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Abstract
When selecting a model from a set of equally performant

models, how much unfairness can you really reduce? Is it im-

portant to be intentional about fairness when choosing among

this set, or is arbitrarily choosing among the set of “good”

models good enough? Recent work has highlighted that the

phenomenon of model multiplicity—where multiple models

with nearly identical predictive accuracy exist for the same

task—has both positive and negative implications for fairness,

from strengthening the enforcement of civil rights law in AI

systems to showcasing arbitrariness in AI decision-making.

Despite the enormous implications of model multiplicity, there

is little work that explores the properties of sets of equally ac-

curate models, or Rashomon sets, in general. In this paper, we

present theoretical and methodological contributions which

help us to understand the relatively unexplored properties of

the Rashomon set, in particular with regards to fairness. Our

contributions include methods for efficiently sampling models

from this set and techniques for identifying the fairest mod-

els according to key fairness metrics such as statistical parity.

We also derive the probability that an individual’s prediction

will be flipped within the Rashomon set, as well as expres-

sions for the set’s size and the distribution of error tolerance

used across models. These results lead to policy-relevant take-

aways, such as the importance of intentionally looking for fair

models within the Rashomon set, and understanding which

individuals or groups may be more susceptible to arbitrary

decisions.
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1 Introduction
Recent work has drawn renewed attention to the fact that there

are often many (approximately) equally accurate models avail-

able for the same prediction task [5, 7, 23]. This phenomenon—

often called the Rashomon effect [7], predictive multiplic-

ity [23], or model multiplicity [5]—has wide-ranging implica-

tions for both understanding and improving fairness, as these

equally accurate models often differ substantially in other

properties such as fairness [22, 29] or model simplicity [31–

33].

As prior work has pointed out, this multiplicity of models

can be viewed as both a fairness opportunity and a concern [5,

11]. On the positive side, legal scholarship has pointed to the

fact that model multiplicity is relevant to how to interpret

and enforce U.S. anti-discrimination law, and specifically, can

strengthen the disparate impact doctrine to more effectively

combat algorithmic discrimination [3]. In a recent paper, Black

et al. [3] suggest that the phenomenon of model multiplicity

could support a reading of the disparate impact doctrine that

requires companies to proactively search the set of equally

accurate models for less discriminatory alternatives that have

equivalent accuracy to a base model deemed acceptable for

deployment from a model performance perspective.
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On the negative side, several scholars have pointed out that

facially similar models, with equivalent accuracy but differ-

ences in their individual predictions, can suggest that some

model decisions are arbitrary since they seem to be made on

the basis of model choice that does not impact performance

(e.g., a <1% change in amodel’s training set accuracy) [2, 18, 23].

This arbitrariness can impact model explanations and recourse

as well: individuals with decisions that are unstable across

small model changes may not receive reliable explanations for

their model outcome, or ways to change it [4, 6, 26]. Further,

if there is a group-based asymmetry of arbitrariness–e.g., if fe-

male loan applicants have more arbitrariness in their decisions

than male loan applicants— this could lead to a group-based

equity concern in and of itself.

Understanding the extent of the benefits and risks of model

multiplicity relies upon an understanding of the properties of

the Rashomon set, or the set of approximately equally accurate

models for a given prediction task, i.e., equally accurate up to

some error tolerance 𝜖 . While models in the Rashomon set are

considered equivalent from a performance perspective, they

may differ substantially in other properties—for the purposes

of our paper, we focus on fairness. In order to understand the

utility of searching for fairer models within the Rashomon

set as suggested by recent legal literature, or the extent of the

dangers of arbitrariness surfaced by the algorithmic fairness

community, we need to understand more about Rashomon

sets themselves. For example, whether companies should be

required to search for less discriminatory models [3] rests on

the question of how much of the disparity can be reduced by

optimizing over the Rashomon set, as compared to choosing

an arbitrary model without regard to fairness. In other words,

howmuch dowe gain by being intentional about fairness
when selecting models within the Rashomon set? Similarly,

concerns about arbitrariness relate to rates and distributions

of the chance that an individual will have their prediction

changed—is this arbitrariness harmful if only predictions

that are very uncertain get flipped, or if all demographic groups

have an equal chance of flipping? We can shed light on these

important questions by understanding even basic facts about

the Rashomon set, such as: what does a randomly sampled

model from the Rashomon set look like? What is the average
fairness for various metrics on the Rashomon set? Howmight

one search through the Rashomon set? Can we find the fairest
model within the Rashomon set? What is the chance that any

one individual might experience a change in prediction in the

Rashomon set? Or even, how large is the Rashomon set?
Despite the enormous implications of model multiplicity, there

is little work that explores the properties of Rashomon sets in

general.

In this paper, we present six main theoretical and method-

ological contributions that answer the above questions and

more—furthering our understanding of the relatively unex-

plored properties of the Rashomon set, in particular with re-

gards to fairness:

• First, we define the largest possible Rashomon set 𝑅𝑁 (𝜖),
for 𝑁 records drawn from a given data distribution,

assuming an allowable error tolerance of 𝜖 . This novel

conceptualization of the Rashomon set, based on de-

viations from the Bayes-optimal model, enables us to

explore fundamental questions related to fairness, set

size, model selection, and individual predictions.

• Second, we develop an efficient method for sampling

models uniformly at random fromwithin the Rashomon

set.

• Third, we present two computationally efficient meth-

ods to find the fairest model within the Rashomon set,

for statistical parity and error rate balance respectively.

• Fourth, we derive the asymptotic probability that any

individual will have their prediction flipped within the

models of the Rashomon set for a given 𝜖 .

• Fifth, we derive a closed-form expression for the size

of the Rashomon set for a given 𝑁 and 𝜖 .

• Sixth, we show that for sufficiently large datasets and

small enough 𝜖 , models in the Rashomon set will use

the full error tolerance (i.e., the average accuracy of

models in𝑅𝑁 (𝜖) converges to the accuracy of the Bayes-
optimal model minus 𝜖).

These theoretical results create important newfound under-

standing of the Rashomon set with a focus on fairness and

fairness-relevant properties— to our knowledge, there are no

results about how to sample randomly from the Rashomon

set, Rashomon set size, individual flip probabilities within

the Rashomon set, and the distribution of error used in the

Rashomon set for any generalized theoretical setup. While

concurrent work has shown that finding the fairest model

within the Rashomon set is hard (NP-hard) in general [22], we

are able to show that under certain conditions we can find the

fairest model very efficiently.

Further, our theoretical results lead us to some interesting,

policy-relevant takeaways, which we expand on further in

Sections 4-6 and support with experiments on three datasets:

A. We can gain a lot of fairness by intentionally search-

ing for fairer models within the set of equally accurate

models. Sampling randomly within the Rashomon set—

only optimizing for accuracy when selecting a model

and hoping that it is fair— will yield a much less fair

model than searching for the fairest possible model even
among those that are approximately equally accurate, so
explicitly optimizing for fairness within the Rashomon

set is important.

B. We can calculate the probability that any given individ-

ual will experience a flip in prediction among models in

the (largest possible) Rashomon set. This allows us to

shed light on the fates of individuals in the Rashomon

set and potential inequities in flip probabilities when

viewing inconsistency in the Rashomon set as a source

of arbitrariness. We can see what factors–such as the
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distribution of prediction certainty and other dataset-

specific factors—influence the individual and overall

probability of flipping in a given Rashomon set.

C. Finally, our theoretical results allow us to understand

the size of the Rashomon set and the amount of error

tolerance used on average within the set. In particular,

we derive large-sample convergence results for the size

of the Rashomon set over 𝑁 data records, as a function

of the error tolerance 𝜖 . These results point to two take-

aways that may influence how companies approach the

search for less discriminatory models. First, the size of

the Rashomon set increases very quickly in 𝜖 . Second,

as the dataset increases in size, the average model in the

Rashomon set uses all of the error tolerance (i.e., has

accuracy 𝜖 less than the base model). Thus, a company

may want to set as high an 𝜖 value as possible, to get a

larger set of models in the Rashomon set and maximize

their opportunity to find a fairer model, but they should

expect the majority of models to use all of the error

tolerance 𝜖 .

The remainder of the paper will proceed as follows: af-

ter discussing related work in Section 2, we will outline our

theoretical setup and notation in Section 3. We then turn to

presenting our theoretical work and policy takeaways together

in the next three sections: in Section 4, we present new, effi-

cient optimization and sampling approaches to find the fairest

model and to sample a model uniformly at random from the

Rashomon set, respectively, and demonstrate how that leads

to our results showing the importance of intentionally search-

ing for fair models. Next, in Section 5, we present our results

on individual prediction flip probabilities, and how this sheds

light on arbitrariness and other fairness properties within the

Rashomon set. Finally, in Section 6, we introduce our results

on Rashomon set size and use of the error tolerance 𝜖 , and

discuss how they can inform how one might search within the

Rashomon set for fairer models. Following this, in Sections 7

and 8, we discuss how our modeling set-up relates to practi-

cal searches for less discriminatory models, and conclude the

paper.

2 Related work and Legal Background
Related Work. There has been a growing stream of work ex-

ploring the phenomenon of multiple approximately equally ac-

curate models existing for the same prediction task [5, 7, 10, 12,

23, 30, 31, 34]. Outside of fairness concerns, a series of papers

have demonstrated how model multiplicity can be harnessed

to find simpler models within the Rashomon set [13, 31, 33],

how the existence of multiple equally accurate models can

disrupt model explainability [6, 26], and how sets of equally

accurate models can differ greatly in their adversarial robust-

ness [12]. Most related to this work, a series of papers fo-

cusing on interpretability of models within the Rashomon

set have demonstrated how to search for more interpretable

models in practice for particular model classes, e.g., decision

trees [24, 35], and have provided empirical observations of

Rashomon set size for given model classes [35].

Within literature related to fairness concerns, two main

themes have emerged: the optimistic vision of using the vari-

ability within the Rashomon set to achieve fairness goals with

little impact on accuracy [3, 17, 29], and works bringing to

light concerns about the arbitrariness of individual decisions

from models with many nearly equally accurate counterparts

that differ in their predictions, explanations, or other prop-

erties [2, 9, 18, 23]. On the arbitrariness side, many works

show how models with minimal differences between them—

e.g, a change in random seed or sampling of training data—can

result in models with different predictions for certain indi-

viduals [2, 9, 18, 23]. In this line of work, perhaps the most

related is [9], who show empirically that different individuals

have radically different chances of experiencing a change in

prediction among approximately equivalent models. In our

work, we derive the exact probability that an individual will

experience a change in prediction in the Rashomon set, and

show that this probability varies as a result of a person’s un-

derlying certainty of prediction as well as dataset-dependent

factors.

On the fairness side, some of the most related works touch

on the details of searching through the Rashomon set for

less discriminatory models, or less discriminatory alternatives

(LDAs). For example, Gillis et al. [17] outline what an LDA

search may look like in practice, and develop an algorithm

for searching through the set of linear models for the least

discriminatory alternative. Perhaps the most closely related

work, by Laufer et al. [22], outlines a series of theoretical

results related to the search for less discriminatory models

within the Rashomon set, such as the computational hardness

of finding fairer models within the Rashomon set in general,

the theoretical limits of fairness within the Rashomon set,

and problems around generalizability of less discriminatory

models discovered through search. The paper largely points to

difficulties around finding a fairer model within the Rashomon

set. In contrast, on a high level, one of the major points of our

work is to showcase the importance of intentionally searching

for fairer models within the Rashomon set, by showing the

immense fairness difference between models randomly chosen

from the Rashomon set (i.e., on the basis of accuracy alone)

and the fairest models within the Rashomon set. More gener-

ally, our work presents, for the first time, general properties

about the Rashomon set itself— such as the average fairness

of models within the Rashomon set, the probability that any

individual within the Rashomon set will experience a change

in prediction across the models in the set, Rashomon set size,

the distribution of model error within the Rashomon set, and

others—and discusses how these results influence our under-

standing of not only how to search for fairer models within the

Rashomon set, but also how we think about the arbitrariness

of individual decisions within the Rashomon set.

Legal Background and LDA Search. We now discuss some

of the legal background necessary to understanding how

model multiplicity can strengthen the enforcement of civil
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rights law in AI systems— but also raises important questions

about the utility of searching through the Rashomon set for

fairer models. Multiplicity relates to the interpretation and

enforcement of civil rights law most directly through the dis-
parate impact doctrine. The disparate impact doctrine applies

in decision making systems determining access to credit, hous-

ing, and employment opportunities, stating that it is illegal

to have a decision-making system that distributes these op-

portunities across different protected demographic groups at

different rates unless it is a “business necessity”. In practice,

the disparate impact doctrine is enforced through a three-step

process. First, a plaintiff finds evidence of a decision-making

system within a company that distributes opportunities at dif-

ferent rates among demographic groups, such as a bank that

approves loans to more men than women. Next, the company

argues that this disparate impact is a business necessity—while

there is no exact description of what a business necessity is, a

general understanding is that the disparity would be necessary

for the business to function. In the case of AI decision-making

systems, this is often argued by stating that the algorithm

used has the highest accuracy possible, that this accuracy is

necessary for business function, and that the observed dis-

parity is necessary to achieve this accuracy. However, even

if this business necessity defense is accepted, if the plaintiff

can demonstrate that there is a less discriminatory alterna-
tive decision-making system that satisfies business necessity

but reduces disparate impact, the firm can be legally liable

for the discrimination they have caused, and forced to use

the less discriminatory alternative. In the case of algorithmic

systems, i.e., when the alternative decision-making system is

another algorithm, we follow [3] in calling the less discrimina-

tory alternative algorithm an LDA. Thus, companies subject

to the disparate impact doctrine are theoretically incentivized

to search for less discriminatory yet still effective models, for

fear of being held liable should another entity find a less dis-

criminatory alternative.
1
Some businesses, mostly financial

institutions, do this in practice, though domain experts note

that “there is an uneven landscape with respect to how or

whether institutions assess their models for discrimination,

and the effectiveness of existing programs” [28].

In a recent paper, Black et al. [3] outline a novel interpre-

tation of the disparate impact doctrine that puts even greater

pressure on companies to search for LDAs. They suggest that

since multiple equally accurate models exist for the same pre-

diction task–some of which will likely have different fairness

properties— the business necessity argument fails to make

sense, and instead, a company should do a proactive search

through the Rashomon set of equally accurate models in order

to ensure there is no less discriminatory model easily available.

A critical question that this raises, however, is how much of

the disparity can be reduced by optimizing over the Rashomon

1
While we are aware that Executive Order (EO) 14281 takes a stance against

disparate impact as a theory of discrimination and directs federal agencies to

de-prioritize enforcement of disparate impact liability, it is the authors’ view

that despite this EO, the written law has not changed, the threat of liability

remains, and will continue to be important in the future.

set, as compared to choosing an arbitrary model within that set

without regard to fairness. In other words, how much do we

gain by being intentional about fairness within the Rashomon

set—by looking for fair models among those that are approxi-

mately equally accurate? In this paper, we show that it is well

worth it to search for fairer models within the Rashomon set,

and that being intentional about doing so is important, as well

as other critical insights about the Rashomon set.

3 Preliminaries and Notation
In this section, we introduce the mathematical setup and

assumptions behind our theoretical results and discuss the

implications of these decisions. To define the Rashomon set

of approximately equally accurate models, we consider four

questions: (i) how do we define a model? (ii) when are models

considered distinct? (iii) how do we measure the accuracy of

a model? and (iv) if the Rashomon set consists of all models

with accuracy within 𝜖 of some “optimal” model, how is that

model defined?

Basics and Model Definition. To answer the first and

second questions above, we consider Rashomon sets in the

finite-sample case, i.e., assuming we have a fixed number of

data records 𝑁 . Later in the paper, we present theoretical

results in the large-sample case, as 𝑁 goes to infinity.

Additional preliminaries and assumptions necessary for those

results are presented in Section 5.1. Let 𝐷𝑁 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩
be a set of 𝑁 data records drawn i.i.d. from distribution 𝐷 .

We focus on the binary classification setting, where each

data record 𝑑𝑖 = (𝑥𝑖 , 𝑦𝑖 ), 𝑥𝑖 = {𝑥𝑖 𝑗 } represents a set of input
features (including a binary sensitive attribute which we

denote as 𝐴𝑖 ), and 𝑦𝑖 is a binary outcome variable. Thus

our models are binary classification models, which predict

an outcome in {0, 1}. We define a predictive model by its

classification 𝑦𝑖 = 𝑓 (𝑥𝑖 ) for each data record 𝑑𝑖 , that is, by its

mapping from input features 𝑥𝑖 to decisions {0, 1} on the data

𝐷𝑁 . Thus, there are 2
𝑁

distinct models possible for a set of

data records of size 𝑁—note that this is the exhaustive set of

all possible mappings defined over the 𝑁 data records. Thus
we term the Rashomon set 𝑅𝑁 (𝜖) of approximately
equally accurate models within this set of 2𝑁 models
as the largest possible Rashomon set for error tolerance
𝜖, because it places no restrictions on the model class,
smoothness or consistency of predictions.

Model Accuracy and Optimal Model. Our answers to the

third and fourth questions above rely on the concept of a

Bayes-optimal classifier 𝑓opt (𝑥𝑖 ). This model is assumed to

have access to the true probabilities 𝑝𝑖 = Pr(𝑦 = 1 | 𝑥 = 𝑥𝑖 )
but not the observed labels 𝑦𝑖 . In other words, the Bayes-

optimal classifier has access to the underlying probability

that given the available input information, an individual

data record will have true outcome 𝑦 = 1 in the classifica-

tion problem (e.g., the probability that an individual will re-

pay a loan based on their application), but not the actual
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outcome (whether or not that individual defaulted on the

loan). The Bayes-optimal classifier predicts 𝑓opt (𝑥𝑖 ) = 1 if

𝑝𝑖 > 0.5, and 𝑓opt (𝑥𝑖 ) = 0 otherwise, and has the highest

expected classification accuracy, E[max(𝑝𝑖 , 1 − 𝑝𝑖 )], among

all classifiers using the same set of features 𝑥 . Thus, given

the data records 𝐷𝑁 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩ and the correspond-

ing true probabilities 𝑃𝑁 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑁 ⟩, we define the

Rashomon set 𝑅𝑁 (𝜖) for error tolerance 𝜖 as the set of all

models with expected classification accuracy greater than or

equal to E[max(𝑝𝑖 , 1 − 𝑝𝑖 )] − 𝜖 .
This definition has the advantage of not allowing

models to overfit the observed data, since expected error

is calculated as a function of the underlying probability 𝑝𝑖
of an input 𝑥 having an outcome of 1. If we instead used

the observed labels 𝑦𝑖 and computed the empirical accuracy

E[1{𝑓 (𝑥𝑖 ) = 𝑦𝑖 }], a non-Bayes-optimal model (e.g., a classifier

trained on the test data 𝐷𝑁 ) could obtain higher empirical

accuracy than the Bayes-optimal model, e.g., by predicting

𝑓 (𝑥𝑖 ) = 1 for a data record that was a priori unlikely to have

𝑦𝑖 = 1 (i.e., 𝑝𝑖 < 0.5) but just happens to have 𝑦𝑖 = 1 in this

instance. We discuss generalizability further in Section 7

below.

Defining Other Models in The Rashomon Set. To more

easily determine which of the 2
𝑁

possible models (mappings

of each 𝑑𝑖 , 𝑖 ∈ {1, . . . , 𝑁 }, to {0,1}) belong to the Rashomon

set 𝑅𝑁 (𝜖), we represent each possible model by a binary flip
vector representing its changes in prediction from the Bayes-

optimal model. This allows us to easily tell which models are

in the Rashomon set, since we can easily calculate a model’s

error difference from the Bayes-optimal model using its flip

vector. In particular, we define a flip vector 𝜃 ∈ {0, 1}𝑁 , where

𝜃𝑖 = 1 if 𝑓 (𝑥𝑖 ) ≠ 𝑓opt (𝑥𝑖 ), and 𝜃𝑖 = 0 if 𝑓 (𝑥𝑖 ) = 𝑓opt (𝑥𝑖 ). The
Bayes-optimal model 𝑓opt (·) has a corresponding flip vector

𝜃0 consisting of 𝑁 zeros. We can then compute the accuracy

of any model 𝑓 (·) with corresponding flip vector 𝜃 , which we

denote as 𝑎𝑐𝑐 (𝜃 ), as 𝑎𝑐𝑐 (𝜃 ) = 𝑎𝑐𝑐 (𝜃0) − 1

𝑁

∑
𝑖=1...𝑁 𝜃𝑖 |2𝑝𝑖 − 1|.

This follows from the fact that the Bayes-optimal classifier’s

probability of predicting 𝑦𝑖 correctly is max(𝑝𝑖 , 1 − 𝑝𝑖 ), while
the flipped prediction (𝜃𝑖 = 1) would be correct with proba-

bility min(𝑝𝑖 , 1 − 𝑝𝑖 ), leading to a difference of |2𝑝𝑖 − 1|. We

thus define the weight𝑤𝑖 corresponding to probability 𝑝𝑖 as

𝑤𝑖 = |2𝑝𝑖 − 1|. These weights can be thought of as the Bayes-

optimal classifier’s confidence in each positive or negative

prediction, and range from 0 (for 𝑝𝑖 = 0.5) to 1 (for 𝑝𝑖 = 0 or

𝑝𝑖 = 1). Let𝑊𝑁 = ⟨𝑤1,𝑤2, . . . ,𝑤𝑁 ⟩ be the weight vector for
data records ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩, and then we can write:

𝑎𝑐𝑐 (𝜃 ) = 𝑎𝑐𝑐 (𝜃0) −
𝜃 ·𝑊𝑁

𝑁
.

Finally, for a given error tolerance 𝜖 , we define the largest

possible Rashomon set 𝑅𝑁 (𝜖) as all flip vectors 𝜃 ∈ {0, 1}𝑁
with 𝑎𝑐𝑐 (𝜃 ) ≥ 𝑎𝑐𝑐 (𝜃0) − 𝜖 , and thus:

𝑅𝑁 (𝜖) =
{
𝜃 ∈ {0, 1}𝑁 :

𝜃 ·𝑊𝑁

𝑁
≤ 𝜖

}
.

