ is an adaptive value per gradient update, k, we will
define below.

> Note that 7y is an adaptive learning rate per gradient update,
k, which we will define below.

4 L*prev —
5 Randomly initialize 6 using Glorot Uniform distribution for hy(-)
6 k=0
7: for j «— O0tom—1do
8 Calculate LZ(')in
9 if £7(-) < L;™" then
10: Lgmm — LS()
1 0" =0
12: end if
13 if | £, = £ ()] < €cony then
14: break
15: else
38
16: .Eeprev =L,()
17: end if
18: for each batch xj, in Vx; of size nptc, do
19: Ak = {Akl’AkZ""’ Akn}
20: Calculate £Z+CkAk () and LZ—CkAk (+) for x,
) 1/Ap
21: 9Ly () _ Lorepn = Lo-cpa ) |1/Ag,
: El 2ck
1/Akn
oL (-
22: 0=0-n La%()
23: k=k+1
24: end for
25: end for

26: end while
27: return {L;™", 0*}

> Returns model with global lowest loss, Lzmin.

on the gradient update count, k, we use the following calculation
from [46]:

B a
T (A+k+1)e

Similarly, we use @ = 0.602, because, as noted by [46], this
guarantees practical effectiveness and theoretical validity. We use
the common choice of a = 0.16, and to encourage more aggressive
exploration of the § domain in early iterations, we set A = 0, given
that A is a stabilizing term that specifically impacts the learning
rate for early iterations.

Spall [45] provides a proof of convergence to local minimum if
L;(-) is non-convex and to a global minimum if LZ(-) is convex,
that adopts a set of assumptions. Therefore, our parametric choices

Mk
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satisfy the assumptions pertaining to the parameters listed above
stated in [45].

The loss function, .[Z;(-), we propose in Section 3 is not convex,
therefore, a singular run of the gradient descent algorithm will
most likely not find a near-global minimum for .[:2() As shown
in Algorithm 1, we perform a random reset to the parameters, 6,
once our loss function £ (-) converges. The convergence criterion
that we utilize is €cony = 0.01 for all our results to allow for more
random resets, and therefore, more aggressive searching of the
parameter space for 6. Across all our models displayed in Table 9, a
model is expected to perform a random reset 23.63 times within the
12 hour timeframe. While this does not guarantee that the global
minimum or near-global minimum is found for all algorithmic
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decision-makers, which is the case for all stochastic approximation
methods for non-convex loss functions, it is inline with common
practitioner heuristics for the number of random restarts necessary
to find a near-optimal solution for low dimensional data settings
like the ones utilized in this research. Lastly, we use a batch size of
Npatch = 350 across all our data settings. This was dictated by the
computational resources that we had available (60 GB of memory
and 25 cores per training each algorithmic decision-maker) for
parallel calls to our recommendation generator, Ag(-).

D Evaluation Appendices

D.1 Data Settings

D.1.1  Simulated Mortgage Lending Setting. Given that our method
utilizes structural causal models (SCMs), it is important to have a
setting where all necessary assumptions are satisfied. This provides
a baseline for how our method would perform in a well-behaved
scenario where we can guarantee all necessary assumptions. There-
fore, these data are synthetic and produced by a simulation outline
in Algorithm 2. Algorithm 2 shows the same underlying data gener-
ation process displayed in Figure 1. An important aspect to note is
that the outcome variable of whether an individual is trustworthy
for mortgage lending is directly estimated using solely an indi-
vidual’s credit score, but given the causal relationship of all the
features, the outcome variable is correlated with gender, age, and
proportion of cumulative credit available.

As described in Section 2.1, in Equation 2 and Equation 3, action
sets must satisfy data setting-specific criteria to ensure that they
are realistic and implementable for individuals. This is encoded as
the constraint §; € F(x;). We include the constraints on action sets
for the Simulated Mortgage Lending Data setting in Table 3.

We note that this is a simplified, simulated scenario rather than a
complete and accurate model of mortgage lending. We do not make
any claims here about the true functional relationships between
variables that determine whether an individual is trustworthy for
mortgage lending.

D.1.2  German Credit Data Setting. The SCM, including graph and
structural equations, we use for the German Credit Data setting
is displayed in Figure 5a. Note, this is the identical SCM for the
German Credit Data setting that was used in [21] and we use the
same constraints for action sets, F(+), utilized in [21], as well, as
displayed in Table 4.

