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Abstract

When selecting a model from a set of equally performant
models, how much unfairness can you really reduce? Is it im-
portant to be intentional about fairness when choosing among
this set, or is arbitrarily choosing among the set of “good”
models good enough? Recent work has highlighted that the
phenomenon of model multiplicity—where multiple models
with nearly identical predictive accuracy exist for the same
task—has both positive and negative implications for fairness,
from strengthening the enforcement of civil rights law in AI
systems to showcasing arbitrariness in Al decision-making.
Despite the enormous implications of model multiplicity, there
is little work that explores the properties of sets of equally ac-
curate models, or Rashomon sets, in general. In this paper, we
present theoretical and methodological contributions which
help us to understand the relatively unexplored properties of
the Rashomon set, in particular with regards to fairness. Our
contributions include methods for efficiently sampling models
from this set and techniques for identifying the fairest mod-
els according to key fairness metrics such as statistical parity.
We also derive the probability that an individual’s prediction
will be flipped within the Rashomon set, as well as expres-
sions for the set’s size and the distribution of error tolerance
used across models. These results lead to policy-relevant take-
aways, such as the importance of intentionally looking for fair
models within the Rashomon set, and understanding which
individuals or groups may be more susceptible to arbitrary
decisions.
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1 Introduction

Recent work has drawn renewed attention to the fact that there
are often many (approximately) equally accurate models avail-
able for the same prediction task [5, 7, 23]. This phenomenon—
often called the Rashomon effect [7], predictive multiplic-
ity [23], or model multiplicity [5]—has wide-ranging implica-
tions for both understanding and improving fairness, as these
equally accurate models often differ substantially in other
properties such as fairness [22, 29] or model simplicity [31-
33].

As prior work has pointed out, this multiplicity of models
can be viewed as both a fairness opportunity and a concern [5,
11]. On the positive side, legal scholarship has pointed to the
fact that model multiplicity is relevant to how to interpret
and enforce U.S. anti-discrimination law, and specifically, can
strengthen the disparate impact doctrine to more effectively
combat algorithmic discrimination [3]. In a recent paper, Black
et al. [3] suggest that the phenomenon of model multiplicity
could support a reading of the disparate impact doctrine that
requires companies to proactively search the set of equally
accurate models for less discriminatory alternatives that have
equivalent accuracy to a base model deemed acceptable for
deployment from a model performance perspective.
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On the negative side, several scholars have pointed out that
facially similar models, with equivalent accuracy but differ-
ences in their individual predictions, can suggest that some
model decisions are arbitrary since they seem to be made on
the basis of model choice that does not impact performance
(e.g.,a<1% change in a model’s training set accuracy) 2, 18, 23].
This arbitrariness can impact model explanations and recourse
as well: individuals with decisions that are unstable across
small model changes may not receive reliable explanations for
their model outcome, or ways to change it [4, 6, 26]. Further,
if there is a group-based asymmetry of arbitrariness—e.g., if fe-
male loan applicants have more arbitrariness in their decisions
than male loan applicants— this could lead to a group-based
equity concern in and of itself.

Understanding the extent of the benefits and risks of model
multiplicity relies upon an understanding of the properties of
the Rashomon set, or the set of approximately equally accurate
models for a given prediction task, i.e., equally accurate up to
some error tolerance €. While models in the Rashomon set are
considered equivalent from a performance perspective, they
may differ substantially in other properties—for the purposes
of our paper, we focus on fairness. In order to understand the
utility of searching for fairer models within the Rashomon
set as suggested by recent legal literature, or the extent of the
dangers of arbitrariness surfaced by the algorithmic fairness
community, we need to understand more about Rashomon
sets themselves. For example, whether companies should be
required to search for less discriminatory models [3] rests on
the question of how much of the disparity can be reduced by
optimizing over the Rashomon set, as compared to choosing
an arbitrary model without regard to fairness. In other words,
how much do we gain by being intentional about fairness
when selecting models within the Rashomon set? Similarly,
concerns about arbitrariness relate to rates and distributions
of the chance that an individual will have their prediction
changed—is this arbitrariness harmful if only predictions
that are very uncertain get flipped, or if all demographic groups
have an equal chance of flipping? We can shed light on these
important questions by understanding even basic facts about
the Rashomon set, such as: what does a randomly sampled
model from the Rashomon set look like? What is the average
fairness for various metrics on the Rashomon set? How might
one search through the Rashomon set? Can we find the fairest
model within the Rashomon set? What is the chance that any
one individual might experience a change in prediction in the
Rashomon set? Or even, how large is the Rashomon set?
Despite the enormous implications of model multiplicity, there
is little work that explores the properties of Rashomon sets in
general.