The critical takeaway here is that we can enumerate
all of the models in the Rashomon set by checking to
see which of the 2𝑁 possible flip vectors fall within the
accuracy constraint 𝜖. But since it would be too costly in

practice to do this for all 2
𝑁

flip vectors, we show below how

to randomly sample (efficiently) from the Rashomon set—and

how to find the fairest model.

4 The Importance of Intentional Fairness
A natural question that may come upwhen considering search-

ing for fairer models within the Rashomon set is—is it worth

it? While it is clear that intentionally searching for fair mod-

els without a strict bound on accuracy leads to large fairness

gains, it is not obvious a priori that this holds true within sets

of models that are approximately equally accurate. What if the

fairness of all the models in the Rashomon set is more or less

the same, and a randomly sampled model—akin to selecting a

model solely on the basis of accuracy and not paying attention

to fairness—is just as fair as the fairest ones within the set? We

show that this is definitely not the case— the fairness differ-

ence between the average, or randomly sampled, model within

the Rashomon set and the fairest models can be very large. We

also show experimentally that how you look for fairer models

can influence your success—while searching directly for the

fairest model is always the most effective method, whether

or not you can reach significantly fairer models by randomly

sampling models in the Rashomon set is dataset-dependent,

and also depends on how you search.

To compare what we gain by being intentional or arbitrary

about fairness within the Rashomon set, we must show both

how to draw randomly from the Rashomon set and how to

find the fairest model. We present novel, computationally
efficient approaches for (i) optimizing different fairness met-

rics over the Rashomon set, as described in Section 4.1; and (ii)

sampling models uniformly at random from the Rashomon set,

as described in Section 4.2. We also describe a simple baseline

for comparison in Section 4.3.1: restricting the model class

(here we assume penalized logistic regression models) and

learning models from that class with different sources of ran-

dom variation. We compare the fairness of the models found

by the optimization, uniform sampling, and restricted model

class approaches in Section 4.3, and explore policy takeaways

in Section 4.4.

4.1 Optimizing fairness over the Rashomon
set

Despite computational hardness results for finding the fairest

model in the Rashomon set [22], we show that under certain

conditions, it is possible to find the fairest model within the

Rashomon set 𝑅𝑁 (𝜖) defined on 𝑁 data records in log-linear

time, O(𝑁 log𝑁 ). In particular, when we are concerned with

mitigating demographic disparity (i.e., equalizing the positive

prediction rate or PPR) between two groups, we show that

we can find the exact fairest model within the Rashomon set.

For equalizing false positive rate (FPR) or true positive rate
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Figure 1: Disparity in positive prediction rate for the German, Adult, and Health datasets, as a function of the error
tolerance 𝜖. Comparison of methods for optimizing PPR (Section 4.1.1), uniform random sampling (Section 4.2), and
sampling linear models (Section 4.3.1) over the Rashomon set 𝑅𝑁 (𝜖).

(TPR) between two groups, we can find a model which is

guaranteed to have error rate disparity no more than O( 1

𝑁
)

higher than the fairest model. As we show in Section 4.3, using

these algorithms on three real-world datasets, we see that in

practice, it is often possible to completely eradicate disparities

by searching within the Rashomon set for very small 𝜖— less

than half of a percent in many cases.

For PPR, FPR, and TPR, we can express the optimization

of the fairness criterion over flip vectors 𝜃 , subject to the

constraint that 𝜃 is in the Rashomon set 𝑅𝑁 (𝜖), as a knapsack
problem, where each data record 𝑑𝑖 has a weight𝑤𝑖 = |2𝑝𝑖 − 1|
corresponding to the error incurred by its flip, and a value

𝑣𝑖 corresponding to how much it reduces disparity. A flip

occurring, i.e., 𝜃𝑖 = 1, corresponds to the inclusion of element

𝑖 in the knapsack, adding𝑤𝑖 to the total weight and 𝑣𝑖 to the

total value. The 0-1 knapsack problem is then the constrained

optimization with capacity 𝑁𝜖: max

∑
𝑖 𝜃𝑖𝑣𝑖 subject to 𝜃𝑖 ∈

{0, 1} and ∑
𝑖 𝜃𝑖𝑤𝑖 ≤ 𝑁𝜖 .

We note that concurrent work by Laufer et al. [22] formu-

lates the optimization of fairness over the Rashomon set as

a subset sum problem (closely related to the knapsack prob-

lem) and uses this equivalence to show that their problem (i)

is NP-hard to solve in general, and (ii) can be approximated

in O(𝑁 3) time. While the knapsack problem is also NP-hard

in general, we present efficient O(𝑁 log𝑁 ) solutions for the
special cases below.

4.1.1 Optimizing for statistical parity. We present an efficient,

O(𝑁 log𝑁 ) knapsack approach to find the exact fairest model

that minimizes PPR disparity over the Rashomon set 𝑅𝑁 (𝜖),
as described in detail in Appendix A.1, Algorithm 1. The goal

of this algorithm is to find the individual predictions to flip

(setting 𝜃𝑖 = 1) to reduce disparity, until we either use up the

entire error tolerance 𝜖 or completely remove the disparity.

Intuitively, we want to flip individuals who will increase the

error as little as possible (low weights 𝑤𝑖 ) and reduce the

disparity as much as possible (high values 𝑣𝑖 ).

The key idea for making this efficient is that there are only

two distinct values of 𝑣𝑖 : for instance, if group 𝐴 has a higher

positive prediction rate, flipping the prediction of an indi-

vidual in group 𝐴 from 1 to 0 reduces the disparity by
1

|𝐴 | ,
flipping the prediction of an individual in group 𝐵 from 0 to

1 reduces the disparity by
1

|𝐵 | , and other flips would increase

disparity. In this case, the optimal knapsack solution is to

flip the predictions of the 𝑘𝐴 lowest-weight individuals with

𝑓opt (𝑥𝑖 ) = 1 from group 𝐴 and the 𝑘𝐵 lowest-weight individ-

uals with 𝑓opt (𝑥𝑖 ) = 0 from group 𝐵. We can then find the

optimal values of 𝑘𝐴 and 𝑘𝐵 (that minimize disparity while

satisfying the constraint on accuracy) through a linear-time,

incremental search, as shown in Appendix A.1, Algorithm 1,

and thus the run time is dominated by the O(𝑁 log𝑁 ) sorting
of items by weight.

4.1.2 Optimizing for error rate balance. We present an effi-

cient, O(𝑁 log𝑁 ) fractional knapsack approach to find the

model that minimizes FPR or TPR disparity over the Rashomon

set 𝑅𝑁 (𝜖), to within O( 1

𝑁
) of the optimal disparity, as de-

scribed in detail in Appendix A.2, Algorithm 2. Again, the goal

of this algorithm is to find the lowest-cost individual predic-

tions to flip to reduce disparity, until we either use up the

entire error tolerance 𝜖 or completely remove the disparity.

In this case, however, there are more than two distinct val-

ues of 𝑣𝑖 (how much flipping an individual reduces disparity)

so the PPR solution described above does not work. Instead we

use an approximation, the fractional knapsack solution, which

flips individuals’ predictions (setting 𝜃𝑖 = 1) in descending

order of the ratio of their value 𝑣𝑖 (the amount they reduce

the model’s disparity) to their weight 𝑤𝑖 (the amount they

increase the model’s error). This continues until an individual

will not “fit” in the knapsack since maximumweight (i.e., error

threshold) is reached. Then, a “fraction” of this individual is

added to the knapsack. In our case, we cannot flip a fraction of

an individual— thus, rather than adding the fractional element,

we show that it would reduce disparity by an amount 𝜃𝑖𝑣𝑖 that

is O( 1

𝑁
). Since the fractional knapsack solution

∑
𝜃𝑖𝑣𝑖 is an

upper bound on the 0-1 knapsack solution, we know that our

solution (excluding the fractional element) reduces disparity

to within O( 1

𝑁
) of the optimal disparity.
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4.2 Sampling models uniformly at random
from the Rashomon set

We now turn to showing how we can sample models uni-

formly from the Rashomon set, which shows us what typical

models from the Rashomon set look like. While we could just

sample random flip vectors and keep the ones that are in the

Rashomon set, this approach will be ineffective: as we discuss

in Appendix B, the vast majority of flip vectors will not be in

the Rashomon set. Instead, we propose a new approach based

on Gibbs sampling [15] to sample models uniformly from the

Rashomon set. This approach, described in Appendix B, Algo-

rithm 3, is computationally efficient, requiring O(𝑁 ) time per

sample.

The key idea of Gibbs sampling is to exploit knowledge

of conditional distributions even when the full distribution is

unknown. In our setting, while we do not know the joint dis-

tribution of flip probabilities 𝜃 for all records in the dataset, we

can easily compute the chance that a data record 𝑑𝑖 will flip

(𝜃𝑖 = 1) conditional on which other data records are flipped

(𝜃−𝑖 ). We show in Appendix B that there are only two possi-

bilities: if the flip vector 𝜃𝑖=1 (with 𝜃𝑖 = 1 and all other flips

the same as 𝜃−𝑖 ) is in the Rashomon set, then there is a 50/50

chance that 𝜃𝑖 = 1, and otherwise we know 𝜃𝑖 = 0. We can

then redraw 𝜃𝑖 with the corresponding probability (either 0.5

or 0) of being 1. Given this simple and computationally effi-

cient conditional sampling step, our Gibbs sampling approach

starts with the zero vector 𝜃0, which is guaranteed to be in the

Rashomon set, and iteratively samples 𝜃𝑖 (given the current

values of 𝜃−𝑖 ) for all 𝑁 data elements. To ensure uncorrelated

samples from the joint distribution, we take one sample ev-

ery 10 iterations (where one iteration includes resampling

all 𝑁 elements of 𝜃 in randomly permuted order), after an

initial burn-in period of 500 iterations. For each dataset and

each value of 𝜖 considered, we run 10,000 iterations of Gibbs

sampling, resulting in 950 samples.

4.3 Experiments on real data
We now describe our experimental design for comparing ran-

domly sampled and optimally fair models within Rashomon

sets on real data, showing the importance of intentional fair-

ness. Throughout this paper, we present experimental results

on three real-world datasets that are commonly used as bench-

marks in the fair machine learning literature: German Credit

(“German”), Adult, and Heritage Health (“Health”). Details of

all three datasets are described in Appendix D.

As noted above, the Bayes-optimal probabilities 𝑝𝑖 are un-

known for these real-world datasets, but can be well-estimated

using sufficient training data. Since we wish to compare the

methods over all 𝑁 data records (𝑁 = 1, 000 for German,

𝑁 = 46, 443 for Adult, and 𝑁 = 184, 308 for Health), we per-

formed 5-fold cross-validation to estimate these probabilities.

For each held-out 20% of the data, we trained a model
ˆ𝑓opt (𝑥)

using the remaining 80% of the data to approximate the Bayes-

optimal model 𝑓opt (𝑥), and used its predicted probabilities 𝑝𝑖
to estimate the Bayes-optimal probabilities 𝑝𝑖 for that fold.

More precisely, we trained logistic regression models on each

dataset that matched typical (maximal) accuracies reported in

the wider literature. To check the robustness of our results to

the choice of model used for estimation of 𝑝𝑖 , we re-ran all ex-

periments using the estimated probabilities 𝑝𝑖 from XGBoost

models learned using 5-fold cross-validation (Appendix I), and

found no notable differences.

To test the difference between randomly sampling from the

Rashomon set and directly optimizing for the fairest model

within the set on real data, for each dataset and each 𝜖 value,

we compared the model found by optimizing the desired fair-

ness metric (PPR, TPR, or FPR) over the Rashomon set 𝑅𝑁 (𝜖),
as described in Section 4.1, to the distributions of models found

by (i) uniform random sampling over all models (flip vectors)

𝜃 ∈ 𝑅𝑁 (𝜖), as described in Section 4.2, and (ii) a simple base-

line approach, sampling penalized logistic regression models

(and corresponding flip vectors 𝜃 ) from 𝑅𝑁 (𝜖), as described
in Section 4.3.1 below. For each distribution of samples, we

report the mean and 95% interquantile range, i.e., the 2.5 and

97.5 percentiles of the distribution.

We compare these approaches using three fairness criteria:

statistical parity, or balanced positive prediction rate (PPR),

balanced false positive rate (FPR), and balanced true posi-

tive rate (TPR). Disparities with respect to all three criteria

were measured between the protected class (𝐴𝑖 = 𝑎) and non-

protected class (𝐴𝑖 ≠ 𝑎), using the sensitive attribute value for

each dataset described in Appendix D. All three measures of

disparity for a given flip vector 𝜃 were computed using the

(estimated) Bayes-optimal probabilities 𝑝𝑖 and corresponding

weights𝑤𝑖 , rather than the observed outcomes𝑦𝑖 , as described

in Appendix A. Results for PPR disparity are shown in Fig-

ure 1, and results for FPR and TPR disparity are shown in

Appendix F, Figures 5 and 6.

Finally, to demonstrate that our results are robust to using

different training sets (drawn from the same distribution) to

learn the Bayes-optimal classifier, and that our optimal and

sampled models generalize to previously unseen data, we per-

form an additional experiment in Appendix E, using separate

partitions of the Adult dataset to estimate the Bayes-optimal

probabilities, to learn parameter values for random sampling

and class-specific decision thresholds for optimization, and to

evaluate disparity respectively. Results are shown in Appen-

dix E, Figure 4 and Appendix I, Figure 17.

4.3.1 Baseline approach: sampling linear models from the
Rashomon set. As a simple baseline for comparison, which

might be representative of how a company would typically

choose a predictive model for deployment, we assume that

a binary classifier is learned from a separate, large training

dataset, where the model class is chosen a priori and therefore
the set of possible flip vectors 𝜃 is restricted to members of that

class. In particular, we assume that an 𝐿2-penalized logistic

regression model is learned. For consistency (since our experi-

ments use all 𝑁 data records), we use 𝑘-fold cross-validation

and compute all metrics using predictions (for a given data

record 𝑑𝑖 ) made using a model learned from the other 𝑘 − 1
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folds (excluding the fold that contains 𝑑𝑖 ). Moreover, since

a company would typically explore the space of parameter

values and choose a model with high accuracy, we learn penal-

ized logistic regression models with different sources of ran-

dom variation, evaluate their accuracy, and keep those models

which are in the Rashomon set. More precisely, to sample over

the Rashomon set of 𝐿2-penalized logistic regression models,

for a given dataset and value of 𝜖 ∈ {0.001, 0.002, . . . , 0.02}, we
sample 1,000 models, where for each model we randomly sam-

ple the number of cross-validation folds 𝑘 ∈ {2, 3, . . . , 10}, the
logistic regression solver, and the amount of 𝐿2 penalization

𝐶 ∈ {0.001, 0.01, 0.1, 1.0, 10, 100}, and then fit the penalized

logistic regression model using scikit-learn. Given the model’s

predictions, we compute the flip vector 𝜃 and include the sam-

pled model in the Rashomon set if
𝜃 ·𝑊𝑁

𝑁
≤ 𝜖 .

4.4 Takeaways for policy and practice
• A randomly sampled model within the Rashomon
set is nowhere near as fair as the fairest model at
any given 𝜖. As we can see from the gap between the

blue and green lines in Figure 1, searching intentionally

for the fairest model within the Rashomon set leads to

much fairer models at the same 𝜖 than randomly sam-

pling within the set. This shows us that a random model

from the Rashomon set— one selected on the basis of

accuracy alone— will have an extremely low chance of

being the fairest, or even one of the fairer, models within

the set. This in turn underscores the necessity of explic-

itly searching for fairer models before deployment– i.e.,

an LDA search.

• In practice, it is often possible to completely eradi-
cate disparities by searching within the Rashomon
set for quite small 𝜖 . As we can see in Figure 1, for Ger-

man Credit and Health datasets, a model exists that com-

pletely eradicates demographic disparity in the dataset

for 𝜖 < 0.005, i.e., half a percentage point of accuracy

loss. While the Adult dataset requires very slightly more

than 2% accuracy loss to fully eradicate the disparity, this

is still a small enough gap considered to be acceptable

based on case studies of LDA searches [8].

• Using repeated random sampling as a search
strategy– i.e., looking across many models selected
on the basis of accuracy and searching for the fairest
among them—can give mixed results.While our theo-

retical setup does not map onto how LDA searches would

be done in practice— since we search through all the pos-

sible mappings of input to output for a dataset instead of

generating actual parametric models—loosely, repeated

random sampling corresponds to an LDA search that

does not directly use protected attribute information un-

til after all the models are trained, i.e., only as a step

to evaluate models and choose among them post-hoc.

Our optimal search method, on the other hand, corre-

sponds to an LDA search method that uses some direct

minimization of disparities across demographic groups

during the model creation process, whether that be in hy-

perparameter tuning, optimization, or other parts of the

pipeline. There is disagreement in the legal literature as

to whether and to what extent interventions for disparity

reduction across demographic groups that use protected

class information are legally permissible [16, 19, 21]. Our

experimental results show that we gain a lot by being

able to directly intervene using protected attributes—

however, repeated random sampling without direct use

of protected attributes can in some cases be an effective

technique as well, even if not as effective as direct in-

tervention. In particular, we see that the German Credit

results allow for a large reduction in disparity. At 𝜖 = .02

(i.e., 2% error tolerance from the optimal model), the total

PPR disparity could be reduced by 46% compared to the

Bayes-optimal model by reaching the 2.5 percentile of

the PPR disparity distribution, which could be achieved

in practice by taking the fairest (lowest PPR disparity)

of 40 samples from the Rashomon set. In addition, note

that while random sampling over the entire Rashomon

set of all possible mappings of 𝑥 to 𝑦 is not particularly

effective at reducing disparity in the Health dataset, only

searching within linear models is more effective–this is

promising given that in practice, LDA searches are typi-

cally done within various model classes and not across

all possible mappings. Divergence in the effectiveness of

different random sampling methods based on model class

is an interesting phenomenon that we look forward to

studying in future work.

5 Understanding Individual Flip
Probabilities

In this section, we present our results showing how to compute

expected flip probabilities for every record 𝑑𝑖 across all models

in the Rashomon set, i.e., the chance that a given individual

will experience a change in prediction from the Bayes-optimal

model in a randomly sampled model in the Rashomon set.

Knowing flip probabilities allows us to explore the arbitrari-
ness that arises from the Rashomon set: many authors have

pointed to the phenomenon of predictive multiplicity [23],

where an individual can have different outcomes among differ-

ent models in a Rashomon set, as a form of inequity through

arbitrariness [2, 23]. By seeing the flip probabilities of any in-

dividual in the Rashomon set, we can see who is more and less

susceptible to potentially arbitrary changes in outcome—and

as we discuss in Section 5.3, group-level disparities across who

is likely to experience a change in prediction.

5.1 Preliminaries and assumptions for our
large-sample theoretical results

Throughout Sections 5 and 6, we present various theoretical

results, and the corresponding takeaways for policy and prac-

tice, about individual flip probabilities, Rashomon set size, and

use of error tolerance, in the large-sample limit where the

number of data records 𝑁 → ∞. For full statements and
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proofs of all theorems, see Appendix C. In this subsection,

we present the notation needed to understand the theoreti-

cal results, along with the key assumptions that these results

depend on.

As in Section 3, we assume data records 𝑑𝑖 = (𝑥𝑖 , 𝑦𝑖 )
drawn i.i.d. from distribution 𝐷 , with corresponding Bayes-

optimal probabilities 𝑝𝑖 = Pr(𝑦 = 1 | 𝑥 = 𝑥𝑖 ), and
weights 𝑤𝑖 = |2𝑝𝑖 − 1|. Let ⟨𝑑1, 𝑑2, . . .⟩ denote an infinite

sequence of data records drawn i.i.d. from 𝐷 , and let 𝐷𝑁

denote records ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩, with corresponding Bayes-

optimal probabilities 𝑃𝑁 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑁 ⟩ and weights

𝑊𝑁 = ⟨𝑤1,𝑤2, . . . ,𝑤𝑁 ⟩. Moreover, let𝑊 be the distribution

of weights for data records drawn i.i.d. from 𝐷 ,𝑤𝑖 ∼𝑊 for all

𝑖 , with probability density function (pdf) 𝑓 (𝑤).
Let 𝑅𝑁 (𝜖) denote the Rashomon set of models for error

tolerance 𝜖 defined over data records ⟨𝑑1, . . . , 𝑑𝑁 ⟩. We rep-

resent each model in 𝑅𝑁 (𝜖) by a length-𝑁 binary flip vec-
tor 𝜃 ∈ {0, 1}𝑁 , where 𝜃𝑖 = 1 if 𝑓 (𝑥𝑖 ) ≠ 𝑓opt (𝑥𝑖 ), 𝜃𝑖 = 0

if 𝑓 (𝑥𝑖 ) = 𝑓opt (𝑥𝑖 ), and the Bayes-optimal classification

𝑓opt (𝑥𝑖 ) = 1{𝑝𝑖 > 0.5}. As shown in Section 3, a flip vector

𝜃 ∈ 𝑅𝑁 (𝜖) if and only if
𝜃 ·𝑊𝑁

𝑁
≤ 𝜖 .

Key assumptions underlying the theoretical results below
are threefold: (1) the number of data records 𝑁 is large; (2)

the distribution of weights 𝑓 (𝑤) is continuous and positive

on the interval [0,1]; and (3) 𝜖 is sufficiently small, less than

half of the average weight. We observe that these assump-

tions are reasonable for all three datasets considered: (1) 𝑁

is large enough (ranging from 𝑁 = 1, 000 for German Credit

to 𝑁 = 184, 308 for Health) for the finite-sample results to be

very close to their large-sample limits; (2) there is enough vari-

ability in the weights𝑤𝑖 to assume that they are drawn from

a continuous, positive distribution; and (3) average weights

for all three datasets range from 0.50 (German Credit) to 0.74

(Health), while the 𝜖 values we consider for our Rashomon sets

are at most 0.02. Nevertheless, the assumptions might be vio-

lated for very small datasets (insufficient 𝑁 ); low-dimensional

datasets with discrete-valued predictor variables (insufficient

variability in𝑤𝑖 ); or datasets where the prediction is extremely

uncertain, 𝑝𝑖 ≈ 0.5 and thus 𝑤𝑖 ≈ 0, for many data records

(average weight too small for the range of 𝜖 considered).