D.1.3  First-Year Law School Success Setting. The graph of the SCM
we utilize for the First-Year Law School Success setting, displayed
in Figure 5b, has been utilized in prior research including [3, 26]. It
is important to note that we opt to exclude the outcome variable
from the graph. In other research, this is often included, but it is a
non-consequential choice, given that this outcome variable is a leaf
node with no descendants, and therefore, no causal influence on any
part of the data distribution. Additionally, we filter the First-Year
Law School Success dataset [55] to only include students from the
Southeast region of the United States, and only include Black and
White students. The first choice is to ensure that the region is not
an unaccounted-for confounder in our causal model. The second
choice was determined by the current state of our research design.
To fit each structural function, f3(-) and f4(+), we train two linear
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regressions with the features Xj (race) and X» (gender). One linear
regression is fitted with outcome variable X3 (LSAT score) and
the other with the outcome variable X4 (undergraduate GPA). The
coefficients for X; and X3 for each linear regression were rounded
to the nearest 0.5, to ensure that realistic values for GPA and LSAT
score were produced, and adopted in the structural functions f3(-)
and fi(-). Given that the intercepts for these linear regressions
are estimates of signal that is not correlated with race or gender,
we assume this signal is represented in the exogenous variable
distributions for LSAT score and undergraduate GPA, which are
observed and do not need codifying in the SCM. To the best of our
knowledge, Bynum et al. [3] use a similar process for modeling
structural functions.

Lastly, the constraints we impose on the action sets for the First-
Year Law School Success data setting are displayed in Table 5.

D.2 Benchmark Methods
The four benchmark methods we use in Section 4, hg/ ! (), hzq-COSt( ),

hgal‘err(-), and hza1+eq(-), are explained in this appendix.

The benchmark method, hg/ ! (+), only minimizes balanced 0/1
loss, therefore the loss we minimize for these models take the form
of the following:

LY () = L3°() = prp  FPR+ fpy « FNR  (15)

For Equation 15, £5°(+) is identical to Equation 10 when ﬂ%’.‘}\rld =
0. The frp and frn parameters we use for all data settings are
defined in Table 6.

The benchmark method, h;q-COSt(-), is trained to minimize bal-
anced 0/1 loss and equalize the cost of recommendations across
sensitive subpopulations, using the formulation in Equation 5. It is
important to note that the original formulation proposed in [15]
is directly incorporated into a optimization problem, rather than
an isolated fairness measurement. This means that Equation 5 was
originally displayed as a constraint for training a classifier, with a
parametric upper bound for the tolerated value of Equation 5. In
reviewing our results for the German Credit Data, in comparison
to their results for the German Credit Data, specifically in terms
of the measurement for Equation 5, which is referred to as ‘A, for
E(Cost)’ in Table 1, our adaption seems empirically neutral, if not
beneficial. We train h;q_COSt(‘) using the following loss function:

L;q—cost(.) :LSCC(') +ﬁeq—cost % aeq—cost’

eq-cost _ 1

Z cost(x;, 87) — |SL

X; €S, a’

Z cost(xj, 5;)

(16)

where «

al :
XjESa,

as defined in Equation 5.

In Equation 16, as in Equation 5, for a sensitive attribute x; j € Xi,
§; = {x; € x : hg(x;) = 0,x;; = a} and SA;, ={xi € x: hg(x;) =
0,x;j = a’}. We provide the setting for 4ot of h;q_COSt(-) in
Table 8.

The benchmark method, hgal'e"(-), is trained to minimize bal-
anced 0/1 loss and equalize the error rates (false positive rate and
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X1 :=U

Xp:=U

X3 := f3(X1,X2) + U3
Xq = fa(X3) + Us

(a) The structural causal model (SCM) M for the German Credit
Data setting. Endogenous variables: X; is gender. X; is age. X3 is
credit amount. X is repayment duration in months. Endogenous
variables are non-parametric observed data distributions. Struc-
tural functions: f3 (X, X3) = 550 * X7 +4.5 * X5. f2(X3) = .0025 * X3.
Outcome variable (not shown above): whether an individual is
trustworthy for credit.

Boxer et al.

X1:=U

X2 :=Us

X3 = f3(X1,X2) + Us

X4 = fa(X1,X2) + Uy
(b) The structural causal model (SCM) M for First-Year Law
School Success Data setting. Endogenous variables: X; is race
(Black or White). X;, is gender. X3 is LSAT score. X4 is undergradu-
ate GPA. Endogenous variables are non-parametric observed data
distributions. Structural functions: f3(X7, X2) = —8.5% X7 +0.5%X5.
fa(X1,X2) = —0.3 % X; — 0.2 * X5. Outcome variable (not shown

above): whether an individual performs above average in their
first-year of law school.

Figure 5: Structural Causal Models (SCM) for German Credit Data and First-Year Law School Success settings. The SCM for
the Simulated Mortgage Lending setting is shown in Figure 1. For more information on structural causal models, reference

Appendix B.