In this paper, we present six main theoretical and method-
ological contributions that answer the above questions and
more—furthering our understanding of the relatively unex-
plored properties of the Rashomon set, in particular with re-
gards to fairness:
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e First, we define the largest possible Rashomon set Ry (€),
for N records drawn from a given data distribution,
assuming an allowable error tolerance of €. This novel
conceptualization of the Rashomon set, based on de-
viations from the Bayes-optimal model, enables us to
explore fundamental questions related to fairness, set
size, model selection, and individual predictions.

e Second, we develop an efficient method for sampling
models uniformly at random from within the Rashomon
set.

o Third, we present two computationally efficient meth-
ods to find the fairest model within the Rashomon set,
for statistical parity and error rate balance respectively.

e Fourth, we derive the asymptotic probability that any
individual will have their prediction flipped within the
models of the Rashomon set for a given e.

o Fifth, we derive a closed-form expression for the size
of the Rashomon set for a given N and e.

e Sixth, we show that for sufficiently large datasets and
small enough €, models in the Rashomon set will use
the full error tolerance (i.e., the average accuracy of
models in Ry (€) converges to the accuracy of the Bayes-
optimal model minus €).

These theoretical results create important newfound under-
standing of the Rashomon set with a focus on fairness and
fairness-relevant properties— to our knowledge, there are no
results about how to sample randomly from the Rashomon
set, Rashomon set size, individual flip probabilities within
the Rashomon set, and the distribution of error used in the
Rashomon set for any generalized theoretical setup. While
concurrent work has shown that finding the fairest model
within the Rashomon set is hard (NP-hard) in general [22], we
are able to show that under certain conditions we can find the
fairest model very efficiently.

Further, our theoretical results lead us to some interesting,
policy-relevant takeaways, which we expand on further in
Sections 4-6 and support with experiments on three datasets:

A. We can gain a lot of fairness by intentionally search-
ing for fairer models within the set of equally accurate
models. Sampling randomly within the Rashomon set—
only optimizing for accuracy when selecting a model
and hoping that it is fair— will yield a much less fair
model than searching for the fairest possible model even
among those that are approximately equally accurate, so
explicitly optimizing for fairness within the Rashomon
set is important.

B. We can calculate the probability that any given individ-
ual will experience a flip in prediction among models in
the (largest possible) Rashomon set. This allows us to
shed light on the fates of individuals in the Rashomon
set and potential inequities in flip probabilities when
viewing inconsistency in the Rashomon set as a source
of arbitrariness. We can see what factors—such as the
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distribution of prediction certainty and other dataset-
specific factors—influence the individual and overall
probability of flipping in a given Rashomon set.

C. Finally, our theoretical results allow us to understand
the size of the Rashomon set and the amount of error
tolerance used on average within the set. In particular,
we derive large-sample convergence results for the size
of the Rashomon set over N data records, as a function
of the error tolerance €. These results point to two take-
aways that may influence how companies approach the
search for less discriminatory models. First, the size of
the Rashomon set increases very quickly in €. Second,
as the dataset increases in size, the average model in the
Rashomon set uses all of the error tolerance (i.e., has
accuracy € less than the base model). Thus, a company
may want to set as high an e value as possible, to get a
larger set of models in the Rashomon set and maximize
their opportunity to find a fairer model, but they should
expect the majority of models to use all of the error
tolerance €.