5.2 Individual flip probabilities
In order to reason about the arbitrariness of individual pre-

dictions, we define the flip probability 𝑞𝑁,𝑖 for a given data

record 𝑑𝑖 , 𝑖 ∈ {1, . . . , 𝑁 }, as the proportion of models in the

Rashomon set 𝑅𝑁 (𝜖) for which the model prediction 𝑓 (𝑥𝑖 ) dif-
fers from the Bayes-optimal prediction 𝑓opt (𝑥𝑖 ) = 1{𝑝𝑖 > 0.5},
or equivalently, the proportion of flip vectors for which 𝜃𝑖 = 1:

𝑞𝑁,𝑖 =
|𝜃 ∈ 𝑅𝑁 (𝜖) : 𝜃𝑖 = 1|

|𝑅𝑁 (𝜖) | .

As 𝑁 → ∞ for a given weight distribution𝑊 and error toler-

ance 𝜖 , flip probabilities become pairwise independent (Appen-

dix C, Lemma C.5), and the flip probability 𝑞𝑖 = lim𝑁→∞ 𝑞𝑁,𝑖

depends only on the weight𝑤𝑖 . Thus we define the asymptotic

flip probability function 𝑞(𝑤) as the flip probability 𝑞𝑖 corre-

sponding to a data record 𝑑𝑖 with weight 𝑤𝑖 = 𝑤 . We then

prove the following theorem (Appendix C, Theorem C.12):

Theorem 5.1 (Asymptotic flip probabilities). Given the
preliminaries and assumptions above, as 𝑁 → ∞, the flip prob-
ability corresponding to a data record with weight 𝑤𝑖 = 𝑤

converges to

𝑞(𝑤) = 1

1 + exp(𝐶 (𝜖)𝑤) ,

where 𝐶 (𝜖) = 𝑔−1 (𝜖) and 𝑔(𝐶) =
∫
1

0

𝑤𝑓 (𝑤 )
1+exp(𝐶𝑤 ) 𝑑𝑤 .

As a consequence of this theorem, for a Rashomon set

𝑅𝑁 (𝜖) with 𝑁 large, we can obtain the flip probabilities

for each individual, which we outline in Appendix C, The-

orem C.12. Computing these flip probabilities provides us with

multiple pieces of valuable information about the Rashomon

set. First, we can use the flip probabilities to exactly (in the

large-sample limit) and efficiently compute the average over
the entire Rashomon set of any metric (e.g., PPR, FPR, or TPR

disparity) which can be decomposed as a linear function of

the individual predictions, as shown in Appendix G. This can

help us better understand, without the need for computation-

ally expensive random sampling, how much fairness we ex-

pect for a model drawn randomly from the Rashomon set, i.e.,

whether or not we will arrive at a reasonably fair model by

optimizing solely for accuracy and not considering fairness.

Second, the flip probabilities 𝑞𝑁,𝑖 are related to the size of

the Rashomon set (Appendix C, Lemma C.4), and thus, as we

show in Section 6.1, the asymptotic size of the Rashomon set

as 𝑁 → ∞ can be computed from the quantity 𝐶 (𝜖) defined
in Theorem 5.1.

Most importantly, however, understanding flip probabili-

ties helps us reason about arbitrariness of prediction in the

Rashomon set as we can see who is likely to be more and less

susceptible to potentially arbitrary changes in outcome. More

precisely, the flip probability 𝑞𝑁,𝑖 for a given individual is the

probability that their prediction will differ from that of the

Bayes-optimal model, across all models in the Rashomon set,

and we note that 0 < 𝑞𝑁,𝑖 <
1

2
for all 𝑖 ∈ {1, . . . , 𝑁 }. There-

fore, individuals with 𝑞𝑁,𝑖 ≈ 0 have consistent predictions

across the Rashomon set, while individuals with 𝑞𝑁,𝑖 0 0 may

receive either classification depending on which model hap-

pens to be drawn, i.e., their prediction is arbitrary. While we

expect individuals with low-confidence Bayes-optimal proba-

bilities 𝑝𝑖 ≈ 1

2
to receive arbitrary predictions, and individuals

with high-confidence probabilities 𝑝𝑖 ≈ 0 or 𝑝𝑖 ≈ 1 to receive

consistent predictions, the question remains: how far from

the decision boundary 𝑝𝑖 =
1

2
must an individual be for their

predictions to be consistent? We see in Figure 2(left) that the

answer to this question differs across datasets and varies with

𝜖 .

In addition, understanding individual flip probabilities

within the Rashomon set can shed light on another source

of inequity: certain demographic subgroups may have sys-

tematically higher flip probabilities than others, meaning that
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they are more likely to be exposed to arbitrary, inconsistent

predictions, with potentially less reliable explanations for the

outcomes they receive [5].
2
We note that this is a separate

form of group-level unfairness from the typical measures of

statistical parity and error rate balance, since two groups may

have equal positive prediction rates but very different flip

probabilities (see Appendix G for an example).

5.3 Experiments on real data
As in previous sections, we perform our experiments on the

German Credit, Adult, and Health datasets. We first calculate

the flip probabilities for all individuals in each dataset for

varying values of 𝜖 , and use these flip probabilities to perform

four experiments.

First, we graph the overall (population average) flip prob-

ability for all three datasets for models sampled uniformly

at random from the Rashomon set 𝑅𝑁 (𝜖) as a function of 𝜖 ,

compared to sampling linear models from the Rashomon set

(Section 4.3.1) and the models that optimize PPR, FPR, and

TPR over the Rashomon set (Section 4.1). These graphs are

shown in Appendix G, Figure 7.

Second, we use the flip probabilities to calculate the average

fairness of the Rashomon set as a function of 𝜖 for all three

datasets. We display the output in Appendix G, Figure 8. These

differ from the results in Section 4.3 since these are the average

fairness of models across the entire Rashomon set, not only

from a sample of models, but we note the close correspondence

between the sampled and entire-Rashomon-set results.

Third, in Figure 2(left) we turn to displaying empirical re-

sults about arbitrariness within the Rashomon set: we show

how the chance of an individual experiencing a flip in their

predictions in the Rashomon set (as a function of how close

their Bayes-optimal probability 𝑝𝑖 is to the threshold of 0.5)

differs across different datasets and values of error tolerance 𝜖 .

To do this, we compute the value of𝐶 (𝜖) for each dataset and 𝜖 ,
and then compute the flip probability 𝑞(𝑤) = 1

1+exp(𝐶 |2𝑝−1 | )
for a fine grid of 𝑝 values.

Fourth, we show the disparities in average flip probability

in the three datasets between protected and non-protected

groups as a function of 𝜖 , suggesting that some groups have

systematically higher exposure than others to arbitrary, incon-

sistent decisions. We compare uniform sampling to the models

that optimize PPR, FPR, and TPR over the Rashomon set (as

described in Section 4.1). Graphs for the German, Adult, and

Health datasets are shown in Figure 2(right) and Appendix G,

Figure 9.

5.4 Takeaways for policy and practice
• Even a small error tolerance leads to a lot of indi-
vidual flips. We observe that, for uniform sampling, the

2
As a caveat, these flip probabilities will not necessarily translate to who is most

likely to get flipped in any given search for a less discriminatory algorithm (LDA),

as LDA searches will typically restrict the class of models prior to searching,

and thus will not exactly match random sampling from within the Rashomon

set. However, it does let us understand who is most likely to get flipped in the

largest possible Rashomon set 𝑅𝑁 (𝜖 ) .

overall flip probability tends to be substantially higher

than the error tolerance 𝜖 . In Figure 2(center), for 𝜖 = .02,

we see that 12%, of predictions are flipped on average for

the German dataset. In Appendix G, Figure 7, we see that

this trend continues, with Adult and Health having 7%

and 5% respectively. The overall flip probability for models

that optimize fairness tends to be higher than the overall

flip probability for uniform sampling, for lower 𝜖 values

where the optimization method is not able to remove all

of the disparity. Once the disparity is removed, the flip

probability for optimal models levels off, while the flip

probability for uniform sampling continues to increase

with 𝜖 .

• Increasing error tolerance 𝜖 not only increases the
number of flips that occur, butwhich individuals are
likely to get flipped: more “certain” cases get flipped
with higher 𝜖. As 𝜖 increases, individuals with true prob-

ability 𝑝𝑖 further and further away from a 50/50 coin toss,

i.e., more “certain” cases of a positive or negative outcome

get flipped. For example, as we see in Figure 2(left), in the

German Credit dataset at low 𝜖 (red line) everyone who

has a predicted Bayes probability below 0.4 or above 0.6

has near-zero chance of experiencing a flip in prediction,

but at higher 𝜖 (brown line), we see that individuals with

𝑝𝑖 between 0.1 and 0.9 have a non-negligible chance of

getting flipped. Some prior work has suggested the nor-

mative view that individuals with higher certainty in their

outcome should be flipped less often [2]—to the extent

that this is true in certain contexts, it may be important to

balance the flip probability over a threshold of certainty

with the need to reduce outcome-based unfairness. We

also see large differences in flip probabilities between
datasets: for the same 𝜖 value, an individual with a given

true probability 𝑝𝑖 is much less likely to be flipped for

German Credit as compared to Adult or Health.

• Asymmetries in the underlying model—e.g. un-
even distributions of predicted probabilities across
groups—lead to disparities in flip probabilities across
demographic groups. As we can see from Figure 2(right)

and Appendix G, Figure 9, all three datasets have dispar-

ities in their average flip probabilities, though it is not

always the disadvantaged group with a higher flip proba-

bility. Since the flip probability for uniform random sam-

pling is a function of an individual’s weight within the

data–i.e., their distance from the threshold probability of

0.5–the individuals who are flipped more often are those

for whom the Bayes-optimal model is less certain of its

prediction. In the Adult dataset, it is the advantaged group

that has a higher density of true probabilities 𝑝𝑖 around

0.5, meaning that they are more likely to get flipped. In

the German Credit and Health datasets, the disadvantaged

group has a higher density of 𝑝𝑖 ≈ 0.5, and thus a higher

flip probability.

• We observe across datasets that optimizing for fair-
ness and uniform sampling lead to large differences
in who is flipped: while both optimization and uniform
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Figure 2: Left: Flip probability 𝑞𝑁,𝑖 as a function of the Bayes-optimal probability 𝑝𝑖— in other words, how likely is
an individual 𝑖 to experience a change of prediction among models in the Rashomon set as a function of their true
probability that 𝑦𝑖 = 1? We show results for the German Credit, Adult, and Health datasets for 𝜖 ∈ {0.001, 0.01, 0.02},
and see that there is large variation in flip probability distribution both as a function of dataset and 𝜖. Center: Overall
(population average) flip probability as a function of error tolerance 𝜖 for the German Credit dataset, for uniformly
sampled models, linear models, and optimally fair models from the Rashomon set. For results for Adult and Health
datasets, see Appendix G, Figure 7. Right: Group average flip probability, comparison between protected group (solid
lines) and non-protected group (dashed lines), for the German Credit dataset, as a function of the error tolerance 𝜖.
Comparison of methods for optimizing PPR, FPR, and TPR (Section 4.1) and uniform random sampling (Section 4.2),
over the Rashomon set 𝑅𝑁 (𝜖). For results for Adult and Health datasets, see Appendix G, Figure 9.

sampling approaches tend to flip individuals who are near

the decision boundary and thus have lower weights 𝑤𝑖 ,

the optimization approaches also tend to flip individuals

who are from the group that is less represented in the

dataset and thus have higher values 𝑣𝑖 , because flipping

one person’s prediction has a larger impact on the group

average for the group that is smaller in size. In our datasets,

the disadvantaged group (women for German and Adult,

individuals over the age of 60 for Health) is also less repre-

sented. Thus, if the disadvantaged group is already flipped

more than the advantaged group on average, because they

tend to be closer to the decision boundary (as is the case

for German and Health), optimizing for fairness will fur-

ther exacerbate this disparity in who is receiving arbitrary

and inconsistent predictions. For example, for German

Credit, at 𝜖 = 0.004 (the point at which PPR disparity is

eliminated), the flip proportion for uniform random sam-

pling is balanced (6.2% for women vs. 5.1% for men), but

the model that optimizes PPR demonstrates a substantial

disparity in who is flipped (11.6% for women vs. 3.3% for

men). On the other hand, if the disadvantaged group is

flipped substantially less than the advantaged group on

average, because they tend to be farther from the decision

boundary (as is the case for Adult), optimizing for fairness

will instead mitigate this disparity.

6 Rashomon Set Size and Error Tolerance
In this section, we present results on the size of the Rashomon

set and the distribution of how much of the error tolerance 𝜖

is used in the models of the Rashomon set. From these results,

we suggest another set of takeaways— that when a company

sets out to do a search for a less discriminatory algorithm

(LDA), they should choose the highest error tolerance possible.

However, especially when relying on repeated random sam-

pling as an LDA search method, they should make sure they

are comfortable with having a model that uses all of the error

tolerance provided.

6.1 Rashomon set size
We derive an analytical expression for the asymptotic size of

the Rashomon set, |𝑅𝑁 (𝜖) |, as a function of the error tolerance

𝜖 , as the number of data records 𝑁 that the Rashomon set is

defined over goes to∞. We note that |𝑅𝑁 (𝜖) | also depends on
the distribution of weights 𝑓 (𝑤) and thus is dataset-dependent.
We provide the theorem here, with proof in Appendix C, The-

orem C.13.

Theorem 6.1 (Asymptotic size of Rashomon set). Given
the preliminaries and assumptions in Section 5.1 above, let𝑅𝑁 (𝜖)
denote the Rashomon set of models for error tolerance 𝜖 defined
over data records ⟨𝑑1, . . . , 𝑑𝑁 ⟩. Then

lim

𝑁→∞
log |𝑅𝑁 (𝜖) |

𝑁
= log𝐵(𝜖),

where 𝐵(𝜖) = exp

(∫ 𝜖

0
𝐶 (𝑥)𝑑𝑥

)
, 𝐶 (𝜖) = 𝑔−1 (𝜖), and 𝑔(𝐶) =∫

1

0

𝑤𝑓 (𝑤 )
1+exp(𝐶𝑤 ) 𝑑𝑤 .

In other words, for large 𝑁 , the size of the Rashomon set

|𝑅𝑁 (𝜖) | converges (in the sense above) to 𝐵(𝜖)𝑁 . Thus the size

of the Rashomon set grows exponentially in 𝑁 , the number

of elements in the dataset, but the base of the exponential

function 𝐵 is an increasing function of 𝜖 . For 𝜖 = 0 and 𝑓 (𝑤)
continuous, |𝑅𝑁 (𝜖) | = 1 regardless of 𝑁 , so 𝐵 = 1. For suffi-

ciently large 𝜖 , all 2𝑁 flip vectors are in the Rashomon set, so

𝐵 = 2. But the rate at which 𝐵 increases from 1 to 2 with 𝜖
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Figure 3: Left: Rashomon set size as a function of 𝜖 for Adult, German Credit, and Health datasets, and for uniformly
distributed weights. Note that the German Credit and uniform weights curves coincide. The size of the Rashomon set
is |𝑅𝑁 (𝜖) | = 𝐵(𝜖)𝑁 , where the exponential base 𝐵 (plotted here) ranges between 1 (for 𝜖 = 0) and 2 (for large 𝜖). We also
separately plot |𝑅𝑁 (𝜖) | for each dataset in Appendix H, Figure 10. Right three figures: Proportion of error tolerance
used, 𝜃 ·𝑊𝑁

𝑁𝜖
, for the German, Adult, and Health datasets, as a function of the error tolerance 𝜖. Comparison of methods

for optimizing PPR (Section 4.1.1), optimizing FPR (Section 4.1.2), optimizing TPR (Section 4.1.2), uniform random
sampling (Section 4.2), and sampling linear models (Section 4.3.1) over the Rashomon set 𝑅𝑁 (𝜖).

will vary between datasets, depending on the distribution of

weights 𝑓 (𝑤), as we show in Figure 3(left). We give details on

how to calculate 𝐵(𝜖), and therefore the size of the Rashomon

set 𝐵(𝜖)𝑁 , in Appendix C, Theorem C.13. We also derive an

exact value and an upper bound for 𝐵(𝜖) when the distribution
of weights within the data records is uniform (Appendix C,

Corollary C.14).

As we discuss in our takeaways, although a company has

no control over 𝑁 , it does have control over 𝜖 . As 𝜖 determines

the base of the exponent 𝐵, this means that the size of the

Rashomon set |𝑅𝑁 (𝜖) | = 𝐵(𝜖)𝑁 grows extremely quickly in 𝜖

as well.

6.2 Usage of error within the Rashomon set
We now show that as the number of data records 𝑁 over

which the Rashomon set 𝑅𝑁 (𝜖) is defined goes to infinity (i.e.,

as the dataset grows large), as long as the error tolerance 𝜖

is sufficiently small (less than half of the average weight𝑤𝑖 ),

the models in the Rashomon set will use almost all of the

error tolerance. That is, the average accuracy of a model in

the Rashomon set will converge to the accuracy of the Bayes-

optimal model minus 𝜖 .

Let 𝑎𝑐𝑐 (𝑅𝑁 (𝜖)) denote the average accuracy of models in

𝑅𝑁 (𝜖), and let 𝑎𝑐𝑐𝑁 (𝜃0) denote the accuracy of the Bayes-

optimal classifier 𝑓 (𝑥𝑖 ) = 1{𝑝𝑖 > 0.5} for data records

⟨𝑑1, . . . , 𝑑𝑁 ⟩. The average error tolerance used is the difference

𝑎𝑐𝑐𝑁 (𝜃0) − 𝑎𝑐𝑐 (𝑅𝑁 (𝜖)), and must be less than or equal to 𝜖 .

We now formally state the main result below, with proof in

Appendix C (Theorem C.9):

Theorem 6.2 (Asymptotic use of the entire error toler-

ance). Given the preliminaries and assumptions in Section 5.1
and the definitions above, let 𝑅𝑁 (𝜖) denote the Rashomon
set of models for error tolerance 𝜖 defined over data records
⟨𝑑1, . . . , 𝑑𝑁 ⟩.

Then as 𝑁 → ∞, the average error tolerance used by models
in the Rashomon set converges to 𝜖 :

lim

𝑁→∞
(𝑎𝑐𝑐𝑁 (𝜃0) − 𝑎𝑐𝑐 (𝑅𝑁 (𝜖))) = 𝜖.

This result implies that, for large 𝑁 , there is a clear tradeoff

between having a larger space of models to search over (since

the size of the Rashomon set grows very rapidly with increas-

ing 𝜖) and the accuracy of the models one might find with this

search, since the vast majority of models in the Rashomon set

have accuracy very close to the Bayes-optimal accuracy minus

𝜖 . While we are not typically interested in the Rashomon set

for very large values of 𝜖 where the assumption that 𝜖 is less

than half of the average weight would not hold, we note that

in such cases the entire error tolerance would not be used.

Instead, as 𝑁 becomes large, all flip probabilities would con-

verge to 0.5, all or almost all of the 2
𝑁

possible flip vectors

would be in the Rashomon set, and the average amount of er-

ror tolerance used would converge to half the average weight,

which is less than 𝜖 .

6.3 Experiments on real data
6.3.1 Rashomon set size experiments. Given that the size of

the Rashomon set |𝑅𝑁 (𝜖) | can be written as 𝐵(𝜖)𝑁 , where the

exponential base 𝐵 increases from 1 to 2 for increasing 𝜖 , we

plot the values of 𝐵 as a function of 𝜖 for the German Credit,

Adult, and Health datasets in Figure 3(left). As noted above, we

also derived both the exact value and the upper bound of 𝐵 for

uniformly distributed weights (Appendix C, Corollary C.14),

and we plot these in Figure 3(left) for comparison. For small

𝜖 , the upper bound for uniformly distributed weights, 𝐵(𝜖) =
exp(𝜋

√︁
𝜖/3), coincides closely with the exact values. We also

plot the Rashomon set size |𝑅𝑁 (𝜖) | separately for the German

Credit, Adult, and Health datasets in Appendix H, Figure 10.

While we do not yet have a way of computing the (reduced)

Rashomon set size when restricting our search to the space of

linear models (𝐿2-penalized logistic regression) as described

in Section 4.3.1, we can nevertheless examine what fraction
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of the sampled linear models are in the Rashomon set as a

function of 𝜖 . This is shown for the German Credit, Adult, and

Health Datasets in Appendix H, Figure 11.

6.3.2 Use of error tolerance experiments. Given that, as 𝑁 →
∞, we expect the entire error tolerance 𝜖 to be used by mod-

els in the Rashomon set, we examine whether this holds for

the three real-world datasets as well. In Figure 3(right), we

plot the average proportion of the error tolerance used,
𝜃 ·𝑊𝑁

𝑁𝜖
,

for 950 flip vectors sampled uniformly at random from the

Rashomon set 𝑅𝑁 (𝜖), as described in Section 4.2, for each

𝜖 ∈ {0.001, 0.002, . . . , 0.02}. We also plot the 95% interquantile

range for proportion of the error tolerance used, using the

2.5 and 97.5 percentiles of this distribution. For comparison,

we also plot for each dataset in Figure 3(right) the propor-

tion of the error tolerance used when (i) optimizing PPR, TPR,

FPR, and over the Rashomon set, as in Sections 4.1.1 and 4.1.2,

and (ii) searching over the set of linear models (𝐿2-penalized

logistic regression) in the Rashomon set, as in Section 4.3.1.

6.4 Takeaways for policy and practice
• Increasing 𝜖 drastically increases the size of the
Rashomon set, especially for smaller 𝜖: thus, com-
panies searching for LDAsmaywant to set as large
of an 𝜖 as possible to maximize the number of
potential LDAs. For example, in the German Credit

dataset (𝑁 = 1, 000), increasing 𝜖 from 0.005 to 0.02

moves the exponential base from 1.16 to 1.32 (Figure 3

(left)), increasing the Rashomon set size from 5 × 10
65

to 6 × 10
119

(Appendix H, Figure 10).