Algorithm 2 Process for Generating Simulated Mortgage Lending Data

1: for i={1,2,..,1000} do

2 Xj1 = uj1 ~ Bernoulli(0.50)
3 Xig = Ujp = 00

4 while x;; < 18 or xj5 > 75 do
5: xiz = ujz ~ N(38,22)
6 end while

7 uj3 ~ Uniform(0.40, 1.09)

8 xj3 = —0.005 * xj2 + u;3

9 uj4 ~ Uniform(200, 400)

10: Xia = Xj1 + 50 * xj2 + 400 * xj3 + Ujs
11: end for

12: pig = Byy, [xi]

13: §4 = Sthx,— (xi)

14: for i={1,2,..,1000} do

15: Zjg = Xi4s_zll4

16: y; ~ Bernoulli(o(NV(0.05 * zj4,0.20)))

17: end for
18: return {x;j1, X2, Xi3, Xi4, y;i }Vi € {1,2, ..., 1000}

> Sampling gender for individual i.

> Sampling age for individual i, rounded to integer values.

> Rounded to the hundredths place value.

> Calculating proportion of cumulative credit line available.
> Rounded to integer value.

> Calculating credit score for individual i.

> Calculate mean of credit scores across all individuals.
> Calculate standard deviation of credit scores for all individu-
als.

> Standardizing credit score for individual i.
> Drawing outcome variable of mortgage trustworthiness using
credit score for individual i. o is the sigmoid function.

Section 2.2, this takes the form of imbalanced error rates across sen-
sitive subpopulations, and therefore, is an appropriate benchmark.
We train hgal‘e"(-) using the following loss functions:

false negative rate) across sensitive subpopulations. Given that part
of our method is aimed at addressing the issue of imbalanced rates
of erroneously granting and denying access to the favorable deci-
sion across sensitive subpopulation, as motivated in Example 1 of
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Variable | Description Actionability Direction Mutability Min | Max Data Type
X1 gender non-actionable non-mutable

Xz age actionable increase mutable 75 years-old | integer
X3 prop. of cuml. credit available | actionable any direction | mutable 0.045 | 0.99 real

Xy credit score non-actionable mutable 321 847 integer

Table 3: Feasibility and plausibility constraints for action sets encoded in F(-) for the Simulated Mortgage Lending setting
(n = 1000). Actionability refers to whether a feature can be used as an action in a recommendation. Direction describes how a
feature can be modified. Mutability describes whether a feature can change due to a hard intervention. All actionable features
are mutable, but some mutable features are not actionable. Min and max constraints are set for mutable features based on the
bounds observed in the data distribution for each feature. Data type refers to data type constraints placed on feature values.

Variable | Description Actionability Direction Mutability Min | Max Data Type
X1 gender non-actionable non-mutable

Xz age actionable increase mutable 75 years-old | integer
X3 credit (in Deutsche Marks) | actionable any direction | mutable 250 | 18424 real

Xy loan duration (in months) | non-actionable mutable 4 72 integer

Table 4: Feasibility and plausibility constraints for action sets encoded in F(-) for the German Credit Data setting (n = 1000).
Actionability refers to whether a feature can be used as an action in a recommendation. Direction describes how a feature
can be modified. Mutability describes whether a feature can change due to a hard intervention. All actionable features are
mutable, but some mutable features are not actionable. Min and max constraints are set for mutable features based on the
bounds observed in the data distribution for each feature. Data type refers to data type constraints placed on feature values.

Variable | Description Actionability Direction Mutability Min | Max | Data Type
X race (Black or White) | non-actionable non-mutable

Xo gender non-actionable non-mutable

X3 LSAT score actionable any direction | mutable 17 48 real

Xy undergraduate GPA | non-actionable non-mutable

Table 5: Feasibility and plausibility constraints for action sets encoded in F(-) for the First-Year Law School Success Data setting
(n = 2421). Note, the LSAT score uses the scoring schema between 1995-2005. Actionability refers to whether a feature can be
used as an action in a recommendation. Direction describes how a feature can be modified. Mutability describes whether a
feature can change due to a hard intervention. All actionable features are mutable, but some mutable features are not actionable.
Min and max constraints are set for mutable features based on the bounds observed in the data distribution for each feature.
Data type refers to data type constraints placed on feature values.

competitive compared to our method. Therefore, we use the follow-

ing loss function to train hbaheq(-):

. ooy [ @b¥I-FPR 4 gbal-FNR 0
Lea err(.) :Lgcc(,) +ﬂ al-err 5 s Lgaheq — LBCC(.) +ﬁeq—cost * aeq—cost
where P PR =|B s [1(hg (x1) = 1] - By, s, (1o (x)) = 1)]) 4 phaers obal~FPR y gbal-FNR 18)
2
and "R =B [1(hg () = 0)] = By s+, [T(ho(xp) = 0)]]

(17) For Equation 18, @®4¢°%t is defined in Equation 16 and Equation 5.
abal=FPR gnq obal=FNR 4re defined in Equation 17. 64t and

For Equation 17, similarly to Equation 13,5, = {x; : y; = 0,x;; =
a}, S, ={xi 1 yi = 0,x;; = '}, S; = {xi : yi = L,x;j = a} and
SZ, = {x; : yi = Lx;j = a’}. We provide the setting for phal-err of
hEAeIT () in Table 8.