The remainder of the paper will proceed as follows: af-
ter discussing related work in Section 2, we will outline our
theoretical setup and notation in Section 3. We then turn to
presenting our theoretical work and policy takeaways together
in the next three sections: in Section 4, we present new, effi-
cient optimization and sampling approaches to find the fairest
model and to sample a model uniformly at random from the
Rashomon set, respectively, and demonstrate how that leads
to our results showing the importance of intentionally search-
ing for fair models. Next, in Section 5, we present our results
on individual prediction flip probabilities, and how this sheds
light on arbitrariness and other fairness properties within the
Rashomon set. Finally, in Section 6, we introduce our results
on Rashomon set size and use of the error tolerance ¢, and
discuss how they can inform how one might search within the
Rashomon set for fairer models. Following this, in Sections 7
and 8, we discuss how our modeling set-up relates to practi-
cal searches for less discriminatory models, and conclude the

paper.

2 Related work and Legal Background

Related Work. There has been a growing stream of work ex-
ploring the phenomenon of multiple approximately equally ac-
curate models existing for the same prediction task [5, 7, 10, 12,
23, 30, 31, 34]. Outside of fairness concerns, a series of papers
have demonstrated how model multiplicity can be harnessed
to find simpler models within the Rashomon set [13, 31, 33],
how the existence of multiple equally accurate models can
disrupt model explainability [6, 26], and how sets of equally
accurate models can differ greatly in their adversarial robust-
ness [12]. Most related to this work, a series of papers fo-
cusing on interpretability of models within the Rashomon
set have demonstrated how to search for more interpretable
models in practice for particular model classes, e.g., decision
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trees [24, 35], and have provided empirical observations of
Rashomon set size for given model classes [35].

Within literature related to fairness concerns, two main
themes have emerged: the optimistic vision of using the vari-
ability within the Rashomon set to achieve fairness goals with
little impact on accuracy [3, 17, 29], and works bringing to
light concerns about the arbitrariness of individual decisions
from models with many nearly equally accurate counterparts
that differ in their predictions, explanations, or other prop-
erties [2, 9, 18, 23]. On the arbitrariness side, many works
show how models with minimal differences between them—
e.g, a change in random seed or sampling of training data—can
result in models with different predictions for certain indi-
viduals [2, 9, 18, 23]. In this line of work, perhaps the most
related is [9], who show empirically that different individuals
have radically different chances of experiencing a change in
prediction among approximately equivalent models. In our
work, we derive the exact probability that an individual will
experience a change in prediction in the Rashomon set, and
show that this probability varies as a result of a person’s un-
derlying certainty of prediction as well as dataset-dependent
factors.

On the fairness side, some of the most related works touch
on the details of searching through the Rashomon set for
less discriminatory models, or less discriminatory alternatives
(LDAs). For example, Gillis et al. [17] outline what an LDA
search may look like in practice, and develop an algorithm
for searching through the set of linear models for the least
discriminatory alternative. Perhaps the most closely related
work, by Laufer et al. [22], outlines a series of theoretical
results related to the search for less discriminatory models
within the Rashomon set, such as the computational hardness
of finding fairer models within the Rashomon set in general,
the theoretical limits of fairness within the Rashomon set,
and problems around generalizability of less discriminatory
models discovered through search. The paper largely points to
difficulties around finding a fairer model within the Rashomon
set. In contrast, on a high level, one of the major points of our
work is to showcase the importance of intentionally searching
for fairer models within the Rashomon set, by showing the
immense fairness difference between models randomly chosen
from the Rashomon set (i.e., on the basis of accuracy alone)
and the fairest models within the Rashomon set. More gener-
ally, our work presents, for the first time, general properties
about the Rashomon set itself— such as the average fairness
of models within the Rashomon set, the probability that any
individual within the Rashomon set will experience a change
in prediction across the models in the set, Rashomon set size,
the distribution of model error within the Rashomon set, and
others—and discusses how these results influence our under-
standing of not only how to search for fairer models within the
Rashomon set, but also how we think about the arbitrariness
of individual decisions within the Rashomon set.