• Especially when using random sampling to search
for fairer models, our results suggest that most
models found will use the entire error tolerance.
In Figure 3(right), we see that, as expected from The-

orem 6.2, the average proportion of the error toler-

ance used by uniform random sampling over the entire

Rashomon set is very close to 1 for all three datasets, and

for the larger datasets (Adult and Health), even the 2.5

percentile of the distribution is virtually indistinguish-

able from 1. Similarly, for the optimization approaches,

all of the error tolerance is used until the entire dispar-

ity is mitigated; then the proportion of error tolerance

used decreases as
1

𝜖 for larger 𝜖 . Thus, while using a

higher error tolerance 𝜖 could increase a company’s

opportunity to find fairer models within the Rashomon

set, the company should be ready to use a model within

the outer limits of that tolerance.

• Caveats: Searchingwithin particularmodel classes
may not use up all of the error tolerance. As we
see from Figure 3(right), when restricting the search to

linear models, the (non-exhaustive) set of linear models

we found in the Rashomon set did not use up all of the

error tolerance. In fact, the average proportion of the

error tolerance used by randomly sampled linear mod-

els is much smaller than 1: about 40%, 15%, and 2% for

German Credit, Adult, and Health datasets respectively.

7 Discussion
Before concluding, we discuss in more detail how our

modeling set-up relates to practical searches that companies

may make to look for less discriminatory models.

Models as Mappings. As explained in Section 3, we think of

models in the Rashomon set as mappings from input features

to binary decisions in {0, 1}. As this is an exhaustive set of all

possible mappings that satisfy the accuracy constraint, this

paper explores behavior of the largest possible Rashomon set.
It may be the case that some of these models may not be

reachable by typical training methods, such as using stochastic

gradient descent to search for linear or deep models. However,

we note that the model defined by a flip vector 𝜃 is reachable by

a randomized classifier that deviates from the Bayes-optimal

model (e.g., by randomizing labels as a function of the Bayes-

optimal probability, rather than using a hard threshold at 0.5).

To put it more practically, while some of the models in 𝑅𝑁 (𝜖)
may not be easy to find in a real-world search for LDAs if a

company is limiting their search to a particular model class,

e.g. linear models, this limitation is not a necessary choice.

A company could search over many possible model classes,

including flexible models that fit arbitrarily complex functions,

and could also deviate from a learned model (such as their

estimate of the Bayes-optimal classifier) to achieve fairness

goals, e.g., by randomizing predictions or changing decision

thresholds—by doing so, they could have the entire Rashomon

set 𝑅𝑁 (𝜖) at their disposal.
Relatedly, we clarify that the models discussed in this

paper, and the techniques we present to find fairer models,

generalize to previously unseen data, as we discuss in more

detail in Section 4.3 and Appendix E. In particular, the models

that we consider as alternatives in this paper represent

systematic deviations from the Bayes-optimal classifier. Given

that the Bayes-optimal classifier is estimated from labeled

data and that its probabilistic predictions can be used to make

classification decisions for previously unseen examples, a

rule which defines how a given classifier deviates from Bayes-

optimal will also generalize. As we discuss in Appendix E,

our optimization approaches are equivalent to defining an

optimal prediction threshold for each class, and our uniform

sampling approach is equivalent to randomizing labels as a

function of the Bayes-optimal probability. For sampling, the

model disagrees with the Bayes-optimal prediction for each

new data record with probability 𝑞𝑖 =
1

1+exp(𝐶𝑤𝑖 ) , as shown
in Theorem 5.1. In each case, the parameters (prediction

thresholds for optimization and the constant 𝐶 for sampling)

can be learned from one (unlabeled) partition of the data

and then applied to optimize fairness over the Rashomon

set, or to uniformly sample from the Rashomon set, for a

different data partition. We demonstrate that our sampling

and optimization methods generalize well to previously

unseen data in Appendix E.
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Bayes-optimalmodel. Finally, we note that while we assume

access to the Bayes-optimal classifier for our theoretical

results, in practice, our findings do not rely on having the

exact Bayes-optimal model. Concretely, we believe that it

is reasonable for a company to start from their estimated

“most accurate” classifier, whether learned via a flexible

classification approach or even within a specific model

class, and then use our optimization approaches to identify

class-specific decision thresholds that optimize fairness while

obtaining accuracy within 𝜖 of their original model. Since we

define our Rashomon set in terms of deviation from a baseline

model, it is important to find as accurate as possible a baseline

model when using this method of Rashomon set exploration

in practice. We show in Appendix E that assuming access

to a reasonably-sized training set, our results do not change

substantially using estimates of the Bayes-optimal model

learned from different partitions of the data. Nevertheless, if

there is not enough labeled data to estimate a good model,

then the Rashomon set and fairer models found in it may not

be accurate or useful.

Overall, the modeling choices we make serve the main goal

of this work, which is to more deeply understand the funda-

mental properties of the Rashomon set and the importance of

intentionally searching for fairer models. In particular, they al-

low us to see what is possible to achieve within the Rashomon

set with maximum flexibility, allowing us to see how much we

can strive to accomplish. At the same time, while our results

may deviate somewhat from what people observe in practice

(e.g., if they search only through limited model classes), we

believe our work can provide companies with a fairness goal

to strive for, and suggest specific approaches that might help

them approach that goal.

8 Conclusion
We introduce key results that help us to understand the largest

possible Rashomon set, from the average fairness of models

within the Rashomon set, to the probability of individuals hav-

ing their prediction changed across all models in the set, and

the size of the Rashomon set. These results lead us to several

takeaways: (1) it is critical to search for fair models within

the Rashomon set (to be intentional about fairness); (2) the
arbitrariness of prediction within the Rashomon set changes

drastically depending on the dataset and the error tolerance

𝜖; and (3) companies should think carefully about setting 𝜖

when searching for fairer models within the Rashomon set, bal-

ancing flexibility of the search with accuracy of the resulting

models. We hope this work shows the importance of searching

for fair models within the Rashomon set, and sheds light on

how to balance fairness gains with risks of arbitrariness.
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A Optimizing Fairness over the Rashomon
Set

In this section, we propose efficient algorithms to find (i) the

exact fairest model in the Rashomon set as measured by pos-

itive prediction rate (PPR) disparity, and (ii) a model that is

guaranteed to have false positive rate (FPR) or true positive

rate (TPR) disparity within O( 1

𝑁
) of the fairest model in the

Rashomon set.

A.1 Optimizing for statistical parity
In this sub-section, we propose an efficient knapsack solution

(Algorithm 1), to find the exact fairest model that minimizes

disparities in positive prediction rate (PPR) over the Rashomon

set 𝑅𝑁 (𝜖), in O(𝑁 log𝑁 ) time.

Our first step is to derive expressions for the FPR and TPR

disparities corresponding to a given flip vector 𝜃 . To do so, let

𝑃𝐴 and 𝑃𝐵 be the vectors of Bayes-optimal probabilities 𝑝𝑖 for

subgroups 𝐴 (the protected class, data records 𝑑𝑖 with sensitive

attribute value 𝐴𝑖 = 𝑎) and 𝐵 (the non-protected class, data
records 𝑑𝑖 with sensitive attribute value 𝐴𝑖 ≠ 𝑎) respectively.

Let 𝐹opt = ⟨𝐹opt
𝐴
, 𝐹

opt

𝐵
⟩ denote the vector of Bayes-optimal

binary predictions 𝑓opt (𝑥𝑖 ), and let 𝐹 = ⟨𝐹𝐴, 𝐹𝐵⟩ denote the
vector of binary predictions 𝑓 (𝑥𝑖 ) corresponding to flip vector

𝜃 = ⟨𝜃𝐴, 𝜃𝐵⟩. We note that 𝐹𝐴 = 𝐹
opt

𝐴
⊙(1−𝜃𝐴)+(1−𝐹

opt

𝐴
)⊙𝜃𝐴 ,

and 𝐹𝐵 = 𝐹
opt

𝐵
⊙ (1 − 𝜃𝐵) + (1 − 𝐹opt

𝐵
) ⊙ 𝜃𝐵 , where ⊙ denotes

element-wise product.

We can then define the positive prediction rate disparity as:

disparity𝑃𝑃𝑅 = |E[𝑓 (𝑥𝑖 ) | 𝑑𝑖 ∈ 𝐴] − E[𝑓 (𝑥𝑖 ) | 𝑑𝑖 ∈ 𝐵] |
= |Pr(𝑓 (𝑥𝑖 ) = 1 | 𝑑𝑖 ∈ 𝐴) − Pr(𝑓 (𝑥𝑖 ) = 1 | 𝑑𝑖 ∈ 𝐵) |

=

���� | |𝐹𝐴 | |1|𝐴| − | |𝐹𝐵 | |1
|𝐵 |

����
=

����𝐹𝐴 · 1
|𝐴| − 𝐹𝐵 · 1

|𝐵 |

����
=

�������
(
𝐹
opt

𝐴
⊙ (1 − 𝜃 ) + (1 − 𝐹opt

𝐴
) ⊙ 𝜃

)
· 1

|𝐴|

−

(
𝐹
opt

𝐵
⊙ (1 − 𝜃 ) + (1 − 𝐹opt

𝐵
) ⊙ 𝜃

)
· 1

|𝐵 |

�������
=

�����𝐹opt𝐴
· (1 − 𝜃 ) + (1 − 𝐹opt

𝐴
) · 𝜃

|𝐴|

−
𝐹
opt

𝐵
· (1 − 𝜃 ) + (1 − 𝐹opt

𝐵
) · 𝜃

|𝐵 |

�����
As noted in Section 4.1, we can express the minimization

of PPR disparity over flip vectors 𝜃 , subject to the constraint

that 𝜃 is in the Rashomon set 𝑅𝑁 (𝜖), as a knapsack problem,

where each data record 𝑑𝑖 has a weight 𝑤𝑖 = |2𝑝𝑖 − 1| and a

value 𝑣𝑖 , and 𝜃𝑖 = 1 corresponds to the inclusion of element 𝑖

in the knapsack, adding 𝑤𝑖 to the total weight and 𝑣𝑖 to the

total value. The 0-1 knapsack problem is then the constrained

optimization with capacity 𝑁𝜖: max

∑
𝑖 𝜃𝑖𝑣𝑖 subject to 𝜃𝑖 ∈

{0, 1} and ∑
𝑖 𝜃𝑖𝑤𝑖 ≤ 𝑁𝜖 .

We now consider the expression for 𝑣𝑖 , the change in PPR

disparity when the prediction 𝑓 (𝑥𝑖 ) is flipped (i.e., when 𝜃𝑖 is

changed from 0 to 1). Assume without loss of generality that

subgroup 𝐴 has higher PPR,
| |𝐹𝐴 | |1
|𝐴 | >

| |𝐹𝐵 | |1
|𝐵 | . Then we see

from the expression for PPR disparity above that flipping a

prediction in group 𝐴 from 1 to 0, or flipping a prediction in

group 𝐵 from 0 to 1, reduces disparity by
1

|𝐴 | or
1

|𝐵 | respec-
tively, while other flips increase disparity. To see this, for a

data record 𝑑𝑖 ∈ 𝐴 with 𝐹
opt

𝑖
= 1,

𝑣𝑖 =
𝐹
opt

𝐴
· (1 − 𝜃 ) + (1 − 𝐹opt

𝐴
) · 𝜃

|𝐴|

�����
𝜃=0,𝐹

opt

𝐴
=1

−
𝐹
opt

𝐴
· (1 − 𝜃 ) + (1 − 𝐹opt

𝐴
) · 𝜃

|𝐴|

�����
𝜃=1,𝐹

opt

𝐴
=1

=
1

|𝐴| . (1)

We note that 𝑣𝑖 for other cases can be calculated similarly.

Thus we can write the value of element 𝑖 for the knapsack

problem as 𝑣𝑖 =
1

|𝐴 | if 𝑑𝑖 ∈ 𝐴 and 𝐹
opt

𝑖
= 1, 𝑣𝑖 =

1

|𝐵 | if 𝑑𝑖 ∈ 𝐵
and 𝐹

opt

𝑖
= 0, and 𝑣𝑖 = 0 otherwise.

We nowmake the key observation that enables our efficient

knapsack algorithm: there are only two distinct values 𝑣𝑖 > 0,

1

|𝐴 | and
1

|𝐵 | for group 𝐴 and 𝐵 respectively. Thus, the optimal

knapsack solution will consist of the 𝑘𝐴 lowest-weight items

from group 𝐴 and the 𝑘𝐵 lowest-weight items from group 𝐵,

for some 𝑘𝐴 and 𝑘𝐵 .

Optimal values of 𝑘𝐴 and 𝑘𝐵 (i.e., those values that most re-

duce the disparity) could be calculated by a O(𝑁 2) brute-force
search across all combinations of 𝑘𝐴 and 𝑘𝐵 that fit the capac-

ity. However, through incremental search, that is, by keeping

track of the optimal 𝑘𝐵 for a given 𝑘𝐴 , one can incrementally

update 𝑘𝐵 for 𝑘𝐴 − 1 by adding the remaining lowest weight

𝐵 items until the capacity is full, resulting in an incremen-

tal linear O(𝑁 ) search. Thus the run time is dominated by

the O(𝑁 log𝑁 ) sorting of items by weight. We present the

algorithm below.

A.2 Optimizing for error rate balance
In this sub-section, we propose an efficient, O(𝑁 log𝑁 ) frac-
tional knapsack solution (Algorithm 2), to find the model that

minimizes disparities in false positive rate (FPR) or true posi-

tive rate (TPR) over the Rashomon set 𝑅𝑁 (𝜖), to within O( 1

𝑁
)

of the optimal disparity, in O(𝑁 log𝑁 ) time.

Our first step is to derive expressions for the FPR and TPR

disparities corresponding to a given flip vector 𝜃 . To do so,

as in Appendix A.1, let 𝑃𝐴 and 𝑃𝐵 be the vectors of Bayes-

optimal probabilities 𝑝𝑖 for subgroups 𝐴 (the protected class,
data records 𝑑𝑖 with sensitive attribute value 𝐴𝑖 = 𝑎) and 𝐵

(the non-protected class, data records 𝑑𝑖 with sensitive attribute

value 𝐴𝑖 ≠ 𝑎) respectively. Let 𝐹
opt = ⟨𝐹opt

𝐴
, 𝐹

opt

𝐵
⟩ denote the

vector of Bayes-optimal binary predictions 𝑓opt (𝑥𝑖 ), and let
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Algorithm 1 0-1 Knapsack Algorithm for minimizing 𝑃𝑃𝑅

disparity

1: Given: data records 𝐷𝑁 = (𝑥𝑖 , 𝑦𝑖 ) |𝑁𝑖=1, Bayes-optimal

(true) probabilities 𝑃𝑁 = 𝑝𝑖 |𝑁𝑖=1, capacity 𝑁𝜖
2: Output: final disparity 𝑓 𝑑 , flip vector 𝜃

3: Calculate the value 𝑣𝑖 of each record (either
1

|𝐴 | ,
1

|𝐵 | , or 0)
as described in the text above

4: Calculate the weight of each record 𝑖 ,𝑤𝑖 = |2𝑝𝑖 − 1|
5: Calculate the initial disparity in the data, 𝑖𝑑

6: if 𝑖𝑑 = 0 or 𝜖 = 0 then
7: return 𝜃 = 0, 𝑓 𝑑 = 𝑖𝑑

8: end if

9: Calculate weights𝑊𝐴 , sorted in ascending order, along

with their indices 𝐼𝐴 for records in 𝐴 with 𝑣𝑖 > 0

10: Calculate weights𝑊𝐵 , sorted in ascending order, along

with their indices 𝐼𝐵 for records in 𝐵 with 𝑣𝑖 > 0

11: Calculate the maximum number of items in 𝐴 with 𝑣𝑖 > 0,

𝑚𝑎𝑥𝐴, that fit the capacity, adding items in ascending

order of weight

12: Calculate the maximum number of items in 𝐵 with 𝑣𝑖 > 0,

𝑚𝑎𝑥𝐵, that fit the capacity along with the 𝑚𝑎𝑥𝐴 items,

adding items in ascending order of weight

13: Initialize the best value (𝑏𝑒𝑠𝑡𝑣𝑎𝑙 ) to 𝑚𝑎𝑥𝐴
|𝐴 | + 𝑚𝑎𝑥𝐵

|𝐵 |
14: Initialize the best number of items in 𝐴 (𝑘𝐴) to𝑚𝑎𝑥𝐴 and

the best number of items in 𝐵 (𝑘𝐵 ) to𝑚𝑎𝑥𝐵

15: for 𝑎 from𝑚𝑎𝑥𝐴 − 1 to 0 do
16: Remove the highest-weight item in 𝐴 with 𝑣𝑖 > 0, and

add items in 𝐵 with 𝑣𝑖 > 0 until the capacity is filled,

adding items in ascending order of weight. Let 𝑏 be the

total number of items in 𝐵 with 𝑣𝑖 > 0 that have been

added.

17: if 𝑎
|𝐴 | +

𝑏
|𝐵 | > 𝑏𝑒𝑠𝑡𝑣𝑎𝑙 then

18: Set 𝑘𝐴 = 𝑎, 𝑘𝐵 = 𝑏, 𝑏𝑒𝑠𝑡𝑣𝑎𝑙 = 𝑎
|𝐴 | +

𝑏
|𝐵 |

19: end if
20: end for

21: Calculate optimal flip vector 𝜃 and final disparity 𝑓 𝑑 , set-

ting 𝜃𝑖 = 1 for the 𝑘𝐴 lowest-weight items in𝐴with 𝑣𝑖 > 0

and the 𝑘𝐵 lowest-weight items in 𝐵 with 𝑣𝑖 > 0.

22: return 𝜃 , 𝑓 𝑑

𝐹 = ⟨𝐹𝐴, 𝐹𝐵⟩ denote the vector of binary predictions 𝑓 (𝑥𝑖 )
corresponding to flip vector 𝜃 = ⟨𝜃𝐴, 𝜃𝐵⟩. We note that 𝐹𝐴 =

𝐹
opt

𝐴
⊙ (1 − 𝜃𝐴) + (1 − 𝐹opt

𝐴
) ⊙ 𝜃𝐴 , and 𝐹𝐵 = 𝐹

opt

𝐵
⊙ (1 − 𝜃𝐵) +

(1 − 𝐹opt
𝐵

) ⊙ 𝜃𝐵 , where ⊙ denotes element-wise product.

We can then define the false positive rate disparity and true

positive rate disparity as:

disparity𝐹𝑃𝑅 = |E[ 𝑓 (𝑥𝑖 ) | 𝑑𝑖 ∈ 𝐴, 𝑦𝑖 = 0] − E[ 𝑓 (𝑥𝑖 ) | 𝑑𝑖 ∈ 𝐵, 𝑦𝑖 = 0] |
= |Pr(𝑓 (𝑥𝑖 ) = 1 | 𝑑𝑖 ∈ 𝐴, 𝑦𝑖 = 0) − Pr(𝑓 (𝑥𝑖 ) = 1 | 𝑑𝑖 ∈ 𝐵, 𝑦𝑖 = 0) |

=

����Pr(𝑓 (𝑥𝑖 ) = 1, 𝑦𝑖 = 0 | 𝑑𝑖 ∈ 𝐴)
Pr(𝑦𝑖 = 0 | 𝑑𝑖 ∈ 𝐴) − Pr(𝑓 (𝑥𝑖 ) = 1, 𝑦𝑖 = 0 | 𝑑𝑖 ∈ 𝐵)

Pr(𝑦𝑖 = 0 | 𝑑𝑖 ∈ 𝐵)

����
=

���� (1 − 𝑃𝐴 ) · 𝐹𝐴
| |1 − 𝑃𝐴 | |1

− (1 − 𝑃𝐵 ) · 𝐹𝐵
| |1 − 𝑃𝐵 | |1

���� .
disparity𝑇𝑃𝑅 = |E[ 𝑓 (𝑥𝑖 ) | 𝑑𝑖 ∈ 𝐴, 𝑦𝑖 = 1] − E[ 𝑓 (𝑥𝑖 ) | 𝑑𝑖 ∈ 𝐵, 𝑦𝑖 = 1] |

= |Pr(𝑓 (𝑥𝑖 ) = 1 | 𝑑𝑖 ∈ 𝐴, 𝑦𝑖 = 1) − Pr(𝑓 (𝑥𝑖 ) = 1 | 𝑑𝑖 ∈ 𝐵, 𝑦𝑖 = 1) |

=

����Pr(𝑓 (𝑥𝑖 ) = 1, 𝑦𝑖 = 1 | 𝑑𝑖 ∈ 𝐴)
Pr(𝑦𝑖 = 1 | 𝑑𝑖 ∈ 𝐴) − Pr(𝑓 (𝑥𝑖 ) = 1, 𝑦𝑖 = 1 | 𝑑𝑖 ∈ 𝐵)

Pr(𝑦𝑖 = 1 | 𝑑𝑖 ∈ 𝐵)

����
=

����𝑃𝐴 · 𝐹𝐴
| |𝑃𝐴 | |1

− 𝑃𝐵 · 𝐹𝐵
| |𝑃𝐵 | |1

���� .
We now compute the values 𝑣𝑖 (the change in disparity

when the prediction 𝑓 (𝑥𝑖 ) is flipped, i.e., when 𝜃𝑖 is changed
from 0 to 1) for FPR and TPR respectively.

For FPR, assume without loss of generality that subgroup

𝐴 has higher FPR,
(1−𝑃𝐴 ) ·𝐹𝐴
| |1−𝑃𝐴 | |1 >

(1−𝑃𝐵 ) ·𝐹𝐵
| |1−𝑃𝐵 | |1 . Then flipping a

prediction in group 𝐴 from 1 to 0, or flipping a prediction

in group 𝐵 from 0 to 1, reduces the disparity by
1−𝑝𝑖

| |1−𝑃𝐴 | |1
or

1−𝑝𝑖
| |1−𝑃𝐵 | |1 respectively, while other flips increase disparity.

Thus we can write the value of element 𝑖 for the knapsack

problem as 𝑣𝑖 =
1−𝑝𝑖

| |1−𝑃𝐴 | |1 if 𝑑𝑖 ∈ 𝐴 and 𝐹
opt

𝑖
= 1, 𝑣𝑖 =

1−𝑝𝑖
| |1−𝑃𝐵 | |1

if 𝑑𝑖 ∈ 𝐵 and 𝐹
opt

𝑖
= 0, and 𝑣𝑖 = 0 otherwise.