Lastly, for the benchmark method, hzal+eq(-), we minimize bal-
anced 0/1 loss, and equalize cost of recommendations and error
rates across sensitive subpopulations. As mentioned in Section 4,
this benchmark serves to demonstrate that jointly optimizing for
predictive fairness and equalized cost of recommendations is not
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ﬁbal'e" for hgaheq() are shown in Table 8.
The loss functions,.Eg/1 ), L;q-COSt ), Lgal-err (+),and Lgal+eq )

for hg/ ! ), heeq_mSt (), hgal'e“(~), and hzaheq (+), respectively, take a
similar form to the loss function, LZ,(-), we use to train our method,
h2(~). Therefore, we use the identical training method we discussed
in Section 4 of gradient descent using SPSA for gradient approxi-
mation with random sets of 6 post-convergence. We outline this
process in detail in Appendix C.1, with pseudocode in Algorithm 1.
For Algorithm 1 for these benchmark methods, as well as all other
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models that use loss functions other than £§(~), we substitute the
respective loss function in the pseudocode for L;(-). Note that
all other parameters pertaining to the gradient descent algorithm,
including batch size and convergence criterion, and SPSA gradient
approximation method are identical across all models, including
those for these benchmark methods.

D.3 Model Parameters

For each data setting, across all models used in our research, the
same frp and Ppn are utilized. These are displayed in Table 6.
Additionally, as discussed in Section 3.2, a €corr penalty is added

to the false positive rate, where €corr = ﬂ%’.‘}sdExiNT N [b(x;)] when

ﬂlT"]‘éd > 0. We approximate a fixed Ey,.7n[b(x;)] for each data

setting, using a default logistic regression classifier, that we use
across all models per data setting when ﬁ%‘\?d > 0. These values of
Ey;~TN [b(xi)] for €corr are also displayed in Table 6.

In determining the weights we used for each data setting, dis-
played in Table 6, the weights Srp and frn must be set accordingly

to ensure there exists a 0 for L;(-) where:

ﬁFP - ﬂFN*FNR_'_Lgurd(.)+£gxc—burd(.)+£Bal—exc—burd(.) (19)

If a solution for 6 does not exist that satisfies Equation 19, given
Prp and By, the model that minimizes LZ() will provide all or
nearly all positive predictions. Therefore, the different parameter
weights for each data setting in Table 6 were determined to ensure
the constraint in Equation 19 was met. Note that we use €corr to
solely mitigate the issue discussed in Section 3.2 of minimization of
burden through flipping true negatives to false positives, therefore,
specifically addressing an issue the Lgurd() component presents,
in isolation. The weights for frp and frN are chosen to address
an issue that is present for £2(~) at large. We frame this specifi-
cally in Equation 19 as a consideration for L;(-) for the weights

assigned in Table 6, because frn * FNR+ Lgurd(-) + Lg"c’b“rd() +

Lgal'exc'burd(-) serves as an upper bound across all our models for
each data setting, but it is clear that this consideration exists for all
loss functions we utilize in our research, and therefore, this is why
we use fixed fpp and frN weights across all models given the data
setting.

Table 7 presents all the weights we utilize for hz (), all the ablated
models, hg“rd(-), hgxc'b“rd(), and hgal'e"c'b“rd(-), and models that
are trained to prioritize access for false negatives over true negatives
by placing more weight on minimizing burden for false negatives
over true negatives. These models are denoted as pburd () and

6,FN>TN
), and their weights are displayed in Table 7 and the

hZ',FN>TN('
results of these models are displayed in Table 9. Lastly, we present
the weights for all benchmark methods in Table 8, and discuss the
loss functions used for these benchmark methods in Appendix D.2.
All models, including those displayed in Table 7 and Table 8,
use the weights per data setting displayed in Table 6.

For all models other than hog/ ! (+), all weights not pertaining to
Prp and frN sum to 6. This can easily be observed by looking at the
sum of the rows for all models in Table 7 and Table 8, besides the
row for ho/ ! (). Additionally, the metrics, including burden, excess
burden, and the benchmark metrics have a minimum value of 0
and maximum value of 1. This presents a level of stability across
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all models per data setting, making them relatively comparable to
each other in terms of the weight they assign to objectives other
than predictive accuracy in the loss functions.