Legal Background and LDA Search. We now discuss some
of the legal background necessary to understanding how
model multiplicity can strengthen the enforcement of civil
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rights law in Al systems— but also raises important questions
about the utility of searching through the Rashomon set for
fairer models. Multiplicity relates to the interpretation and
enforcement of civil rights law most directly through the dis-
parate impact doctrine. The disparate impact doctrine applies
in decision making systems determining access to credit, hous-
ing, and employment opportunities, stating that it is illegal
to have a decision-making system that distributes these op-
portunities across different protected demographic groups at
different rates unless it is a “business necessity”. In practice,
the disparate impact doctrine is enforced through a three-step
process. First, a plaintiff finds evidence of a decision-making
system within a company that distributes opportunities at dif-
ferent rates among demographic groups, such as a bank that
approves loans to more men than women. Next, the company
argues that this disparate impact is a business necessity—while
there is no exact description of what a business necessity is, a
general understanding is that the disparity would be necessary
for the business to function. In the case of Al decision-making
systems, this is often argued by stating that the algorithm
used has the highest accuracy possible, that this accuracy is
necessary for business function, and that the observed dis-
parity is necessary to achieve this accuracy. However, even
if this business necessity defense is accepted, if the plaintiff
can demonstrate that there is a less discriminatory alterna-
tive decision-making system that satisfies business necessity
but reduces disparate impact, the firm can be legally liable
for the discrimination they have caused, and forced to use
the less discriminatory alternative. In the case of algorithmic
systems, i.e., when the alternative decision-making system is
another algorithm, we follow [3] in calling the less discrimina-
tory alternative algorithm an LDA. Thus, companies subject
to the disparate impact doctrine are theoretically incentivized
to search for less discriminatory yet still effective models, for
fear of being held liable should another entity find a less dis-
criminatory alternative.! Some businesses, mostly financial
institutions, do this in practice, though domain experts note
that “there is an uneven landscape with respect to how or
whether institutions assess their models for discrimination,
and the effectiveness of existing programs” [28].

In a recent paper, Black et al. [3] outline a novel interpre-
tation of the disparate impact doctrine that puts even greater
pressure on companies to search for LDAs. They suggest that
since multiple equally accurate models exist for the same pre-
diction task—some of which will likely have different fairness
properties— the business necessity argument fails to make
sense, and instead, a company should do a proactive search
through the Rashomon set of equally accurate models in order
to ensure there is no less discriminatory model easily available.
A critical question that this raises, however, is how much of
the disparity can be reduced by optimizing over the Rashomon

'While we are aware that Executive Order (EO) 14281 takes a stance against
disparate impact as a theory of discrimination and directs federal agencies to
de-prioritize enforcement of disparate impact liability, it is the authors’ view
that despite this EO, the written law has not changed, the threat of liability
remains, and will continue to be important in the future.
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set, as compared to choosing an arbitrary model within that set
without regard to fairness. In other words, how much do we
gain by being intentional about fairness within the Rashomon
set—by looking for fair models among those that are approxi-
mately equally accurate? In this paper, we show that it is well
worth it to search for fairer models within the Rashomon set,
and that being intentional about doing so is important, as well
as other critical insights about the Rashomon set.

3 Preliminaries and Notation

In this section, we introduce the mathematical setup and
assumptions behind our theoretical results and discuss the
implications of these decisions. To define the Rashomon set
of approximately equally accurate models, we consider four
questions: (i) how do we define a model? (ii) when are models
considered distinct? (iii) how do we measure the accuracy of
a model? and (iv) if the Rashomon set consists of all models
with accuracy within € of some “optimal” model, how is that

model defined?

Basics and Model Definition. To answer the first and
second questions above, we consider Rashomon sets in the
finite-sample case, i.e., assuming we have a fixed number of
data records N. Later in the paper, we present theoretical
results in the large-sample case, as N goes to infinity.
Additional preliminaries and assumptions necessary for those
results are presented in Section 5.1. Let Dy = (d1,d2, ..., dN)
be a set of N data records drawn i.i.d. from distribution D.
We focus on the binary classification setting, where each
data record d; = (xj,y;), x; = {xij} represents a set of input
features (including a binary sensitive attribute which we
denote as A;), and y; is a binary outcome variable. Thus
our models are binary classification models, which predict
an outcome in {0,1}. We define a predictive model by its
classification §j; = f(x;) for each data record d;, that is, by its
mapping from input features x; to decisions {0, 1} on the data
Dy . Thus, there are 2N distinct models possible for a set of
data records of size N—note that this is the exhaustive set of
all possible mappings defined over the N data records. Thus
we term the Rashomon set Ry(e) of approximately
equally accurate models within this set of 2V models
as the largest possible Rashomon set for error tolerance
€, because it places no restrictions on the model class,
smoothness or consistency of predictions.