For TPR, assume without loss of generality that subgroup

𝐴 has higher TPR,
𝑃𝐴 ·𝐹𝐴
| |𝑃𝐴 | |1 >

𝑃𝐵 ·𝐹𝐵
| |𝑃𝐵 | |1 . Then flipping a prediction

in group𝐴 from 1 to 0, or flipping a prediction in group 𝐵 from

0 to 1, reduces the disparity by
𝑝𝑖

| |𝑃𝐴 | |1 or
𝑝𝑖

| |𝑃𝐵 | |1 respectively,

while other flips increase disparity. Thus we can write the

value of element 𝑖 for the knapsack problem as 𝑣𝑖 =
𝑝𝑖

| |𝑃𝐴 | |1 if

𝑑𝑖 ∈ 𝐴 and 𝐹
opt

𝑖
= 1, 𝑣𝑖 =

𝑝𝑖
| |𝑃𝐵 | |1 if 𝑑𝑖 ∈ 𝐵 and 𝐹

opt

𝑖
= 0, and

𝑣𝑖 = 0 otherwise.

To minimize FPR or TPR disparity over the Rashomon set

𝑅𝑁 (𝜖), we note that elements have more than two distinct

values, so we cannot apply the solution for PPR above. In-

stead, we approximate the 0-1 knapsack problem with the frac-

tional knapsack problem: max

∑
𝑖 𝜃𝑖𝑣𝑖 subject to 𝜃𝑖 ∈ [0, 1]

and

∑
𝑖 𝜃𝑖𝑤𝑖 ≤ 𝑁𝜖 . The standard solution to the fractional

knapsack, which requires O(𝑁 log𝑁 ) time, adds elements to

the knapsack (setting 𝜃𝑖 = 1) in descending order of their ratio

𝑣𝑖
𝑤𝑖

until no further elements can be (fully) added, then adds a

fraction of the next element (0 < 𝜃𝑖 < 1) to fill the remaining

capacity. Rather than adding the fractional element, we show

that it would reduce disparity by an amount 𝜃𝑖𝑣𝑖 that is O( 1

𝑁
).

To see this, we note for FPR disparity, for an individual

in group 𝐴, that 𝜃𝑖 < 1, and 𝑣𝑖 =
1−𝑝𝑖

| |1−𝑃𝐴 | |1 < 1

| |1−𝑃𝐴 | |1 =

1

𝑁 Pr(𝑦𝑖=0, 𝑑𝑖 ∈𝐴) = O( 1

𝑁
). Therefore 𝜃𝑖𝑣𝑖 = O( 1

𝑁
). The other

cases, for TPR disparity and for group B, proceed similarly.
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Finally, since the fractional knapsack solution

∑
𝜃𝑖𝑣𝑖 is an

upper bound on the 0-1 knapsack solution, we know that our

solution (excluding the fractional element) reduces disparity

to within O( 1

𝑁
) of the optimal disparity.

Thus we propose an O(𝑁 log𝑁 ) fractional knapsack algo-

rithm to find the final disparity and flip vector. The algorithm

is a linear scan of values and weights, sorted by the ratio of

their value to their weight. Thus the run time is dominated

by the O(𝑁 log𝑁 ) sorting of items by their ratio of value to

weight. We present the algorithm below.

Algorithm 2 Fractional Knapsack Algorithm for minimizing

𝐹𝑃𝑅 or 𝑇𝑃𝑅 disparity

1: Given: data records 𝐷𝑁 = (𝑥𝑖 , 𝑦𝑖 ) |𝑁𝑖=1, Bayes-optimal

(true) probabilities 𝑃𝑁 = 𝑝𝑖 |𝑁𝑖=1, capacity 𝑁𝜖
2: Output: final disparity 𝑓 𝑑 , flip vector 𝜃

3: Calculate the value 𝑣𝑖 of each record as described in the

text above

4: Calculate the weight of each record 𝑖 ,𝑤𝑖 = |2𝑝𝑖 − 1|
5: Calculate the initial disparity in the data, 𝑖𝑑

6: if 𝑖𝑑 = 0 or 𝜖 = 0 then
7: return 𝜃 = 0, 𝑓 𝑑 = 𝑖𝑑 , 𝑓 𝑟𝑎𝑐𝑉𝑎𝑙 = 0

8: end if

9: Calculate weights𝑊 and values𝑉 , alongwith their indices

𝐼 , of records with 𝑣𝑖 > 0, sorted by
𝑣𝑖
𝑤𝑖

in descending order

10: Initialize record index variable 𝑖 , total weight 𝑡𝑜𝑡𝑊𝑒𝑖 , and

total value 𝑡𝑜𝑡𝑉𝑎𝑙 to 0

11: while 𝑡𝑜𝑡𝑉𝑎𝑙 < 𝑖𝑑 and 𝑡𝑜𝑡𝑊𝑒𝑖 < 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 and 𝑖 <

𝑙𝑒𝑛(𝐼 ) do
12: # Attempt to add next element 𝑖 with 𝑣𝑖 > 0; note that

elements are added in descending order of
𝑣𝑖
𝑤𝑖

.

13: if 𝑡𝑜𝑡𝑊𝑒𝑖 +𝑤𝑖 ≤ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 then
14: Add weight of element 𝑖 to total weight 𝑡𝑜𝑡𝑊𝑒𝑖

15: Add value of element 𝑖 to total value 𝑡𝑜𝑡𝑉𝑎𝑙

16: Increment 𝑖 by 1

17: else
18: Calculate the fractional value of element 𝑖

that would fill the entire capacity, 𝑓 𝑟𝑎𝑐𝑉𝑎𝑙 =(
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦−𝑡𝑜𝑡𝑊𝑒𝑖

𝑤𝑖

)
𝑣𝑖

19: break
20: end if
21: end while

22: Calculate flip vector 𝜃 , setting 𝜃𝑖 = 1 for all elements 𝑖

added to the knapsack, excluding the fractional element.

23: Calculate final disparity 𝑓 𝑑 = 𝑖𝑑 − 𝑡𝑜𝑡𝑉𝑎𝑙
24: # Note that 𝑓 𝑟𝑎𝑐𝑉𝑎𝑙 is an upper bound on the difference

between 𝑓 𝑑 and the true optimal disparity.

25: return 𝑓 𝑑 , 𝜃 , 𝑓 𝑟𝑎𝑐𝑉𝑎𝑙

B Gibbs sampling algorithm for uniform
sampling from the Rashomon set

Algorithm 3 Sampling Flip Vectors Uniformly at Random

from the Rashomon Set

1: Given: error tolerance 𝜖 ; number of data records𝑁 ; weight

vector𝑊𝑁 = ⟨𝑤1, . . . ,𝑤𝑁 ⟩. Note that𝑤𝑖 = |2𝑝𝑖−1|, where
𝑝𝑖 is the Bayes-optimal probability Pr(𝑦 = 1 | 𝑥 = 𝑥𝑖 ) for
data record 𝑑𝑖 , 𝑖 ∈ {1, . . . , 𝑁 }.

2: Initialize Θ as an empty list

3: Initialize 𝜃 = 𝜃0, where 𝜃0 is the length-𝑁 binary flip

vector consisting of all zeros.

4: for 𝑡 = 1 to 𝑇 do
5: for 𝑖 in random permutation of {1, . . . , 𝑁 } do
6: Calculate current amount of error tolerance used,

𝐸current =
𝜃 ·𝑊𝑁

𝑁
7: Calculate Pr(𝜃𝑖 = 1 | 𝜃−𝑖 ):
8: if 𝐸current + (1 − 𝜃𝑖 ) 𝑤𝑖

𝑁
≤ 𝜖 then

9: Pr(𝜃𝑖 = 1 | 𝜃−𝑖 ) = 1

2

10: else
11: Pr(𝜃𝑖 = 1 | 𝜃−𝑖 ) = 0

12: end if
13: Sample 𝜃𝑖 from Bernoulli(Pr(𝜃𝑖 = 1 | 𝜃−𝑖 ))
14: end for
15: if 𝑡 > 𝐵 and (𝑡 − 𝐵) mod 𝐾 == 0 then
16: Append 𝜃 to Θ
17: end if
18: end for
19: return Θ

The definition of the Rashomon set 𝑅𝑁 (𝜖) in Section 3 sug-

gests that a simple rejection sampling approach could be used

to draw models uniformly at random from the Rashomon

set. That is, one could draw a binary flip vector 𝜃 ∈ {0, 1}𝑁
uniformly at random from the set of all 2

𝑁
possible flip vec-

tors by drawing 𝜃𝑖 ∼ Bernoulli(0.5) for all 𝑖 ∈ {1 . . . 𝑁 }, and
then keep only those vectors 𝜃 that are in the Rashomon

set, i.e., with
𝜃 ·𝑊𝑁

𝑁
≤ 𝜖 . The problem with this simple ap-

proach is that, as 𝑁 increases, the probability that 𝜃 is in the

Rashomon set goes to 0. This can be seen from Appendix C,

TheoremC.13: for 𝜖 less than half the averageweight,𝐵(𝜖) < 2,

and lim𝑁→∞
|𝑅𝑁 (𝜖 ) |

2
𝑁 = lim𝑁→∞

𝐵 (𝜖 )𝑁
2
𝑁 = 0.

Thus we propose an alternative approach based on Gibbs
sampling [15]. The key idea is to sequentially sample one el-

ement 𝜃𝑖 of the flip vector at a time, conditional on all the

other elements 𝜃−𝑖 . While we do not have a closed form

for the joint distribution of ⟨𝜃1, . . . , 𝜃𝑁 ⟩ for 𝜃 ∈ 𝑅𝑁 (𝜖),
computing the conditional distribution of 𝜃𝑖 given 𝜃−𝑖 is

straightforward. Let 𝜃𝑖=0 = ⟨𝜃1, . . . , 𝜃𝑖−1, 0, 𝜃𝑖+1, . . . , 𝜃𝑁 ⟩ and
𝜃𝑖=1 = ⟨𝜃1, . . . , 𝜃𝑖−1, 1, 𝜃𝑖+1, . . . , 𝜃𝑁 ⟩. Then we know that

𝜃𝑖=0 ·𝑊𝑁

𝑁
≤ 𝜃 ·𝑊𝑁

𝑁
≤ 𝜃𝑖=1 ·𝑊𝑁

𝑁
. This implies that, if 𝜃 ∈ 𝑅𝑁 (𝜖)

and 𝜃𝑖 = 1, then 𝜃𝑖=0 and 𝜃𝑖=1 are both in the Rashomon

set, so Pr(𝜃𝑖 = 1 | 𝜃−𝑖 ) = 1

2
. If 𝜃 ∈ 𝑅𝑁 (𝜖) and 𝜃𝑖 = 0, then

𝜃𝑖=0 ∈ 𝑅𝑁 (𝜖), but we must check whether 𝜃𝑖=1 ∈ 𝑅𝑁 (𝜖), i.e.,
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whether
𝜃 ·𝑊𝑁 +𝑤𝑖

𝑁
≤ 𝜖 . If so, then Pr(𝜃𝑖 = 1 | 𝜃−𝑖 ) = 1

2
, and if

not, then Pr(𝜃𝑖 = 1 | 𝜃−𝑖 ) = 0.

Given this simple and computationally efficient conditional

sampling step, our Gibbs sampling approach starts with the

zero vector 𝜃0, which is guaranteed to be in the Rashomon

set, and iteratively samples 𝜃𝑖 ∼ Bernoulli(𝑝), where 𝑝 =

Pr(𝜃𝑖 = 1 | 𝜃−𝑖 ) as described above, for each 𝑖 ∈ {1, . . . , 𝑁 }.
To ensure uncorrelated samples from the joint distribution,

we take one sample every 10 iterations (where one iteration

includes resampling all 𝑁 elements of 𝜃 in randomly permuted

order), after an initial burn-in period of 500 iterations. For each

dataset and each value of 𝜖 considered, we run 10,000 iterations

of Gibbs sampling, resulting in 950 samples.

Algorithm 3 presents the pseudocode for our Gibbs sam-

pling approach, enabling us to sample length-𝑁 binary flip vec-

tors uniformly at random from the Rashomon set 𝑅𝑁 (𝜖). The
sampling algorithm follows the idea [15], in which the Markov

chain is the sequence of flip vectors 𝜃 (0) , 𝜃 (1) , . . . , 𝜃 (𝑇 )
gen-

erated as the algorithm progresses. Each 𝜃 (𝑡 ) is a point 𝜃 ∈
{0, 1}𝑁 that does not violate the Rashomon set constraint

𝜃 ·𝑊𝑁

𝑁
≤ 𝜖 , and thus 𝜃 (𝑡 ) ∈ 𝑅𝑁 (𝜖).

Specifically, we start by initializing the flip vectors Θ as an

empty list. We then initialize flip vector 𝜃 = 𝜃0, the length-

𝑁 binary vector of zeros, which is guaranteed to be in the

Rashomon set since
𝜃0 ·𝑊𝑁

𝑁
= 0.

Throughout 𝑇 = 10, 000 iterations, where each iteration

involves resampling each of the 𝑁 elements of 𝜃 in randomly

permuted order, we keep track of the current amount of

error tolerance used, 𝐸current =
𝜃 ·𝑊𝑁

𝑁
, which can be done

through incremental updates of 𝐸current whenever an ele-

ment 𝜃𝑖 is modified. To resample element 𝜃𝑖 , we first compute

Pr(𝜃𝑖 = 1 | 𝜃−𝑖 ), the probability of 𝜃𝑖 = 1 conditional on

the current values of the other elements of 𝜃 , and then draw

𝜃𝑖 ∼ Bernoulli(Pr(𝜃𝑖 = 1 | 𝜃−𝑖 )). To compute Pr(𝜃𝑖 = 1 | 𝜃−𝑖 ),
we note that all flip vectors in the Rashomon set must be

equally likely to be drawn. Thus, if 𝜃𝑖=0 and 𝜃𝑖=1 are both in the

Rashomon set, we know Pr(𝜃𝑖 = 1 | 𝜃−𝑖 ) = 1

2
, while if 𝜃𝑖=0 is

in the Rashomon set and 𝜃𝑖=1 is not, then Pr(𝜃𝑖 = 1 | 𝜃−𝑖 ) = 0.

We note that 𝜃𝑖=0 will always be in the Rashomon set, as de-

scribed in themain text. To check if 𝜃𝑖=1 is in the Rashomon set,

we must evaluate whether
𝜃𝑖=1 ·𝑊𝑁

𝑁
= 𝐸current + (1−𝜃𝑖 ) 𝑤𝑖

𝑁
≤ 𝜖 .

To ensure that each sampled flip vector 𝜃 is drawn inde-

pendently from the joint distribution of ⟨𝜃1, . . . , 𝜃𝑁 ⟩, we be-
gin recording 𝜃 only after the number of iterations exceeds

the burn-in period 𝐵 = 500, and thereafter sample one value

of 𝜃 every 𝐾 = 10 iterations (i.e., at iterations 510, 520, . . . ).

When the algorithm terminates, all recorded flip vectors are

appended to Θ, resulting in the final list of sampled vectors.

We see that each iteration requires stepping through the

O(𝑁 ) data records. For each data record, we perform an O(1)
check (whether or not the flip vector with 𝜃𝑖 = 1 is in the

Rashomon set; note that we keep track of the current value of

𝜃 ·𝑊𝑁

𝑁
throughout for computational efficiency) and an O(1)

resampling of 𝜃𝑖 from either Bernoulli(0.5) or Bernoulli(0).

Since the number of iterations is a fixed constant, this means

that the overall runtime of the algorithm is O(𝑁 ).

C Proofs of Theorems
In this section, we formally derive the theoretical results in

the main paper, Sections 5 and 6. Note that the order in which

we derive these results is different than the order in which

they are presented in the main paper, as many of the results

build on each other.

Let ⟨𝑑1, 𝑑2, . . .⟩ denote an infinite sequence of data records

drawn i.i.d. from distribution 𝐷 , and let 𝐷𝑁 denote the subse-

quence ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩. Assume that each 𝑑𝑖 = (𝑥𝑖 , 𝑦𝑖 ) where
𝑥𝑖 represents a set of predictor variables and 𝑦𝑖 is a binary

outcome variable. Let 𝑝𝑖 denote the Bayes-optimal probabil-

ity, 𝑝𝑖 = Pr(𝑦 = 1 | 𝑥 = 𝑥𝑖 ), and let 𝑤𝑖 denote the cor-

responding weight, 𝑤𝑖 = |2𝑝𝑖 − 1|. We define the vectors

𝑃𝑁 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑁 ⟩, and𝑊𝑁 = ⟨𝑤1,𝑤2, . . . ,𝑤𝑁 ⟩. Moreover,

let 𝑃 and𝑊 be the distributions of Bayes-optimal probabilities

and weights respectively, for data records drawn i.i.d. from 𝐷 .

Let 𝑅𝑁 (𝐷𝑁 , 𝜖) denote the largest possible Rashomon set

of models for data records ⟨𝑑1, . . . , 𝑑𝑁 ⟩. Since 𝑅𝑁 can be com-

puted using only the weights𝑊𝑁 , we can also write𝑅𝑁 (𝑃𝑁 , 𝜖),
𝑅𝑁 (𝑊𝑁 , 𝜖), or simply 𝑅𝑁 (𝜖) when the context (specifically,

the weight vector𝑊𝑁 ) is clear. Each distinct model in 𝑅𝑁 (𝜖)
represents a different binary classification of the data records

⟨𝑑1, . . . , 𝑑𝑁 ⟩, ⟨𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑁 )⟩, where 𝑓 (𝑥𝑖 ) ∈ {0, 1} for all
𝑖 ∈ {1, . . . , 𝑁 }, and thus there are at most 2

𝑁
models in 𝑅𝑁 (𝜖).

Note that the classifier can be probabilistic, i.e., two data

records with identical 𝑥𝑖 could have different 𝑓 (𝑥𝑖 ) values.
The Bayes-optimal classifier (the classifier with the lowest ex-

pected 0/1 loss, or equivalently, the highest expected accuracy)

is a deterministic function of the Bayes-optimal probabilities

𝑝𝑖 : 𝑓opt (𝑥𝑖 ) = 1 if 𝑝𝑖 > 0.5, and 𝑓opt (𝑥𝑖 ) = 0 otherwise. We rep-

resent each model in 𝑅𝑁 (𝜖) by a binary flip vector 𝜃 ∈ {0, 1}𝑁 ,

where 𝜃𝑖 = 1 if 𝑓 (𝑥𝑖 ) ≠ 𝑓opt (𝑥𝑖 ), and 𝜃𝑖 = 0 if 𝑓 (𝑥𝑖 ) = 𝑓opt (𝑥𝑖 ).

Definition C.1 (Accuracy of a model defined by a flip vec-
tor 𝜃 ). Let 𝐷𝑁 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩ be data records drawn i.i.d.

from distribution 𝐷 with corresponding Bayes-optimal prob-

abilities 𝑃𝑁 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑁 ⟩ and corresponding weights

𝑊𝑁 = ⟨𝑤1,𝑤2, . . . ,𝑤𝑁 ⟩, where 𝑤𝑖 = |2𝑝𝑖 − 1|. The accuracy
of a model with flip vector 𝜃 is

𝑎𝑐𝑐 (𝜃 ) = 1

𝑁

∑︁
𝑖=1...𝑁

(𝑝𝑖 𝑓 (𝑥𝑖 ) + (1 − 𝑝𝑖 ) (1 − 𝑓 (𝑥𝑖 )))

= 𝑎𝑐𝑐 (𝜃0) +
1

𝑁

∑︁
𝑖=1...𝑁

𝜃𝑖 (((1 − 𝑝𝑖 ) − 𝑝𝑖 )1{𝑝𝑖 > 0.5})

+ (𝑝𝑖 − (1 − 𝑝𝑖 ))1{𝑝𝑖 ≤ 0.5}))

= 𝑎𝑐𝑐 (𝜃0) −
1

𝑁

∑︁
𝑖=1...𝑁

𝜃𝑖 |2𝑝𝑖 − 1|

= 𝑎𝑐𝑐 (𝜃0) −
𝜃 ·𝑊𝑁

𝑁
,

where𝑎𝑐𝑐 (𝜃0) is the accuracy of the Bayes-optimal classifier

(and corresponding flip vector 𝜃0 consisting of all zeros).
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Definition C.2 (Rashomon set). The Rashomon set of mod-

els 𝑅𝑁 (𝜖) for error tolerance 𝜖 defined over data records

⟨𝑑1, . . . , 𝑑𝑁 ⟩ is defined as the set of all models with correspond-

ing flip vectors 𝜃 ∈ {0, 1}𝑁 such that 𝑎𝑐𝑐 (𝜃 ) ≥ 𝑎𝑐𝑐 (𝜃0) − 𝜖 .
Therefore, from Definition C.1 above, 𝑅𝑁 (𝜖) = {𝜃 ∈ {0, 1}𝑁 :

𝜃 ·𝑊𝑁

𝑁
≤ 𝜖}.

Definition C.3 (Flip probability). Let 𝑅𝑁 (𝜖) denote the

Rashomon set of models for error tolerance 𝜖 defined over data

records ⟨𝑑1, . . . , 𝑑𝑁 ⟩. For a given data record 𝑑𝑖 , 𝑖 ∈ {1, . . . , 𝑁 },
the flip probability 𝑞𝑁,𝑖 is defined as the proportion of models

in the Rashomon set for which the model prediction 𝑓 (𝑥𝑖 ) dif-
fers from the Bayes-optimal prediction 𝑓opt (𝑥𝑖 ) = 1{𝑝𝑖 > 0.5},
or equivalently, the proportion of flip vectors for which 𝜃𝑖 = 1:

𝑞𝑁,𝑖 =
|𝜃 ∈ 𝑅𝑁 (𝜖) : 𝜃𝑖 = 1|

|𝑅𝑁 (𝜖) | .

Lemma C.4 (Relationship between flip probability,

weight, and Rashomon set size).