D.4 Full Results

Table 9 contains the full set of results across of all our evalua-
tion settings and benchmark methods. We describe the benchmark
methods, hg/ 1(-), hzq_CDSt(-), hgal‘e"() and hga“eq(-), extensively
in Section 4 and Appendix D.2. Our method, h’é(‘), is described thor-
oughly in Section 3.2 and Section 4. The ablated classifiers, hzurd(~),

hzxc‘b“rd(-), and hle’al‘exc'b“rd(-), are described in Section 4.1. Models
trained to prioritize accessibility for those who are false negatives,
hgt’;l‘\ibTN(-) and hZ,FN>TN(')’ are discussed in Appendix D.3. It is
important to note that false negatives are the result of an algorith-
mic decision-maker being unable to detect a substantial enough
signal in their features to discern them from true negatives. There-
fore, in many regards, these models’ (hztll:rbeN(') and hZ,FN>TN('))
ability to give more access to false negatives relies on the assump-
tion that they are able to fit for a signal of these false negatives. If
the models were effectively able to do that, they would be classify-
ing these false negatives as true positives. Regardless, these models
present a specific functionality of our method that could be useful
to practitioners in other contexts.

Lastly, we present an algorithmic decision-maker that is trained
to only minimize excess burden and balance excess burden across
sensitive subpopulations. Therefore, this model is not concerned
with lowering the cost of recommendations or maximizing access
to recommendations. We denote these algorithmic decision-makers
as hgu‘exc'burd(-) in Table 9 with the weights they utilize specified
in Table 7. We provide this setting for the use-case where access to
realistically implementable recommendations is not a goal, mean-
ing, Principle A is not applicable. Adopting this criterion for a
data setting should be taken with caution for two reasons. First, all
objectives we use to train h;(-) work in tandem. For example, low-
ering the expected cost of recommendations, often, also lowers the
absolute difference of expected costs of recommendations across
sensitive subpopulations. Second, as pointed out in Section 3.2 and
cited in [47], there are ethical issues associated with providing chal-
lenging (high-cost) recommendations for individuals to implement.
We address this in our work by minimizing expected burden. There-
fore, hzu'exc'burd(-) should only be used in select settings where it
has been evaluated as essential by domain experts.
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Data Setting Brp | BFEN | €corr for all models wheie g%‘\r,d > 0 in Table 7
: 1 ur
Simulated Mortgage Lending 4 4 0.7087
German Credit Data 6 6 0.30ﬁg‘;\r,d
First-Year Law School Success | 8 8 0.85,[5T‘J‘\§C1

Table 6: Weights for false positive rates and false negative rates used for each data setting across all models. corr is used when

burd
ﬂ TN

setting. These values of E,, .7n[b(x;)] are displayed in the right-most column of this table.

> 0, where €corr ~ ﬁl%‘ﬁd]ExiNTN [b(xi)] and Ex,.7n[b(x;)] is calculated using a default classifier and is fixed for each data

Algorithmi ¢ Decision-Maker ﬁlb:l]l\rfd ﬁ?_l]l\l}d ﬁ;};\cf—burd ﬁ%\c]-burd ﬁllal—exc—burd ﬁkal—exc—burd

pburd 3 3 0 0 0 0
hexc—burd 0 0 3 3 0 0
hbal—exc—burd 0 0 0 0 3 3

pall-exe-burd 0 0 15 15 15 15
hburd 4 2 0 0 0 0
ENSTN 1.33 | 0.67 1 1 1 1
h* 1 1 1 1 1 1

Table 7: Weights utilized in the loss functions for all models, including our method, h; (), the ablated models, hle’“rd ), h;"c'b“rd ),

and hgal'exc'b“rd(-), models that prioritize access to recommendations for false negatives over true negatives,

h*

0, FN>T

hburd

oENsTN () and

~ (), and an algorithmic decision-maker that only minimizes excess burden and balances excess burden across sensitive

subpopulations, hgll'exc'b“rd(-) (discussed more in Appendix D.4). For readability in the table, we neglect the 6 subscript and (-)
notation. Note that all algorithmic decision-makers in this table use the weights listed in Table 6, as well.

Algorithmic Decision-Maker | e¢dcost ppal-ert
o/t 0 0
heq—cost 6 0
hbalferr 0 6
pbal+eq 3 3

Table 8: Weights used for each algorithmic decision-maker used as a benchmark for our methods. These weights are used in
the loss functions described in Appendix D.2. These benchmark methods are also described at a high-level in Section 4. For
readability in the table, we neglect the 6 subscript and (-) notation. Note that all algorithmic decision-makers in this table use
the weights listed in Table 6, as well.

238



EAAMO ’°25, November 05-07, 2025, Pittsburgh, PA, USA Boxer et al.