Model Accuracy and Optimal Model. Our answers to the
third and fourth questions above rely on the concept of a
Bayes-optimal classifier fopt(x;). This model is assumed to
have access to the true probabilities p; = Pr(y = 1| x = x;)
but not the observed labels y;. In other words, the Bayes-
optimal classifier has access to the underlying probability
that given the available input information, an individual
data record will have true outcome y = 1 in the classifica-
tion problem (e.g., the probability that an individual will re-
pay a loan based on their application), but not the actual
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outcome (whether or not that individual defaulted on the
loan). The Bayes-optimal classifier predicts fopt(x;) = 1 if
pi > 0.5, and fopt(x;) = 0 otherwise, and has the highest
expected classification accuracy, E[max(p;, 1 — p;)], among
all classifiers using the same set of features x. Thus, given
the data records Dy = (d1,da, . ..,dn) and the correspond-
ing true probabilities Py = {p1,p2,--.,PN), we define the
Rashomon set Ry (€) for error tolerance € as the set of all
models with expected classification accuracy greater than or
equal to E[max(p;, 1 — p;)] — €.

This definition has the advantage of not allowing
models to overfit the observed data, since expected error
is calculated as a function of the underlying probability p;
of an input x having an outcome of 1. If we instead used
the observed labels y; and computed the empirical accuracy
E[1{f(x;) = yi}], a non-Bayes-optimal model (e.g., a classifier
trained on the test data D) could obtain higher empirical
accuracy than the Bayes-optimal model, e.g., by predicting
f(xi) = 1 for a data record that was a priori unlikely to have
y; = 1 (i.e, p; < 0.5) but just happens to have y; = 1 in this
instance. We discuss generalizability further in Section 7
below.

Defining Other Models in The Rashomon Set. To more
easily determine which of the 2V possible models (mappings
of each d;, i € {1,...,N}, to {0,1}) belong to the Rashomon
set Ry (€), we represent each possible model by a binary flip
vector representing its changes in prediction from the Bayes-
optimal model. This allows us to easily tell which models are
in the Rashomon set, since we can easily calculate a model’s
error difference from the Bayes-optimal model using its flip
vector. In particular, we define a flip vector 6 € {0, I}N , where
0; = 1if f(x;) # fopt(x;), and 0; = 0 if f(x;) = fopt(xi). The
Bayes-optimal model fopt(+) has a corresponding flip vector
0o consisting of N zeros. We can then compute the accuracy
of any model f(-) with corresponding flip vector 6, which we
denote as acc(0), as acc(0) = acc(6y) — ﬁ Yi=1..N 0il2pi — 1].
This follows from the fact that the Bayes-optimal classifier’s
probability of predicting y; correctly is max(p;, 1 — p;), while
the flipped prediction (6; = 1) would be correct with proba-
bility min(p;, 1 — p;), leading to a difference of |2p; — 1|. We
thus define the weight w; corresponding to probability p; as
w; = |2p; — 1|. These weights can be thought of as the Bayes-
optimal classifier’s confidence in each positive or negative
prediction, and range from 0 (for p; = 0.5) to 1 (for p; = 0 or
pi = 1). Let Wy = (w1, wa, ..., wn) be the weight vector for
data records (di,do, . ..,dN), and then we can write:
0-Wn

acc(0) = acc(6y) — N

Finally, for a given error tolerance €, we define the largest
possible Rashomon set Ry (¢) as all flip vectors 8 € {0, 1}V
with acc(0) > acc(6p) — €, and thus:

Ry(e) = {ee {0, 1}V : 9% < e},
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The critical takeaway here is that we can enumerate
all of the models in the Rashomon set by checking to
see which of the 2V possible flip vectors fall within the
accuracy constraint e. But since it would be too costly in
practice to do this for all 2V flip vectors, we show below how
to randomly sample (efficiently) from the Rashomon set—and
how to find the fairest model.