𝑞𝑁,𝑖 =

���𝑅𝑁,−𝑖
(
𝑁𝜖−𝑤𝑖

𝑁−1

)������𝑅𝑁,−𝑖
(
𝑁𝜖−𝑤𝑖

𝑁−1

)��� + ���𝑅𝑁,−𝑖
(
𝑁𝜖
𝑁−1

)��� ,
where 𝑅𝑁,−𝑖 (𝜖) is the Rashomon set of models for error tolerance
𝜖 defined over the𝑁 −1 data records ⟨𝑑1, . . . , 𝑑𝑖−1, 𝑑𝑖+1, . . . , 𝑑𝑁 ⟩.

Proof. We can rewrite the criterion for membership in

the Rashomon set,
𝜃 ·𝑊𝑁

𝑁
≤ 𝜖 , as 𝜃−𝑖 ·𝑊𝑁,−𝑖 + 𝜃𝑖𝑤𝑖 ≤ 𝑁𝜖 ,

where 𝜃−𝑖 and𝑊𝑁,−𝑖 are the flip vector omitting element 𝑖

and the weight vector omitting element 𝑖 respectively. The

numerator of the above expression, and the first term of the

denominator, represent the flip vectors 𝜃 for which 𝜃𝑖 = 1.

To satisfy
𝜃 ·𝑊𝑁

𝑁
≤ 𝜖 for these flip vectors, we must have

𝜃−𝑖 ·𝑊𝑁,−𝑖 ≤ 𝑁𝜖 − 𝑤𝑖 , or
𝜃−𝑖 ·𝑊𝑁,−𝑖

𝑁−1 ≤ 𝑁𝜖−𝑤𝑖

𝑁−1 . The second

term of the denominator represents the flip vectors 𝜃 for which

𝜃𝑖 = 0. To satisfy
𝜃 ·𝑊𝑁

𝑁
≤ 𝜖 for these flip vectors, we must

have 𝜃−𝑖 ·𝑊𝑁,−𝑖 ≤ 𝑁𝜖 , or
𝜃−𝑖 ·𝑊𝑁,−𝑖

𝑁−1 ≤ 𝑁𝜖
𝑁−1 . □

Lemma C.5 (Asymptotic Pairwise Independence of Flip

Probabilities). Let 𝑅𝑁 (𝜖) denote the Rashomon set of models
for error tolerance 𝜖 defined over data records ⟨𝑑1, . . . , 𝑑𝑁 ⟩. For
any 𝑖, 𝑗 ∈ {1, . . . , 𝑁 }, 𝑖 ≠ 𝑗 , as 𝑁 → ∞, the flip probability 𝑞 𝑗
becomes independent of 𝜃𝑖 . Specifically:

lim

𝑁→∞
(𝑞𝑁,𝑗 | 𝜃𝑖 = 1) = lim

𝑁→∞
(𝑞𝑁,𝑗 | 𝜃𝑖 = 0).

Proof. We consider two cases:

Case 1:𝑤 𝑗 = 0.
When𝑤 𝑗 = 0, flipping element 𝑗 has no impact on total er-

ror. Therefore𝑞𝑁,𝑗 =
1

2
regardless of 𝜃𝑖 , so lim𝑁→∞ (𝑞𝑁,𝑗 |𝜃𝑖 =

1) = lim𝑁→∞ (𝑞𝑁,𝑗 | 𝜃𝑖 = 0) = 1

2
.

Case 2:𝑤 𝑗 ≠ 0.
We compute the asymptotic odds ratio lim𝑁→∞

𝑞𝑁,𝑗

1−𝑞𝑁,𝑗
for

both 𝜃𝑖 = 0 and 𝜃𝑖 = 1, and show that these two quantities are

equal.

(1) For 𝜃𝑖 = 0, using identical logic to Lemma C.4 above, the

odds ratio is:

𝑞𝑁 .𝑗

1 − 𝑞𝑁,𝑗
=

���𝑅𝑁,−𝑖,− 𝑗

(
𝑁𝜖−𝑤𝑗

𝑁−2

)������𝑅𝑁,−𝑖,− 𝑗

(
𝑁𝜖
𝑁−2

)��� ,
where

��𝑅𝑁,−𝑖,− 𝑗 (𝜖)
��
is the size of the Rashomon set with error

tolerance 𝜖 over the 𝑁 − 2 elements of ⟨𝑑1, . . . , 𝑑𝑁 ⟩ excluding
𝑑𝑖 and 𝑑 𝑗 .

Next, we define log𝐵(𝜖) = lim𝑁→∞
log |𝑅𝑁 (𝜖 ) |

𝑁
, and note

that, since𝑅𝑁 (𝜖) hasminimum size 1 (for 𝜖 = 0) andmaximum

size 2
𝑁

(for large 𝜖), 𝐵(𝜖) ∈ [1, 2] for all 0 ≤ 𝜖 ≤ 1. We

can also write log𝐵(𝜖) = lim𝑁→∞
log |𝑅𝑁,−𝑖,− 𝑗 (𝜖 ) |

𝑁−2 . Taking the

logarithm of the expression above and letting 𝑁 → ∞, we

obtain:

lim

𝑁→∞
log

(
𝑞𝑁 .𝑗

1 − 𝑞𝑁,𝑗

)
= lim

𝑁→∞

(
log

����𝑅𝑁,−𝑖,− 𝑗

(
𝑁𝜖 −𝑤 𝑗

𝑁 − 2

)���� − log

����𝑅𝑁,−𝑖,− 𝑗

(
𝑁𝜖

𝑁 − 2

)����)
= lim

𝑁→∞
(𝑁 − 2)

(
log𝐵

(
𝑁𝜖 −𝑤 𝑗

𝑁 − 2

)
− log𝐵

(
𝑁𝜖

𝑁 − 2

))
.

By the definition of the derivative of log𝐵, and noting that

− 𝑤𝑗

𝑁−2 → 0 as 𝑁 → ∞, we can write:

lim

𝑁→∞

(
log𝐵

(
𝑁𝜖 −𝑤 𝑗

𝑁 − 2

)
− log𝐵

(
𝑁𝜖

𝑁 − 2

))
= lim

𝑁→∞

−
𝑤 𝑗

𝑁 − 2

(
𝑑 log𝐵

𝑑𝜖

) ����
𝑁𝜖
𝑁 −2

,

and thus,

lim

𝑁→∞
log

(
𝑞𝑁 .𝑗

1 − 𝑞𝑁,𝑗

)
= lim

𝑁→∞
−𝑤 𝑗

(
𝑑 log𝐵

𝑑𝜖

) ����
𝑁𝜖
𝑁 −2

= −𝑤 𝑗

(
𝑑 log𝐵

𝑑𝜖

) ����
𝜖

.

(2) For 𝜃𝑖 = 1, using identical logic to Lemma C.4 above, the

odds ratio is:

𝑞𝑁 .𝑗

1 − 𝑞𝑁,𝑗
=

���𝑅𝑁,−𝑖,− 𝑗

(
𝑁𝜖−𝑤𝑖−𝑤𝑗

𝑁−2

)������𝑅𝑁,−𝑖,− 𝑗

(
𝑁𝜖−𝑤𝑖

𝑁−2

)��� .

Taking the logarithm and letting 𝑁 → ∞, we obtain:

lim

𝑁→∞
log

(
𝑞𝑁 .𝑗

1 − 𝑞𝑁,𝑗

)
= lim

𝑁→∞

(
log

����𝑅𝑁,−𝑖,− 𝑗

(
𝑁𝜖 −𝑤𝑖 −𝑤 𝑗

𝑁 − 2

)����
− log

����𝑅𝑁,−𝑖,− 𝑗

(
𝑁𝜖 −𝑤𝑖

𝑁 − 2

)����)
= lim

𝑁→∞
(𝑁 − 2)

(
log𝐵

(
𝑁𝜖 −𝑤𝑖 −𝑤 𝑗

𝑁 − 2

)
− log𝐵

(
𝑁𝜖 −𝑤𝑖

𝑁 − 2

))
.
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By the definition of the derivative of log𝐵, and noting that

− 𝑤𝑗

𝑁−2 → 0 as 𝑁 → ∞, we can write:

lim

𝑁→∞

(
log𝐵

(
𝑁𝜖 −𝑤𝑖 −𝑤 𝑗

𝑁 − 2

)
− log𝐵

(
𝑁𝜖 −𝑤𝑖

𝑁 − 2

))
= lim

𝑁→∞
−

𝑤 𝑗

𝑁 − 2

(
𝑑 log𝐵

𝑑𝜖

) ����𝑁𝜖−𝑤𝑖
𝑁 −2

,

and thus,

lim

𝑁→∞
log

(
𝑞𝑁 .𝑗

1 − 𝑞𝑁,𝑗

)
= lim

𝑁→∞
−𝑤 𝑗

(
𝑑 log𝐵

𝑑𝜖

) ����𝑁𝜖−𝑤𝑖
𝑁 −2

= −𝑤 𝑗

(
𝑑 log𝐵

𝑑𝜖

) ����
𝜖

.

Thus for both 𝜃𝑖 = 0 and 𝜃𝑖 = 1, lim𝑁→∞ log

(
𝑞𝑁 .𝑗

1−𝑞𝑁,𝑗

)
=

−𝑤 𝑗

(
𝑑 log𝐵

𝑑𝜖

) ����
𝜖

, and the proof is completed. □

Lemma C.6 (Functional form of flip probabilities).

Let 𝐷𝑁 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩ be data records drawn i.i.d. from
distribution 𝐷 with corresponding Bayes-optimal probabili-
ties 𝑃𝑁 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑁 ⟩ and corresponding weights𝑊𝑁 =

⟨𝑤1,𝑤2, . . . ,𝑤𝑁 ⟩, where𝑤𝑖 = |2𝑝𝑖 − 1|. Assume𝑤𝑖 ∼𝑊 where
distribution𝑊 has pdf 𝑓 (𝑤) > 0 for 𝑤 ∈ [0, 1]. Let 𝑅𝑁 (𝜖)
denote the Rashomon set of models for error tolerance 𝜖 de-
fined over data records ⟨𝑑1, . . . , 𝑑𝑁 ⟩. Consider the flip proba-
bilities 𝑞𝑁,𝑖 corresponding to Rashomon set 𝑅𝑁 (𝜖), and define
𝑞𝑖 = lim𝑁→∞ 𝑞𝑁,𝑖 . Then we can write:

𝑞𝑖 =
1

1 + exp(𝐶𝑤𝑖 )
,

where𝐶 is constant for a given 𝜖 and a given weight distribution
𝑊 .

Proof. Consider any three data records 𝑑𝑖 , 𝑑 𝑗 , and 𝑑𝑘 such

that𝑤𝑖 +𝑤 𝑗 = 𝑤𝑘 . We know that such triples exist as 𝑁 → ∞
because of the continuity and positivity of the weight distribu-

tion. Next we consider any pair of flip vectors 𝜃, 𝜃 ′ ∈ {0, 1}𝑁
such that (𝜃𝑖 , 𝜃 𝑗 , 𝜃𝑘 ) = (1, 1, 0), (𝜃 ′

𝑖
, 𝜃 ′

𝑗
, 𝜃 ′

𝑘
) = (0, 0, 1), and 𝜃𝑙 =

𝜃 ′
𝑙
for all 𝑙 ∈ {1, 2, . . . , 𝑁 }, 𝑙 ∉ {𝑖, 𝑗, 𝑘}. The total weight is the

same for both vectors: 𝜃 ·𝑊𝑁 = 𝑤𝑖 +𝑤 𝑗 +𝑊𝑟𝑒𝑠𝑡 = 𝑤𝑘 +𝑊𝑟𝑒𝑠𝑡 =

𝜃 ′ ·𝑊𝑁 , where𝑊𝑟𝑒𝑠𝑡 =
∑
𝑙∈{1,2,...,𝑁 },𝑙∉{𝑖, 𝑗,𝑘 } 𝜃𝑙𝑤𝑙 , and thus

either both flip vectors 𝜃, 𝜃 ′ ∈ 𝑅𝑁 (𝜖), or both flip vectors

𝜃, 𝜃 ′ ∉ 𝑅𝑁 (𝜖). This means that, for flip vectors 𝜃 ∈ 𝑅𝑁 (𝜖), the
probability that (𝜃𝑖 , 𝜃 𝑗 , 𝜃𝑘 ) = (1, 1, 0) and the probability that

(𝜃𝑖 , 𝜃 𝑗 , 𝜃𝑘 ) = (0, 0, 1) are equal. For 𝑁 → ∞, pairwise inde-

pendence (Lemma C.5) allows us to write these probabilities

as 𝑞𝑖 (𝑞 𝑗 ) (1−𝑞𝑘 ) and (1−𝑞𝑖 ) (1−𝑞 𝑗 )𝑞𝑘 respectively, and thus

𝑞𝑖 (𝑞 𝑗 ) (1 − 𝑞𝑘 ) = (1 − 𝑞𝑖 ) (1 − 𝑞 𝑗 )𝑞𝑘 . We can then rearrange

terms and take the logarithm:

log

(
𝑞𝑖

1 − 𝑞𝑖

)
+ log

(
𝑞 𝑗

1 − 𝑞 𝑗

)
= log

(
𝑞𝑘

1 − 𝑞𝑘

)
.

This establishes that for any data elements 𝑑𝑖 , 𝑑 𝑗 , and 𝑑𝑘
with𝑤𝑖 +𝑤 𝑗 = 𝑤𝑘 ,ℎ(𝑤𝑖 )+ℎ(𝑤 𝑗 ) = ℎ(𝑤𝑘 ), where the function

ℎ(𝑤) = log

(
𝑞 (𝑤 )

1−𝑞 (𝑤 )

)
The equationℎ(𝑤𝑖 )+ℎ(𝑤 𝑗 ) = ℎ(𝑤𝑖+𝑤 𝑗 )

is Cauchy’s functional equation for additive functions.

Moreover, the function ℎ(𝑤) is monotone for 𝑤 ∈ (0, 1).
To see this, we note that flip probability 𝑞(𝑤) is monotoni-

cally decreasing with𝑤 , since for every possible configuration

𝜃−𝑖 , higher weight𝑤𝑖 monotonically decreases (i.e., does not

increase) the probability that 𝜃𝑖 = 1 is in the Rashomon set,

and does not change the probability that 𝜃𝑖 = 0 is in the

Rashomon set. Moreover, log

(
𝑞

1−𝑞

)
is increasing with 𝑞, so

ℎ(𝑤) = log

(
𝑞 (𝑤 )

1−𝑞 (𝑤 )

)
is monotone.

Monotonicity of ℎ(𝑤) is a sufficient condition for ensuring

that the Cauchy functional equation does not have patholog-

ical (non-linear) solutions, and thus the only solutions are

linear functions ℎ(𝑤) = −𝐶𝑤 , where 𝐶 is a constant (for a

given𝑊 and 𝜖). Therefore, the log-odds of the flip probability

is proportional to the weight:

log

(
𝑞𝑖

1 − 𝑞𝑖

)
= −𝐶𝑤𝑖 .

Finally, the flip probability 𝑞𝑖 can be expressed as:

𝑞𝑖 =
1

1 + exp(𝐶𝑤𝑖 )
.

which completes the proof. (Note that the value of 𝐶 , as a

function of 𝜖 , will be obtained in Corollary C.10 below.) □

Lemma C.7 (Asymptotic size of Rashomon set as a

function of 𝐶). Let 𝐷𝑁 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩ be data records
drawn i.i.d. from distribution 𝐷 with corresponding Bayes-
optimal probabilities 𝑃𝑁 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑁 ⟩ and correspond-
ing weights 𝑊𝑁 = ⟨𝑤1,𝑤2, . . . ,𝑤𝑁 ⟩, where 𝑤𝑖 = |2𝑝𝑖 − 1|.
Assume 𝑤𝑖 ∼ 𝑊 where distribution 𝑊 has pdf 𝑓 (𝑤) > 0

for 𝑤 ∈ [0, 1]. Let 𝑅𝑁 (𝜖) denote the Rashomon set of mod-
els for error tolerance 𝜖 defined over data records ⟨𝑑1, . . . , 𝑑𝑁 ⟩.
Let 𝐶 (𝜖) denote the constant in the asymptotic flip probability,
𝑞𝑖 = lim𝑁→∞ 𝑞𝑁,𝑖 =

1

1+exp(𝐶 (𝜖 )𝑤𝑖 ) , for error tolerance 𝜖 . Then:

lim

𝑁→∞
log |𝑅𝑁 (𝜖) |

𝑁
= log𝐵(𝜖),

where

𝐵(𝜖) = exp

(∫ 𝜖

0

𝐶 (𝑥)𝑑𝑥
)
.

Proof. From Lemma C.4, we know

𝑞𝑖 = lim

𝑁→∞

���𝑅𝑁,−𝑖
(
𝑁𝜖−𝑤𝑖

𝑁−1

)������𝑅𝑁,−𝑖
(
𝑁𝜖−𝑤𝑖

𝑁−1

)��� + ���𝑅𝑁,−𝑖
(
𝑁𝜖
𝑁−1

)��� ,
where 𝑅𝑁,−𝑖 (𝜖) is the Rashomon set of models for er-

ror tolerance 𝜖 defined over the 𝑁 − 1 data records

⟨𝑑1, . . . , 𝑑𝑖−1, 𝑑𝑖+1, . . . , 𝑑𝑁 ⟩. And from Lemma C.6, we know

that 𝑞𝑖 =
1

1+exp(𝐶 (𝜖 )𝑤𝑖 ) . Setting these quantities equal to each

other, we have:
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lim

𝑁→∞

���𝑅𝑁,−𝑖
(
𝑁𝜖−𝑤𝑖

𝑁−1

)������𝑅𝑁,−𝑖
(
𝑁𝜖−𝑤𝑖

𝑁−1

)��� + ���𝑅𝑁,−𝑖
(
𝑁𝜖
𝑁−1

)��� = 1

1 + exp(𝐶 (𝜖)𝑤𝑖 )
.

Inverting both sides:

lim

𝑁→∞

©­­«1 +
���𝑅𝑁,−𝑖

(
𝑁𝜖
𝑁−1

)������𝑅𝑁,−𝑖
(
𝑁𝜖−𝑤𝑖

𝑁−1

)��� ª®®¬ = 1 + exp(𝐶 (𝜖)𝑤𝑖 ) .

Subtracting 1 and taking the logarithm of both sides:

lim

𝑁→∞

(
log

����𝑅𝑁,−𝑖

(
𝑁𝜖

𝑁 − 1

)���� − log

����𝑅𝑁,−𝑖

(
𝑁𝜖 −𝑤𝑖

𝑁 − 1

)����) = 𝐶 (𝜖)𝑤𝑖 .

Dividing both sides by𝑤𝑖 :

lim

𝑁→∞

log

���𝑅𝑁,−𝑖
(
𝑁𝜖
𝑁−1

)��� − log

���𝑅𝑁,−𝑖
(
𝑁𝜖−𝑤𝑖

𝑁−1

)���
(𝑁 − 1) 𝑤𝑖

𝑁−1
= 𝐶 (𝜖).

By the definition of derivative, noting that
𝑤𝑖

𝑁−1 → 0 as

𝑁 → ∞:

lim

𝑁→∞

(
1

𝑁 − 1

)
𝑑 log

��𝑅𝑁,−𝑖 (𝜖)
��

𝑑𝜖

����
𝑁𝜖
𝑁 −1

= 𝐶 (𝜖) .

Equivalently, we can write:

lim

𝑁→∞

(
1

𝑁

)
𝑑 log |𝑅𝑁 (𝜖) |

𝑑𝜖

����
𝜖

= 𝐶 (𝜖).

Integrating both sides with respect to 𝜖 :

lim

𝑁→∞

(
1

𝑁

)
log |𝑅𝑁 (𝜖) | =

∫ 𝜖

0

𝐶 (𝑥) 𝑑𝑥 + constant

We know that the constant is 0 since, for 𝜖 = 0, we have:

lim

𝑁→∞
|𝑅𝑁 (𝜖) | = 1.

Thus we have:

lim

𝑁→∞
log |𝑅𝑁 (𝜖) |

𝑁
=

∫ 𝜖

0

𝐶 (𝑥) 𝑑𝑥 .

Finally, defining 𝐵(𝜖) = exp

(∫ 𝜖

0
𝐶 (𝑥)𝑑𝑥

)
, we can write:

lim

𝑁→∞
log |𝑅𝑁 (𝜖) |

𝑁
= log𝐵(𝜖) .

□

Definition C.8 (Average accuracy of models in the Rashomon
set). Let 𝐷𝑁 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩ be data records drawn i.i.d.

from distribution 𝐷 with corresponding Bayes-optimal prob-

abilities 𝑃𝑁 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑁 ⟩ and corresponding weights

𝑊𝑁 = ⟨𝑤1,𝑤2, . . . ,𝑤𝑁 ⟩, where 𝑤𝑖 = |2𝑝𝑖 − 1|. Let 𝑅𝑁 (𝜖) de-
note the Rashomon set of models for error tolerance 𝜖 defined

over data records ⟨𝑑1, . . . , 𝑑𝑁 ⟩, and consider the corresponding

flip probabilities 𝑞𝑁,𝑖 . Then the average accuracy of models

𝜃 ∈ 𝑅𝑁 (𝜖) can be written as:

𝑎𝑐𝑐 (𝑅𝑁 (𝜖)) = 1

|𝑅𝑁 (𝜖) |
∑︁

𝜃 ∈𝑅𝑁 (𝜖 )
𝑎𝑐𝑐 (𝜃 )

= 𝑎𝑐𝑐𝑁 (𝜃0) −
1

|𝑅𝑁 (𝜖) |
∑︁

𝜃 ∈𝑅𝑁 (𝜖 )

𝜃 ·𝑊𝑁

𝑁

= 𝑎𝑐𝑐𝑁 (𝜃0) −
1

|𝑅𝑁 (𝜖) |
∑︁

𝜃 ∈𝑅𝑁 (𝜖 )

∑︁
𝑖=1...𝑁

𝜃𝑖𝑤𝑖

𝑁

= 𝑎𝑐𝑐𝑁 (𝜃0) −
1

𝑁

∑︁
𝑖=1...𝑁

𝑤𝑖
1

|𝑅𝑁 (𝜖) |
∑︁

𝜃 ∈𝑅𝑁 (𝜖 )
𝜃𝑖

= 𝑎𝑐𝑐𝑁 (𝜃0) −
1

𝑁

∑︁
𝑖=1...𝑁

𝑤𝑖𝑞𝑁,𝑖 ,

where 𝑎𝑐𝑐𝑁 (𝜃0) is the Bayes-optimal accuracy for data ele-

ments ⟨𝑑1, . . . , 𝑑𝑁 ⟩.
Further, assume 𝑤𝑖 ∼ 𝑊 where distribution 𝑊 has pdf

𝑓 (𝑤) > 0 for 𝑤 ∈ [0, 1]. Then we can write the asymptotic

average accuracy as:

lim

𝑁→∞
𝑎𝑐𝑐 (𝑅𝑁 (𝜖)) = 𝑎𝑐𝑐 (𝜃0) −

∫
1

0

𝑤 𝑞(𝑤) 𝑓 (𝑤) 𝑑𝑤,

where 𝑎𝑐𝑐 (𝜃0) is the asymptotic Bayes-optimal accuracy,

𝑎𝑐𝑐 (𝜃0) = lim𝑁→∞ 𝑎𝑐𝑐𝑁 (𝜃0), and 𝑞(𝑤) denotes the asymp-

totic flip probability 𝑞𝑖 = lim𝑁→∞ 𝑞𝑁,𝑖 corresponding to an

element 𝑖 with weight𝑤 .