Data Setting | Model Algorithmic Balanced Coverage |Ag| for | E(Cost) [Aa] for | [Agq| for | [Ag| for | gindtar |Ag| for | |Ag] for
Decision- 0/1 Loss Coverage E(Cost) E(Cost) E(Cost) FPR FNR
Maker (arca-eost) Vy; =1 Vy; =0
pO7t 0.508 0.684 0.156 0.094 0.036 T 0.042 T 0.034 T 0.108 ¥ 0.289 0.272
peacost 0.511 0.729 0225 7 0.0900 0.013 7 0.015 1 0016 T 0052 % 0.240 0.232
pbal-err 0.501 0.667 0.049 0.100 0.022 7 0.025 T 0027 T 0.026 ¥ 0.047 0.053
pbal+eq 0.498 0.738 0.046 0.082 00107 0.015 T 0016 T 0013 % 0.062 0.044
Ir pburd 0.505 1.000 0.000 0.051 0012 F 0.013 T 0.013 T 0.030 0.153 0.138
pexe-burd 0.509 0.761 0.030 0.087 0.015 0.018F 0.020 T 0.006 0.057 0.055
pbak-excburd | 559 0.794 0.023 0.084 T 0.011 7 0.015 T 0016 T 0.004 ¥ 0.052 0.055
pall-exe-burd | 57 0.810 0.024 0.086 0.012 0.018 0.017 0.004 0.057 0.052
hbud 0.508 1.000 0.000 T 0.047 0.014 7 0017t 0016 T 0.046 ¥ 0.204 0.188
n 0.507 0.987 0.005 0.053 0.008 0.012 0.010 0.008 0.063 0.052
FN>TN
h 0.509 0.998 0.000 0.059 0.006 0.008 0.010 0.003 0.058 0.052
BT 0514 0.653 0203 T 0.089 T 0.026 1 0.027 1 0.029 T 0.088 ¥ 0.294 0311
heq-eost 0.511 0.771 0.117 " 0.089 0.013 " 0.018 1 0018 T 0.051 % 0.268 0.271
ikm“la‘ed pbal-err 0.505 0.763 0.031 0.093 0.018 7 0014t 0019 T 0014 % 0.056 0.055
L:;tigiigge pbal+eq 0504 0.812 0.035 0.088 0011 0.012 0.017 0.012 0.053 0.053
MLP (1x2) | PP 0.510 1.000 0.000 0.051 0.010 0.012 0.011 0.023 0.112 0.124
pexc-burd 0.508 0.770 0.035 0.081 0.012 0013t 0017 T 0.013 0.054 0.060
pbal-excburd | 506 0.795 0.028 0.084 0.014 0.018 1 0014 T 0.002 0.062 0.053
pallexe-burd | g 509 0.870 0.035 0.083 0.010 0.017 0.017 0.006 0.060 0.050
hEK{Sm 0511 1.000 0.000 T 0.044 0013 0015 T 00141 0.041 % 0.167 0.187
g 0514 0.992 0.003 0.054 0.008 0.010 0.011 0.009 0.063 0.050
B 0511 0.999 0.001 0.058 0.007 0.010 0.011 0.004" 0.054 0.047
BT 0515 0585 0.196 0.095 0.029 0.030 00347 0.113 ¥ 0.296 0.300
heq-eost 0.510 0.717 0.212 " 0082t 0.014 " 0.019 " 0016 T 0.080 ¥ 0.257 0.258
pbal-err 0.507 0.805 0.034 0.000 0012t 0013t 0017 T 0013 % 0.051 0.057
pbalreq 0.508 0.809 0.039 0.089 0.010 0.018 0.015 0.017 0.057 0.059
MLP (1xg) | HPR 0.512 1.000 0.000 0.050 0.011 0.014 o012 T 0.027 0.132 0.124
pexe-burd 0.507 0.800 0.041 0.084 0.011 0.017 0015 T 0.006" 0.055 0.053
pbal-excburd | g 510 0.789 0.024 0.088 0.016 0014t 0025 T 0.006" 0.054 0.047
pall-excburd g 509 0.839 0.021 0.083 0.011 0.016 0.016 0.005 0.054 0.057
burd 0515 1.000 0.000 ¥ 0.042 0.017 0.017 0014 T 0.048 ¥ 0172 0.194
- 0.511 0.988 0.004 0.054 0.008 o012t 0012 F 0.010 0.061 0.054
n* 0514 1.000 0.000 0.054 0.006 0.009 0.009 0.003" 0.067 0.059
nO71 0412 0.992 0.006 0.083 0.019 0.019 0.022 0.123 0.388 0.353
heq-eost 0.414 0.966 0.027 0.078 0.014 0.012 0.022 0110 ¥ 0.318 0.281
pbal-err 0.433 0.936 0.026 0.082 0.013 0.014 0.022 0.054 0.081 0.060
pbalreq 0.430 0.952 0.032 0.086 0.012 0.015 0.021 0.048 0.077 0.067
Ir pburd 0419 0.998 0.003 0.043 0.007 0.009 0.009 0.066 0.304 0.252
pexe-burd 0.424 0.985 0.012 0.074 0.010 0.010 0.018 0.044 0.18 0.126
pbal-excburd | 430 0.966 0.016 0.073 0.010 0.011 0.016 0.033 0.138 0.088
pall-exc-burd 0.427 0.956 0.021 0.080 0.009 0.010 0.017 0.035 0.145 0.092
German pburd. 0.424 0.996 0.006 0.049 0.010 0.011 0.013 0.070 0.311 0.243
Credit NN 0.431 0.993 0.006 0.054 0.007 0.008 0.012 0.040 0.153 0.111
Data B 0.423 0.996 0.006 0.057 0.008 0.009 0.015 0.036 0.165 0.107
nO7T 0.408 0.975 0.014 0.083 0.018 0.017 0.025 0.135 0.411 0.383
hed-eost 0.414 0.957 0.031 0.078 0.012 0.012 0.017 0110 ¥ 0.337 0.306
pbal-err 0.424 0.892 0.043 0.083 0.015 0.015 0.024 0.069 0.077 0.068
pbal+eq 0.431 0.891 0.037 0.078 0.014 0.016 0.023 0.054 0.089 0.078
MIP(1xz) | AP 0423 0.997 0.006 0.041 0.007 0.008 0.010 0.052 0.277 0.231
pexe-burd 0.420 0.978 0.017 0.077 0.008 0.009 0.014 0.057 0.176 0.110
pbal-excburd | 456 0.943 0.023 0.078 0.010 0.012 0016 T 0.029 0.128 0.087
pall-exe-burd | 450 0.966 0.019 0.081 0.010 0.012 0.017 0.036 0.148 0.085
nburd, 0.421 0.998 0.003 0.048 0.013 0.014 0.014 0.078 0.362 0.299
NN 0.431 0.994 0.007 0.054 0.008 0.008 0.016 0.040 0.170 0.120
h* 0.429 0.993 0.005 0.055 0.007 0.007 0.013 0.034" 0.143 0.113

This table continues onto the next page.
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Data Setting | Model Algorithmic Balanced Coverage |Ag| for | E(Cost) [Aa] for | [Agq| for | [Ag| for | gindtar |Ag| for | |Ag] for

Decision- 0/1 Loss Coverage E(Cost) E(Cost) E(Cost) FPR FNR
Maker (arca-eost) Vy; =1 Vy; =0
pO7t 0.409 0.978 0.010 0.083 0.014 0.014 0.021 0.134 0.377 0.359
peacost 0.408 0.964 0.029 0.077 0.011 7 o011t 0017 F 0.107 ¥ 0.344 0.307
pbal-err 0.427 0.877 0.046 0.083 0.015 0.016 0.024 0.058 0.070 0.064
German pbal+eq 0.426 0.909 0.040 0.084 0.013 0.014 0.021 0.062 0.091 0.058
Credit MIP (1xa) | HPUTd 0.426 0.998 0.003 0.045 0.009 0.010 0.013 0.067 0.320 0.261
Data pexe-burd 0418 0.958 0.019 0.078 0.009 0.011 0.016 0.055 0.188 0.135
pbak-excburd | 457 0.969 0.017 0.080 0.008 0.010 0.016 0.035 0.133 0.079
pallexe-burd | 450 0.960 0.013 0.078 0.010 0.010 0.017 0.029 0.140 0.088
hbud 0424 0.997 0.005 0.048 0.010 0.011 0013 0.081 0.347 0.268
BN 0.428 0.991 0.009 0.052 0.007 0.007 0.013 0.038" 0.153 0.117
n* 0.427 0.993 0.005 0.054 0.007 0.008 0.013 0.029" 0.170 0.103
hO7t 0.417 0.734 0.529 0.196 0.288 T 0.267 T 0.285 T [ 0.635 0.678
peaeost 0419 0.684 0.898 0145t 0311 7 0.066 0301 T 0219 % 0.669 0.746
pbal-err 0.450 0.718 0.123 02151 0.099 T 0.106 T 0.093 T 0.156 ¥ 0.076 0.116
pbal+eq 0.449 0.886 0.098 0.189 T 0.053 T 0.091 0045 T 0139 ¥ 0.092 0.121
Ir pburd 0.416 0.978 0.079 0.168 0.238 0.217 0233 T 0362 % 0.673 0.602
pexc-burd 0.426 0.976 0.088 0.154 0187 T 0175 7 0182 T 0358 % 0.595 0.514
pbak-excburd | 455 0.795 0.102 0.193 0.069 o112t 0.061 0151 % 0.068 0.100
pall-exe-burd | g 460 0.961 0.043 0.135 0.036 0.049 T 0.039 0153 % 0.084 0.118
nhud 0414 0.949 0.132 0.191 0203 T 0.264 T 0287 T 0557 % 0.746 0.682
g 0.450 1.000 0.000 0.115 0.024 0.035 T 0.024 0140 ¥ 0.140 0.142
n* 0.448 1.000 0.000 T 0.120 0.022 T 0.042 T 0.021 T 0.141 % 0.143 0.138
RO/ 0414 0.766 0.507 0.194 0298 0239 1 03017 0.600 ¥ 0.656 0.707
First.Y. heq-eost 0.419 0.681 0.931 0.149 0.343 " 0.120 0318 T —F 0.664 0.741
La‘\f:ts'd:zl pbal-err 0.454 0.661 0.097 0215 T 0071t o112t 0059 T 0133 % 0.070 0.099
Success Rbaleq 0.447 0.848 0.062 0.180 0.051 T 0.089 0.042 0.145% | 0080 0.130
MLP (1x2) pburd 0.417 0.985 0.042 0.166 0215 7 0218 T 0.206 T 0369 ¥ 0.654 0.552
pexc-burd 0.423 0.971 0.112 0.151 0180 0.166 T 01771 0368 ¥ 0.618 0519
al-exc-bur T T
pbal-excburd | 449 0.783 0.080 0.192 0.065 T 0.002 T 0057 T 0173 0.059 0.121
pallexe-burd | g 469 0.995 0.005 0.125 0.017 0.043 T 0.021 0153 % 0.080 0.123
pburd. 0415 0.973 0.079 0.181 0.260 0237 F 0256 0.536 0.731 0.684