Theorem C.9 (Asymptotic use of the entire error tol-

erance). Let 𝐷𝑁 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩ be data records drawn
i.i.d. from distribution 𝐷 with corresponding Bayes-optimal
probabilities 𝑃𝑁 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑁 ⟩ and corresponding weights
𝑊𝑁 = ⟨𝑤1,𝑤2, . . . ,𝑤𝑁 ⟩, where𝑤𝑖 = |2𝑝𝑖 − 1|. Assume𝑤𝑖 ∼𝑊
where distribution𝑊 has pdf 𝑓 (𝑤) > 0 for 𝑤 ∈ [0, 1]. Let
𝑅𝑁 (𝜖) denote the Rashomon set of models for error tolerance 𝜖
defined over data records ⟨𝑑1, . . . , 𝑑𝑁 ⟩, and assume that 𝜖 is less
than half of the average weight, i.e.,

∫
1

0
𝑤 𝑓 (𝑤) 𝑑𝑤 > 2𝜖 . Let

𝑞(𝑤) denote the asymptotic flip probability 𝑞𝑖 = lim𝑁→∞ 𝑞𝑁,𝑖

corresponding to an element 𝑖 with weight𝑤 .
Then as 𝑁 → ∞, the average error tolerance used by models

in the Rashomon set converges to 𝜖 :

𝑎𝑐𝑐 (𝜃0) − lim

𝑁→∞
𝑎𝑐𝑐 (𝑅𝑁 (𝜖)) =

∫
1

0

𝑤 𝑞(𝑤) 𝑓 (𝑤) 𝑑𝑤 = 𝜖.

Proof. As every flip vector 𝜃 in the Rashomon set 𝑅𝑁 (𝜖)
must satisfy

∑𝑁
𝑖=1

𝜃𝑖𝑤𝑖

𝑁
≤ 𝜖 , we have:

1

|𝑅𝑁 (𝜖) |
∑︁

𝜃 ∈𝑅𝑁 (𝜖 )

∑︁
𝑖=1...𝑁

𝜃𝑖𝑤𝑖

𝑁
=

1

𝑁

∑︁
𝑖=1...𝑁

𝑤𝑖
1

|𝑅𝑁 (𝜖) |
∑︁

𝜃 ∈𝑅𝑁 (𝜖 )
𝜃𝑖

=
1

𝑁

∑︁
𝑖=1...𝑁

𝑤𝑖𝑞𝑁,𝑖

≤ 𝜖.
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As𝑁 → ∞, we can replace the summation with the integral:∫
1

0

𝑤 𝑞(𝑤) 𝑓 (𝑤) 𝑑𝑤 ≤ 𝜖.

Since 𝑞(𝑤) = 1

1+exp(𝐶 (𝜖 ) 𝑤 ) from Lemma C.6, we have:∫
1

0

𝑤

1 + exp(𝐶 (𝜖)𝑤) 𝑓 (𝑤) 𝑑𝑤 ≤ 𝜖.

Next, the assumption

∫
1

0
𝑤 𝑓 (𝑤) 𝑑𝑤 > 2𝜖 ensures that

𝐶 (𝜖) > 0. To see this, we first note that the expected error∫
1

0
𝑤 𝑞(𝑤) 𝑓 (𝑤) 𝑑𝑤 is a monotonically decreasing function

of 𝐶 (𝜖). Then if we assume 𝐶 (𝜖) ≤ 0, the flip probability

becomes 𝑞(𝑤) ≥ 1

2
, leading to an average error of at least

1

2

∫
1

0
𝑤 𝑓 (𝑤) 𝑑𝑤 > 𝜖 , which contradicts the fact above that

the expected error can be at most 𝜖 .

Now consider any 𝛿 > 0 with 0 < 𝛿 < 𝜖 . We apply

Lemma C.7 to compute the asymptotic sizes of the Rashomon

sets at 𝜖 and 𝜖 − 𝛿 respectively:

lim

𝑁→∞
log |𝑅𝑁 (𝜖) |

𝑁
=

∫ 𝜖

0

𝐶 (𝑥) 𝑑𝑥 .

and

lim

𝑁→∞
log |𝑅𝑁 (𝜖 − 𝛿) |

𝑁
=

∫ 𝜖−𝛿

0

𝐶 (𝑥) 𝑑𝑥.

Thus we can write

lim

𝑁→∞
1

𝑁
log

|𝑅𝑁 (𝜖) |
|𝑅𝑁 (𝜖 − 𝛿) | =

(∫ 𝜖

0

𝐶 (𝑥) 𝑑𝑥 −
∫ 𝜖−𝛿

0

𝐶 (𝑥) 𝑑𝑥
)

=

∫ 𝜖

𝜖−𝛿
𝐶 (𝑥) 𝑑𝑥 .

Since 𝐶 (𝑥) > 0 for 𝑥 ≤ 𝜖 , we know that

∫ 𝜖

𝜖−𝛿 𝐶 (𝑥) 𝑑𝑥 > 0,

and exp

(∫ 𝜖

𝜖−𝛿 𝐶 (𝑥) 𝑑𝑥
)
> 1. Therefore we have:

lim

𝑁→∞
|𝑅𝑁 (𝜖) |

|𝑅𝑁 (𝜖 − 𝛿) | = lim

𝑁→∞

(
exp

(∫ 𝜖

𝜖−𝛿
𝐶 (𝑥) 𝑑𝑥

))𝑁
→ ∞.

This implies that for large 𝑁 , the number of flip vectors

(models) with total error in the interval [𝜖 − 𝛿, 𝜖] dominates

the Rashomon set. The proportion of flip vectors with error

less than 𝜖 −𝛿 becomes negligible. Since almost all flip vectors

in 𝑅𝑁 (𝜖) have errors between 𝜖 − 𝛿 and 𝜖 , the asymptotic

expected error

∫
1

0
𝑤 𝑞(𝑤) 𝑓 (𝑤) 𝑑𝑤 is greater than or equal to

𝜖 − 𝛿 . Because 𝛿 > 0 is arbitrary and can be made as small as

desired, we have:∫
1

0

𝑤 𝑞(𝑤) 𝑓 (𝑤) 𝑑𝑤 ≥ 𝜖 − 𝛿 for all𝛿 > 0.

Combining with the initial inequality, we have:

𝜖 − 𝛿 ≤
∫

1

0

𝑤 𝑞(𝑤) 𝑓 (𝑤) 𝑑𝑤 ≤ 𝜖 for all𝛿 > 0,

and thus

∫
1

0

𝑤 𝑞(𝑤) 𝑓 (𝑤) 𝑑𝑤 = 𝜖,

which completes the proof. □

Corollary C.10 (Value of 𝐶). Let 𝐷𝑁 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩
be data records drawn i.i.d. from distribution 𝐷 with corre-
sponding Bayes-optimal probabilities 𝑃𝑁 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑁 ⟩
and corresponding weights 𝑊𝑁 = ⟨𝑤1,𝑤2, . . . ,𝑤𝑁 ⟩, where
𝑤𝑖 = |2𝑝𝑖 − 1|. Assume 𝑤𝑖 ∼ 𝑊 where distribution 𝑊 has
pdf 𝑓 (𝑤) > 0 for 𝑤 ∈ [0, 1]. Let 𝑅𝑁 (𝜖) denote the Rashomon
set of models for error tolerance 𝜖 defined over data records
⟨𝑑1, . . . , 𝑑𝑁 ⟩, and assume that 𝜖 is less than half of the average
weight, i.e.,

∫
1

0
𝑤 𝑓 (𝑤) 𝑑𝑤 > 2𝜖 .

Then the value of𝐶 (𝜖) in Lemmas C.6 and C.7 can be written
as 𝐶 (𝜖) = 𝑔−1 (𝜖), where 𝑔(𝐶) =

∫
1

0

𝑤𝑓 (𝑤 )
1+exp(𝐶𝑤 ) 𝑑𝑤 .

Proof. From Theorem C.9, we have∫
1

0

𝑤 𝑞(𝑤) 𝑓 (𝑤) 𝑑𝑤 = 𝜖,

and from Lemma C.6, we have

𝑞(𝑤) = 1

1 + exp(𝐶 (𝜖)𝑤) .

Putting these together with the function 𝑔 defined above,

we have

𝑔(𝐶 (𝜖)) =
∫

1

0

𝑤𝑓 (𝑤)
1 + exp(𝐶 (𝜖)𝑤) 𝑑𝑤 = 𝜖,

or equivalently,𝐶 (𝜖) = 𝑔−1 (𝜖), and the proof is completed. □

Corollary C.11 (Value of𝐶 for uniformly distributed

weights). Let 𝐷𝑁 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩ be data records drawn
i.i.d. from distribution 𝐷 with corresponding Bayes-optimal
probabilities 𝑃𝑁 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑁 ⟩ and corresponding weights
𝑊𝑁 = ⟨𝑤1,𝑤2, . . . ,𝑤𝑁 ⟩, where 𝑤𝑖 = |2𝑝𝑖 − 1|. Assume
𝑤𝑖 ∼ Uniform[0, 1]. Let 𝑅𝑁 (𝜖) denote the Rashomon set of mod-
els for error tolerance 𝜖 defined over data records ⟨𝑑1, . . . , 𝑑𝑁 ⟩,
and assume that 𝜖 is less than half of the average weight, i.e.,∫
1

0
𝑤 𝑓 (𝑤) 𝑑𝑤 > 2𝜖 .
Then the value of𝐶 (𝜖) in Lemmas C.6 and C.7 can be written

as 𝐶 (𝜖) = 𝑔−1 (𝜖), where:

𝑔(𝐶) =
∫

1

0

𝑤

1 + exp(𝐶𝑤) 𝑑𝑤

=
12 Li2 (−𝑒−𝐶 ) − 12𝐶 log(𝑒−𝐶 + 1) + 𝜋2

12𝐶2
.

Moreover, 𝐶 (𝜖) < 𝜋√
12𝜖

, and 𝐶 (𝜖) ≈ 𝜋√
12𝜖

for small 𝜖 .

Proof. Given 𝑤𝑖 ∼ Uniform[0, 1], we know that the pdf

𝑓 (𝑤) = 1 for𝑤 ∈ [0, 1]. Plugging this into the result of Corol-

lary C.10, we obtain∫
1

0

𝑤

1 + exp(𝐶𝑤) 𝑑𝑤 = 𝜖.
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The integral can be computed as:∫
1

0

𝑤

1 + exp(𝐶𝑤) 𝑑𝑤 =
12 Li2 (−𝑒−𝐶 ) − 12𝐶 log(𝑒−𝐶 + 1) + 𝜋2

12𝐶2
,

where Li2 is the dilogarithmic (Spence’s) function. Since the

first two terms of the rhs are negative for all 𝐶 , 𝜋2

12𝐶2
> 𝜖 , and

thus 𝐶 < 𝜋√
12𝜖

. As 𝜖 → 0, 𝐶 becomes large, and the first two

terms of the rhs go to 0 from below. Thus we have
𝜋2

12𝐶2
≈ 𝜖 ,

and 𝐶 ≈ 𝜋√
12𝜖

. □

Theorem C.12 (Asymptotic flip probabilities). Let
𝐷𝑁 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩ be data records drawn i.i.d. from dis-
tribution 𝐷 with corresponding Bayes-optimal probabilities
𝑃𝑁 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑁 ⟩ and corresponding weights 𝑊𝑁 =

⟨𝑤1,𝑤2, . . . ,𝑤𝑁 ⟩, where𝑤𝑖 = |2𝑝𝑖 − 1|. Assume𝑤𝑖 ∼𝑊 where
distribution𝑊 has pdf 𝑓 (𝑤) > 0 for 𝑤 ∈ [0, 1]. Let 𝑅𝑁 (𝜖)
denote the Rashomon set of models for error tolerance 𝜖 defined
over data records ⟨𝑑1, . . . , 𝑑𝑁 ⟩, and assume that 𝜖 is less than
half of the average weight, i.e.,

∫
1

0
𝑤 𝑓 (𝑤) 𝑑𝑤 > 2𝜖 . Consider

the flip probabilities 𝑞𝑁,𝑖 corresponding to Rashomon set 𝑅𝑁 (𝜖),
and define 𝑞𝑖 = lim𝑁→∞ 𝑞𝑁,𝑖 . Then

𝑞𝑖 =
1

1 + exp(𝐶 (𝜖)𝑤𝑖 )
,

where 𝐶 (𝜖) = 𝑔−1 (𝜖) and 𝑔(𝐶) =
∫
1

0

𝑤𝑓 (𝑤 )
1+exp(𝐶𝑤 ) 𝑑𝑤 .

Proof. The statement follows immediately from

Lemma C.6, which gives the functional form of 𝑞𝑖 , and

Corollary C.10, which gives the expression for 𝐶 . □

Remark. As a consequence of this theorem, for a Rashomon

set 𝑅𝑁 (𝜖) with 𝑁 large, we can obtain the flip probabilities

for each individual in two steps: (1) calculate the value of 𝐶

for the given weight distribution𝑊 and error tolerance 𝜖 ; and

(2) compute 𝑞𝑖 =
1

1+exp(𝐶𝑤𝑖 ) for each individual 𝑖 . To calcu-

late 𝐶 if the pdf 𝑓 (𝑤) of the weight distribution𝑊 is known,

we solve the integral equation 𝑔(𝐶) =
∫
1

0

𝑤𝑓 (𝑤 )
1+exp(𝐶𝑤 ) 𝑑𝑤 = 𝜖 .

Alternatively, given a finite dataset of size 𝑁 , we estimate the

true weight distribution𝑊 using the empirical distribution

𝑊𝑁 , and thus solve the equation
1

𝑁

∑
𝑖=1...𝑁

𝑤𝑖

1+exp(𝐶𝑤𝑖 ) = 𝜖 .

In either case, we note that the lhs decreases monotonically

with 𝐶 , allowing an efficient solution by binary search.

Theorem C.13 (Asymptotic size of Rashomon set). Let
𝐷𝑁 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩ be data records drawn i.i.d. from dis-
tribution 𝐷 with corresponding Bayes-optimal probabilities
𝑃𝑁 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑁 ⟩ and corresponding weights 𝑊𝑁 =

⟨𝑤1,𝑤2, . . . ,𝑤𝑁 ⟩, where𝑤𝑖 = |2𝑝𝑖 − 1|. Assume𝑤𝑖 ∼𝑊 where
distribution𝑊 has pdf 𝑓 (𝑤) > 0 for 𝑤 ∈ [0, 1]. Let 𝑅𝑁 (𝜖)
denote the Rashomon set of models for error tolerance 𝜖 defined
over data records ⟨𝑑1, . . . , 𝑑𝑁 ⟩, and assume that 𝜖 is less than
half of the average weight, i.e.,

∫
1

0
𝑤 𝑓 (𝑤) 𝑑𝑤 > 2𝜖 . Then

lim

𝑁→∞
log |𝑅𝑁 (𝜖) |

𝑁
= log𝐵(𝜖),

where 𝐵(𝜖) = exp

(∫ 𝜖

0
𝐶 (𝑥)𝑑𝑥

)
, 𝐶 (𝜖) = 𝑔−1 (𝜖), and 𝑔(𝐶) =∫

1

0

𝑤𝑓 (𝑤 )
1+exp(𝐶𝑤 ) 𝑑𝑤 .

Proof. The statement follows immediately from

Lemma C.7, which gives the size of the Rashomon set in

terms of𝐶 , and Corollary C.10, which gives the expression for

𝐶 . □

Remark. To compute the exponential base 𝐵(𝜖), and therefore
the Rashomon set size |𝑅𝑁 (𝜖) | = 𝐵(𝜖)𝑁 , given a finite dataset

of size 𝑁 , we can calculate the value of 𝐶 (𝜖) for a fine grid
of 𝜖 values by solving the equation

1

𝑁

∑
𝑖=1...𝑁

𝑤𝑖

1+exp(𝐶𝑤𝑖 ) =

𝜖 . We then use numerical integration to estimate 𝐵(𝜖) =

exp

(∫ 𝜖

0
𝐶 (𝑥)𝑑𝑥

)
. Alternatively, for 𝑁 → ∞ with a known

distribution of weights, 𝑤𝑖 ∼ 𝑊 with pdf 𝑓 (𝑤), we instead
solve the integral

∫
1

0

𝑤𝑓 (𝑤 )
1+exp(𝐶𝑤 ) 𝑑𝑤 = 𝜖 to obtain 𝐶 (𝜖).

Corollary C.14 (Asymptotic size of Rashomon

set for uniformly distributed weights). Let
𝐷𝑁 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑁 ⟩ be data records drawn i.i.d. from
distribution 𝐷 with corresponding Bayes-optimal proba-
bilities 𝑃𝑁 = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑁 ⟩ and corresponding weights
𝑊𝑁 = ⟨𝑤1,𝑤2, . . . ,𝑤𝑁 ⟩, where 𝑤𝑖 = |2𝑝𝑖 − 1|. Assume
𝑤𝑖 ∼ Uniform[0, 1]. Let 𝑅𝑁 (𝜖) denote the Rashomon set
of models for error tolerance 𝜖 defined over data records
⟨𝑑1, . . . , 𝑑𝑁 ⟩, and assume that 𝜖 is less than half of the average
weight, i.e.,

∫
1

0
𝑤 𝑓 (𝑤) 𝑑𝑤 > 2𝜖 . Then

lim

𝑁→∞
log |𝑅𝑁 (𝜖) |

𝑁
= log𝐵(𝜖),

where 𝐵(𝜖) = exp

(∫ 𝜖

0
𝐶 (𝑥)𝑑𝑥

)
, 𝐶 (𝜖) = 𝑔−1 (𝜖), and 𝑔(𝐶) =∫

1

0

𝑤
1+exp(𝐶𝑤 ) 𝑑𝑤 =

12 Li2 (−𝑒−𝐶 )−12𝐶 log(𝑒−𝐶+1)+𝜋2

12𝐶2
.

Moreover, 𝐵(𝜖) < exp

(
𝜋

√︃
𝜖
3

)
, and 𝐵(𝜖) ≈ exp

(
𝜋

√︃
𝜖
3

)
for

small 𝜖 .

Proof. The statement follows from Lemma C.7, which

gives the size of the Rashomon set in terms of 𝐶 , and

Corollary C.11, which gives the exact and approximate (up-

per bound) expressions for 𝐶 for uniform weights. Since

𝐶 (𝜖) < 𝜋√
12𝜖

, we know that 𝐵(𝜖) = exp

(∫ 𝜖

0
𝐶 (𝑥)𝑑𝑥

)
<

exp

(∫ 𝜖

0

𝜋√
12𝑥

𝑑𝑥

)
= exp

(
𝜋

√︃
𝜖
3

)
. And since 𝐶 (𝜖) ≈ 𝜋√

12𝜖
for

𝜖 → 0, we know that 𝐵(𝜖) ≈ exp

(
𝜋

√︃
𝜖
3

)
for 𝜖 → 0. □

D Description of benchmark datasets
Throughout this paper, we present experimental results on

three real-world datasets that are commonly used as bench-

marks in the fair machine learning literature: German Credit

(“German”), Adult, and Heritage Health (“Health”).

We use a preprocessed version of the German Credit

data [20] publicly available on Kaggle [14], which includes

credit risk as an outcome variable. Numerical attributes in

the dataset, namely 𝐴𝑔𝑒 , 𝐽𝑜𝑏, 𝐶𝑟𝑒𝑑𝑖𝑡 𝐴𝑚𝑜𝑢𝑛𝑡 , and 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛,

65



Be Intentional About Fairness!: Fairness, Size, and Multiplicity in the Rashomon Set EAAMO ’25, November 05–07, 2025, Pittsburgh, PA, USA

were discretized to a categorical attribute as follows: 𝐴𝑔𝑒 was

discretized based on whether 𝐴𝑔𝑒 ≥ 25 or otherwise; 𝐽𝑜𝑏 was

discretized based on the number of jobs (no job, one job, or

more than one job);𝐶𝑟𝑒𝑑𝑖𝑡 𝐴𝑚𝑜𝑢𝑛𝑡 , whose values range from

250 to 18, 400, was discretized into five bins; and 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛,

whose values range from 4 to 72, was discretized into five bins.

Categorical and binary attributes were unchanged. Finally,

attributes were 1-hot encoded.

We use a publicly available version of the Adult data [1],

which includes income as an outcome variable. Numerical

attributes in the dataset, namely 𝑎𝑔𝑒 , 𝑓 𝑛𝑙𝑤𝑔𝑡 (final weight),

education-num (education level), capital-gain, capital-loss, and
hours-per-week, were binarized using their median value as the

threshold. Categorical and binary attributes were unchanged.

Finally, attributes were 1-hot encoded.