- 0.450 0.999 0.001 0.113 0.022 0.039" T 0.020 0136 ¥ 0.158 0.150
h* 0.450 1.000 0.000 0.119 0.018 0.033 T 0.017 0.140 ¥ 0.124 0.137
RO 0.415 0.786 0507 0.187 0.297 1 02337 0.306 1 0452 % 0.650 0.696
peaeost 0.420 0.670 0878 T 0148t 0244 F 0.283 1 0302 T R 0.646 0.711
pbal-err 0.447 0.787 0.104 0.203 0.075 0.107 T 0.065 T 0.200 0.087 0.106
pbal+eq 0.445 0.883 0.095 0185 T 0.054 0082t 0.049 T 0119 % 0.107 0.125
MLP (1xa) | AP 0417 0.987 0.039 0.166 0.220 0216 0.211 0322% 0.658 0.545
pexe-burd 0.424 0.985 0.051 0.151 0179t 0172t 0175 T 0345 % 0.615 0.515
pbal-excburd | 449 0.851 0.080 0.185 0.055 0.080 0.052 0163 % 0.057 0.119
pall-exe-burd | g 459 0.977 0.016 0.130 0.032 0.051 T 0.033 0152 % 0.089 0.122
nburd. 0417 0.966 0.095 0.186 0.259 T 0.248 1 0251 T 0.386 ¥ 0.744 0.657
[ 0.448 1.000 0.000 0.110 0.025 0.042 0.023 0131 % 0.158 0.156
h* 0.446 1.000 0.000 T 0.120 0.021 1 0.031 T 0.020 0.148 % 0.144 0.143
Table 9: Results are shown for all classifiers: logistic regression (Ir); multi-layer perceptron with 1 layer and 2 hidden units

(MLP (1x2)); and multi-layer perceptron with 1 layer and 4 hidden units, (MLP (1x4)). For readability, we neglect the 0 subscript
and (-) notation. All weight settings are displayed in Table 7. Settings for frp, frn, and €corr differ per data setting and appear
in Table 6. Each value is averaged over 50 runs, each with a unique seed for a 70-30 train-test split. Classifiers are fit on training
data, and results in the table reflect test data metrics. Balanced 0/1 is %FPR + %FNR. Coverage is the proportion of individuals
with unfavorable outcomes who received a recommendation. E(Cost) is average cost for those with unfavorable outcomes and
coverage. |A,| is the absolute difference in the relevant metric across sensitive subpopulations, stratified by positive class (y; = 1)
and negative class (y; = 0), where applicable. ¢i?9-f2ir js defined in Equation 6. Bolded values indicate statistically significant
improvements (p < 0.05, one-tailed t-test) over all the benchmark methods, except in the ‘Balanced 0/1 Loss’ column, where
bold represents significant increases (i.e., decreases in predictive accuracy). T represents missingness (e.g. no individuals with

recommendations for some runs) . } represents no values found for «"4-f2i* for some runs. * represents statistical significance
ind-fair

was evaluated against all benchmarks that were not missing but not the full set of benchmarks. - represents for all runs «

could not be calculated (insufficient coverage for x; or xl.CF )
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