We use a publicly available version of the Heritage Health

data [25]. We use similar features as the winning team, Market

Makers [27]. We generate the features using the SQL script

in the Appendix of [27], which generates the majority of the

variables in data set 1. Since the 𝑎𝑔𝑒𝑀𝐼𝑆𝑆 feature corresponds

to whether the age value is missing or not, all rows with

𝑎𝑔𝑒𝑀𝐼𝑆𝑆 = 1 were removed, and the 𝑎𝑔𝑒𝑀𝐼𝑆𝑆 feature was

dropped. Additionally, the sensitive feature 𝑆 was created with

𝑆 = 0 when the age is between 0 and 59 (𝑎𝑔𝑒_05 = 1 or

𝑎𝑔𝑒_15 = 1 or 𝑎𝑔𝑒_25 = 1 or 𝑎𝑔𝑒_35 = 1 or 𝑎𝑔𝑒_45 = 1 or

𝑎𝑔𝑒_55 = 1), and 𝑆 = 1 otherwise. Numerical attributes were

binarized using their median value as the threshold. Categori-

cal and binary attributes were unchanged. Finally, attributes

were 1-hot encoded.

In German Credit (𝑁 = 1, 000), there are 690 men (labeled

𝑔𝑒𝑛𝑑𝑒𝑟 = 1 in the dataset) and 310 women (𝑔𝑒𝑛𝑑𝑒𝑟 = 0). The

outcome variable (high risk) is whether an individual is consid-

ered high-risk for a loan. Women (𝑔𝑒𝑛𝑑𝑒𝑟 = 0) are the minority

class (31.0% of the dataset) and are disadvantaged (35.2% likely

to be considered high risk for a loan, vs. 27.7% for men).

In Adult (𝑁 = 46, 443), there are 15,203 women (labeled

𝑠𝑒𝑥 = 1 in the dataset) and 31,240 men (𝑠𝑒𝑥 = 0). The out-

come variable (𝑖𝑛𝑐𝑜𝑚𝑒) is whether a person has income over

$50,000. Women (𝑠𝑒𝑥 = 1) are the minority class (32.7% of the

dataset) and are disadvantaged (11.2% likely to be predicted

high income vs. 30.9% for men).

In Health (𝑁 = 184, 308), there are 73,535 individuals over

the age of 60 (labeled 𝑆 = 1 in the dataset) and 110,773 other

individuals (𝑆 = 0). The outcome variable (𝐷𝑎𝑦𝑠𝐼𝑛𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙)

represents whether a person will spend any days in the hop-

sital that year. Individuals over the age of 60 (𝑆 = 1) are the

minority class (39.9% of the dataset) and are disadvantaged

(𝐷𝑎𝑦𝑠𝐼𝑛𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 = 1 19.6% of the time, vs. 10.6% for others).

As noted in Section 4.3 above, we estimate the the Bayes-

optimal probabilities 𝑝𝑖 for all three datasets using 5-fold cross-

validation, using two different approaches, logistic regression

(main paper) and XGBoost (Appendix I). We report the cross-

validated accuracy scores for each dataset using the approx-

imate Bayes-optimal predictions 𝑓opt (𝑥𝑖 ) = 1{𝑝𝑖 > 0.5} and
observed outcomes 𝑦𝑖 . For logistic regression, accuracy was

73.7%, 84.4%, and 86.2% for German, Adult, and Health datasets

respectively. For XGBoost, accuracy was 69.4%, 84.3%, and

88.8% for German, Adult, and Health datasets respectively.

E Experiments on generalization to
previously unseen data

Given that our models (as characterized by flip vectors 𝜃 ) are

defined in terms of their labeling of the 𝑁 training samples

(as compared to the labels produced by the Bayes-optimal

classifier), one might ask how flip vectors correspond to gener-

alizable models that could be used to label previously unseen

test data. We consider two natural approaches for generaliza-

tion. First, for an arbitrary flip vector 𝜃 , we can consider its

corresponding labels 𝑦𝑖 = 1{(𝑝𝑖 > 0.5 and 𝜃𝑖 = 0) or (𝑝𝑖 ≤
0.5 and 𝜃𝑖 = 1)} as training data, and define the correspond-

ing 1-nearest neighbor classifier with ties in distance broken

uniformly at random. This would imply that, if a given test

sample has been seen one or more times in the training data,

its predicted label is drawn from the same distribution as the

training predictions, and if not, nearby points are used to as-

sign the label. In either case, this approach potentially results

in a randomized classifier. Alternatively, many flip vectors 𝜃

might be created by rules that generalize from training to test

data. Given that the Bayes-optimal classifier is estimated from

labeled data and that its probabilistic predictions can be used

to make classification decisions for previously unseen exam-

ples, a rule which defines how a given classifier deviates from

Bayes-optimal (e.g., by changing the classification threshold

from 0.5 to a different value, or by randomizing labels as a

function of the Bayes-optimal probability), will also generalize.

In particular, the algorithms we present for finding fairer

models through optimal search and random sampling general-

ize since they effectively create rules for how to deviate from

the Bayes-optimal predictor. For optimal search, separate pre-

diction thresholds are created for each class. For sampling, the

model disagrees with the Bayes-optimal prediction for each

new data record with probability 𝑞𝑖 =
1

1+exp(𝐶𝑤𝑖 ) . For each
value of the error tolerance 𝜖 , the prediction thresholds for

optimization and the constant 𝐶 for sampling can be learned

from one (unlabeled) sample of the data and generalize to

another.

To illustrate that our approach and results generalize in

practice, we perform the following experiment. For six differ-

ent trials, we split the Adult dataset into three partitions, using

one to estimate the Bayes-optimal probabilities Pr(𝑦 = 1 | 𝑥),
one to learn 𝐶 values for random sampling and class-specific

decision thresholds for PPR, FPR, and TPR optimization, and

one to recreate PPR, FPR, and TPR disparity curves (as a func-

tion of 𝜖) for our sampling method (green) and our optimal

search methods (blue). Critically, note that we do not use train-

ing labels for the second and third partitions, only for learning

the Bayes-optimal classifier. As shown in Figure 4 and Ap-

pendix I, Figure 17, for PPR and FPR, all six permutations of

the three partitions produced disparity curves that were very

close to each other and to the curves estimated from the entire

dataset with no splitting: all curves’ standard deviations and
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RMSEs, averaged across epsilon values, were less than 0.008.

The differences are larger for TPR, as expected for the small

effective sample size.

Thus the above experiment demonstrates that the flip vec-

tors 𝜃 learned by our optimal search and sampling approaches

can generalize from one “training” partition of the data to a

second “test” partition. This is not surprising given that the

training and test partitions are both unlabeled, while labeled

data is used only to estimate the Bayes-optimal model. The

above experiment also demonstrates the robustness of our

results to estimation of the Bayes-optimal model Pr(𝑦 = 1 | 𝑥).
Model estimates across the three partitions of the data differed,

yet we did not see substantial differences in disparity curves

generated either by optimization or by sampling. Similarly, our

conclusions remained consistent when using a different model

class to estimate Bayes-optimal probabilities (Appendix I).

F Additional results for Section 4.3
(Intentional Fairness)

Figures 5 and 6 show the disparity in false positive rate (FPR)

and true positive rate (TPR) respectively, as a function of the

error tolerance 𝜖 . These figures compare the methods for opti-

mizing FPR and TPR disparities over the Rashomon set 𝑅𝑁 (𝜖)
(Section 4.1) to uniform random sampling (Section 4.2) and

sampling linear models (Section 4.3.1). We see that both sets

of results are very similar to the results presented for PPR

disparity in Figure 1.

G Additional results for Section 5.2 and 5.3
(Flip Probabilities)

As noted in Section 5.2, we can exactly (in the large-sample

limit) and efficiently compute the average over the entire

Rashomon set 𝑅𝑁 (𝜖) of any metric (such as accuracy, PPR

disparity, FPR disparity, or TPR disparity) which can be de-

composed as a linear function, ℎ0
𝑖
+ ℎ1

𝑖
𝑓 (𝑥𝑖 ), of the individual

predictions 𝑓 (𝑥𝑖 ) using the flip probabilities 𝑞𝑁,𝑖 . To see this,

we can write:

1

|𝑅𝑁 (𝜖 ) |
∑︁

𝜃 ∈𝑅𝑁 (𝜖 )

∑︁
𝑖=1...𝑁

(ℎ0𝑖 + ℎ
1

𝑖 𝑓 (𝑥𝑖 ) )

=
1

|𝑅𝑁 (𝜖 ) |
∑︁

𝜃 ∈𝑅𝑁 (𝜖 )

∑︁
𝑖=1...𝑁

(ℎ0𝑖 + ℎ
1

𝑖 (𝜃𝑖1{𝑝𝑖 ≤ 0.5}

+(1 − 𝜃𝑖 )1{𝑝𝑖 > 0.5}) )

=
∑︁

𝑖=1...𝑁

ℎ0𝑖 +
∑︁

𝑖=1...𝑁

ℎ1𝑖
1

|𝑅𝑁 (𝜖 ) |
∑︁

𝜃 ∈𝑅𝑁 (𝜖 )
(𝜃𝑖1{𝑝𝑖 ≤ 0.5}

+(1 − 𝜃𝑖 )1{𝑝𝑖 > 0.5})
=

∑︁
𝑖=1...𝑁

ℎ0𝑖 +
∑︁

𝑖=1...𝑁

ℎ1𝑖 (1{𝑝𝑖 > 0.5} + (1{𝑝𝑖 ≤ 0.5}

− 1{𝑝𝑖 > 0.5})
∑

𝜃 ∈𝑅𝑁 (𝜖 ) 𝜃𝑖

|𝑅𝑁 (𝜖 ) |

)
=

∑︁
𝑖=1...𝑁

ℎ0𝑖 +
∑︁

𝑖=1...𝑁

ℎ1𝑖 (1{𝑝𝑖 > 0.5} + (1{𝑝𝑖 ≤ 0.5}

− 1{𝑝𝑖 > 0.5})𝑞𝑁,𝑖

)
.

Concretely, for accuracy we haveℎ0
𝑖
=

1−𝑝𝑖
𝑁

andℎ1
𝑖
=

2𝑝𝑖−1
𝑁

.

For PPR disparity, assuming wlog that subgroup 𝐴 has greater

PPR, we have ℎ0
𝑖
= 0 and ℎ1

𝑖
=

1{𝑑𝑖 ∈𝐴}
|𝐴 | − 1{𝑑𝑖 ∈𝐵}

|𝐵 | . For FPR

disparity, assuming wlog that subgroup 𝐴 has greater FPR, we

have ℎ0
𝑖
= 0 and ℎ1

𝑖
=

(1−𝑝𝑖 )1{𝑑𝑖 ∈𝐴}
| |1−𝑃𝐴 | |1 − (1−𝑝𝑖 )1{𝑑𝑖 ∈𝐵}

| |1−𝑃𝐵 | |1 . Finally,

For TPR disparity, assuming wlog that subgroup 𝐴 has greater

TPR, we have ℎ0
𝑖
= 0 and ℎ1

𝑖
=

𝑝𝑖1{𝑑𝑖 ∈𝐴}
| |𝑃𝐴 | |1 − 𝑝𝑖1{𝑑𝑖 ∈𝐵}

| |𝑃𝐵 | |1 .

Second, as noted in Section 5.2, comparing the amount of

arbitrariness (as defined by the average flip probability) across

demographic groups provides a very different notion of group

fairness compared to typical definitions including statistical

parity and error rate balance. As a simple proof-of-concept

example, imagine that we have two equally-sized subgroups

𝐴 and 𝐵 with Bayes-optimal probabilities 𝑝𝑖 = 0.6 for all

members of group 𝐴, while group 𝐵 is evenly split between

𝑝𝑖 = 0.51 and 𝑝𝑖 = 0.99. The Bayes-optimal classifier would

predict everyone as positive, leading to PPR = FPR = TPR = 1

for both groups and no observed disparities. Yet the average

flip probability for models in the Rashomon set 𝑅𝑁 (𝜖) would
be greater for one group than another depending on the value

of 𝜖 . For a small value of 𝜖 = .001, group 𝐵 would be 32% more

likely to be flipped than group 𝐴, while for a larger value of

𝜖 = .02, group 𝐵 would be 14% less likely to be flipped.

We now present three figures discussed in Section 5.3. In

Figure 7, we graph the overall (population average) flip prob-

ability for all three datasets for models sampled uniformly

at random from the Rashomon set 𝑅𝑁 (𝜖) as a function of 𝜖 ,

compared to sampling linear models from the Rashomon set

(as described in Section 4.2) and the models that optimize

PPR, FPR, and TPR over the Rashomon set (as described in

Section 4.1).

In Figure 8, we use the flip probabilities to compute the

average PPR, FPR, and TPR disparities of the entire Rashomon

set 𝑅𝑁 (𝜖) as a function of the error tolerance 𝜖 for the German,

Adult, and Health datasets. While these quantities can also

be approximated by sampling a large number of flip vectors

uniformly at random from the Rashomon set and computing

their sample averages, as described in Section 4.2, using the

flip probabilities is both exact and much more computationally

efficient. We see that the sample averages (orange curves) and

entire-Rashomon-set averages (blue curves) match closely in

Figure 8, but the orange curves include a small amount of

random noise while the blue curves are smooth.

In Figure 9, we compute the group average flip probabilities

for the protected and non-protected groups as a function of the

error tolerance 𝜖 for the German, Adult, and Health datasets.

H Additional results for Section 6.3.1
(Rashomon set size experiments)

We plot the Rashomon set size |𝑅𝑁 (𝜖) | for the German Credit,

Adult, and Health datasets in Figure 10. We observe that the

Rashomon set sizes are very large and scale rapidly with 𝜖 ,

since |𝑅𝑁 (𝜖) | = 𝐵(𝜖)𝑁 . For the maximum 𝜖 value we consider,

𝜖 = 0.02, we have 𝐵 = 1.32 for German Credit, 𝐵 = 1.22 for

Adult, and 𝐵 = 1.17 for Health.

Additionally, while we do not yet have a way of comput-

ing the (reduced) Rashomon set size when restricting our

search to the space of linear (𝐿2-penalized logistic regression)
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models as described in Section 4.3.1 above, we can neverthe-

less examine what fraction of the sampled linear models are

in the Rashomon set as a function of 𝜖 . This is shown (for

𝜖 ∈ {0.001, 0.002, . . . , 0.02}) for the German Credit, Adult, and

Health datasets in Figure 11. We see that, for the Adult and

Health datasets, most of the randomly sampled linear models

are in the Rashomon set, even for low 𝜖-values. For the Ger-

man Credit data, a substantial fraction of linear models are

not in the Rashomon set, even when 𝜖 is large.

I Robustness check: use of an alternate
model to estimate Bayes-optimal
probabilities

As noted above, the Bayes-optimal probabilities 𝑝𝑖 are un-

known for real-world datasets, but can be well-estimated using

sufficient training data. In the main paper, we used logistic

regression to estimate these probabilities. To check the robust-

ness of our results to the choice of model used for estimation of

𝑝𝑖 , we re-ran all experiments using the estimated probabilities

𝑝𝑖 from XGBoost models learned using 5-fold cross-validation.

Here we present results comparing our methods for optimizing

PPR (Section 4.1.1), optimizing FPR (Section 4.1.2), optimizing

TPR (Section 4.1.2), uniform random sampling (Section 4.2),

and sampling linear models (Section 4.3.1) over the Rashomon

set 𝑅𝑁 (𝜖). Results for PPR disparity, FPR disparity, TPR dispar-

ity, overall flip probability, and proportion of error tolerance

used, all using the XGBoost-generated probability estimates,

are shown in Figures 12-16. These can be compared to the

corresponding results for logistic regression-generated proba-

bility estimates for PPR disparity, FPR disparity, TPR disparity,

overall flip probability, and proportion of error tolerance used

in Figures 1, 5, 6, 7, and 3(right) respectively. The primary

difference we observe is that none of the randomly sampled

linear models were in the Rashomon set for the German and

Health datasets. For the Adult dataset, we observed randomly

sampled linear models in the Rashomon set for 𝜖 ≥ 0.008, as

compared to 𝜖 ≥ 0.001 for the logistic regression-generated

probability estimates. These differences are not surprising

given that linear models might not be able to fit the more com-

plex, non-linear relationships modeled by XGBoost. Otherwise,

results are very similar to those using the logistic regression-

generated probability estimates, supporting our conclusions

and policy takeaways above.
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Figure 4: Generalization experiments. Disparity in positive prediction rate (left), false positive rate (center), and true
positive rate (right) for the Adult dataset, as a function of the error tolerance 𝜖. For optimization (Section 4.1) (blue)
and uniform random sampling (Section 4.2) (green), the six dashed lines are formed using three separate partitions of
the data for learning the Bayes-optimal model, learning 𝐶 values for random sampling and class-specific decision
thresholds for optimization, and forming disparity curves respectively; the first partition is labeled data and the
second and third partitions are unlabeled. The solid lines represent our original results using the entire dataset.

Figure 5: Disparity in false positive rate for the German, Adult, and Health datasets, as a function of the error tolerance
𝜖. Comparison of methods for optimizing FPR (Section 4.1.2), uniform random sampling (Section 4.2), and sampling
linear models (Section 4.3.1) over the Rashomon set 𝑅𝑁 (𝜖).

Figure 6: Disparity in true positive rate for the German, Adult, and Health datasets, as a function of the error tolerance
𝜖. Comparison of methods for optimizing TPR (Section 4.1.2), uniform random sampling (Section 4.2), and sampling
linear models (Section 4.3.1) over the Rashomon set 𝑅𝑁 (𝜖).
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Figure 7: Overall (population average) flip probability for the German, Adult, and Health datasets, as a function
of the error tolerance 𝜖. Comparison of methods for optimizing PPR (Section 4.1.1), optimizing FPR (Section 4.1.2),
optimizing TPR (Section 4.1.2), uniform random sampling (Section 4.2), and sampling linear models (Section 4.3.1)
over the Rashomon set 𝑅𝑁 (𝜖).

Figure 8: Comparison of calculated PPR, FPR, and TPR disparities as a function of 𝜖 for the German, Adult, and Health
datasets. Blue curves: average disparity of the entire Rashomon set calculated using the flip probabilities, as described
in Appendix G. Orange curves: average disparity of 950 flip vectors sampled uniformly at random from the Rashomon
set, as described in Section 4.2

.
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Figure 9: Group average flip probability, comparison between protected group (solid lines) and non-protected group
(dashed lines), for the German, Adult, and Health datasets, as a function of the error tolerance 𝜖. Comparison of
methods for optimizing PPR (Section 4.1.1), optimizing FPR (Section 4.1.2), optimizing TPR (Section 4.1.2), and uniform
random sampling (Section 4.2), over the Rashomon set 𝑅𝑁 (𝜖).

Figure 10: Rashomon set size |𝑅𝑁 (𝜖) | for the German Credit, Adult, and Health datasets. Note the logarithmic scale of
the 𝑦-axis.

Figure 11: Proportion of randomly sampled linear models that are in the Rashomon set 𝑅𝑁 (𝜖) as a function of the
error tolerance 𝜖, for the German Credit (left), Adult (center), and Health (right) datasets. The 𝑦-axis represents how
many of the 1000 randomly sampled linear models are (blue) and are not (orange) in the Rashomon set.
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Figure 12: Robustness check using XGBoost instead of logistic regression to estimate Bayes-optimal probabilities.
Disparity in positive prediction rate for the German, Adult, and Health datasets, as a function of the error tolerance 𝜖.
Comparison of methods for optimizing PPR (Section 4.1.1), uniform random sampling (Section 4.2), and sampling
linear models (Section 4.3.1) over the Rashomon set 𝑅𝑁 (𝜖). Note that no linear models were in the Rashomon set for
German and Health datasets.

Figure 13: Robustness check using XGBoost instead of logistic regression to estimate Bayes-optimal probabilities.
Disparity in false positive rate for the German, Adult, and Health datasets, as a function of the error tolerance 𝜖.
Comparison of methods for optimizing FPR (Section 4.1.2), uniform random sampling (Section 4.2), and sampling
linear models (Section 4.3.1) over the Rashomon set 𝑅𝑁 (𝜖). Note that no linear models were in the Rashomon set for
German and Health datasets.

Figure 14: Robustness check using XGBoost instead of logistic regression to estimate Bayes-optimal probabilities.
Disparity in true positive rate for the German, Adult, and Health datasets, as a function of the error tolerance 𝜖.
Comparison of methods for optimizing TPR (Section 4.1.2), uniform random sampling (Section 4.2), and sampling
linear models (Section 4.3.1) over the Rashomon set 𝑅𝑁 (𝜖). Note that no linear models were in the Rashomon set for
German and Health datasets.
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Figure 15: Robustness check using XGBoost instead of logistic regression to estimate Bayes-optimal probabilities.
Overall (population average) flip probability for the German, Adult, and Health datasets, as a function of the error
tolerance 𝜖. Comparison of methods for optimizing PPR (Section 4.1.1), optimizing FPR (Section 4.1.2), optimizing TPR
(Section 4.1.2), uniform random sampling (Section 4.2), and sampling linear models (Section 4.3.1) over the Rashomon
set 𝑅𝑁 (𝜖). Note that no linear models were in the Rashomon set for German and Health datasets.

Figure 16: Robustness check using XGBoost instead of logistic regression to estimate Bayes-optimal probabilities.
Proportion of error tolerance used, 𝜃 ·𝑊𝑁

𝑁𝜖
, for the German, Adult, and Health datasets, as a function of the error

tolerance 𝜖. Comparison of methods for optimizing PPR (Section 4.1.1), optimizing FPR (Section 4.1.2), optimizing TPR
(Section 4.1.2), uniform random sampling (Section 4.2), and sampling linear models (Section 4.3.1) over the Rashomon
set 𝑅𝑁 (𝜖). Note that no linear models were in the Rashomon set for German and Health datasets.

Figure 17: Robustness check using XGBoost instead of logistic regression to estimate Bayes-optimal probabilities.
Disparity in positive prediction rate (left), false positive rate (center), and true positive rate (right) for the Adult dataset,
as a function of the error tolerance 𝜖. For optimization (Section 4.1) (blue) and uniform random sampling (Section 4.2)
(green), the six dashed lines are formed using three separate partitions of the data for learning the Bayes-optimal
model, learning 𝐶 values for random sampling and class-specific decision thresholds for optimization, and forming
disparity curves respectively; the first partition is labeled data and the second and third partitions are unlabeled. The
solid lines represent our original results using the entire dataset.
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