4 The Importance of Intentional Fairness

A natural question that may come up when considering search-
ing for fairer models within the Rashomon set is—is it worth
it? While it is clear that intentionally searching for fair mod-
els without a strict bound on accuracy leads to large fairness
gains, it is not obvious a priori that this holds true within sets
of models that are approximately equally accurate. What if the
fairness of all the models in the Rashomon set is more or less
the same, and a randomly sampled model—akin to selecting a
model solely on the basis of accuracy and not paying attention
to fairness—is just as fair as the fairest ones within the set? We
show that this is definitely not the case— the fairness differ-
ence between the average, or randomly sampled, model within
the Rashomon set and the fairest models can be very large. We
also show experimentally that how you look for fairer models
can influence your success—while searching directly for the
fairest model is always the most effective method, whether
or not you can reach significantly fairer models by randomly
sampling models in the Rashomon set is dataset-dependent,
and also depends on how you search.

To compare what we gain by being intentional or arbitrary
about fairness within the Rashomon set, we must show both
how to draw randomly from the Rashomon set and how to
find the fairest model. We present novel, computationally
efficient approaches for (i) optimizing different fairness met-
rics over the Rashomon set, as described in Section 4.1; and (ii)
sampling models uniformly at random from the Rashomon set,
as described in Section 4.2. We also describe a simple baseline
for comparison in Section 4.3.1: restricting the model class
(here we assume penalized logistic regression models) and
learning models from that class with different sources of ran-
dom variation. We compare the fairness of the models found
by the optimization, uniform sampling, and restricted model
class approaches in Section 4.3, and explore policy takeaways
in Section 4.4.

4.1 Optimizing fairness over the Rashomon
set

Despite computational hardness results for finding the fairest
model in the Rashomon set [22], we show that under certain
conditions, it is possible to find the fairest model within the
Rashomon set Ry (€) defined on N data records in log-linear
time, O(N log N). In particular, when we are concerned with
mitigating demographic disparity (i.e., equalizing the positive
prediction rate or PPR) between two groups, we show that
we can find the exact fairest model within the Rashomon set.
For equalizing false positive rate (FPR) or true positive rate
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Figure 1: Disparity in positive prediction rate for the German, Adult, and Health datasets, as a function of the error
tolerance ¢. Comparison of methods for optimizing PPR (Section 4.1.1), uniform random sampling (Section 4.2), and
sampling linear models (Section 4.3.1) over the Rashomon set Ry (¢).

(TPR) between two groups, we can find a model which is
guaranteed to have error rate disparity no more than 0(%)
higher than the fairest model. As we show in Section 4.3, using
these algorithms on three real-world datasets, we see that in
practice, it is often possible to completely eradicate disparities
by searching within the Rashomon set for very small e— less
than half of a percent in many cases.

For PPR, FPR, and TPR, we can express the optimization
of the fairness criterion over flip vectors 0, subject to the
constraint that 6 is in the Rashomon set Ry (€), as a knapsack
problem, where each data record d; has a weight w; = |2p; — 1|
corresponding to the error incurred by its flip, and a value
v; corresponding to how much it reduces disparity. A flip
occurring, i.e., §; = 1, corresponds to the inclusion of element
i in the knapsack, adding w; to the total weight and v; to the
total value. The 0-1 knapsack problem is then the constrained
optimization with capacity Ne: max ); 0;v; subject to 6; €
{0,1} and }}; 6;w; < Ne.

We note that concurrent work by Laufer et al. [22] formu-
lates the optimization of fairness over the Rashomon set as
a subset sum problem (closely related to the knapsack prob-
lem) and uses this equivalence to show that their problem (i)
is NP-hard to solve in general, and (ii) can be approximated
in O(N?) time. While the knapsack problem is also NP-hard
in general, we present efficient O(N log N) solutions for the
special cases below.

4.1.1 Optimizing for statistical parity. We present an efficient,
O(N log N) knapsack approach to find the exact fairest model
that minimizes PPR disparity over the Rashomon set Ry (¢),
as described in detail in Appendix A.1, Algorithm 1. The goal
of this algorithm is to find the individual predictions to flip
(setting 0; = 1) to reduce disparity, until we either use up the
entire error tolerance € or completely remove the disparity.
Intuitively, we want to flip individuals who will increase the
error as little as possible (low weights w;) and reduce the
disparity as much as possible (high values v;).

The key idea for making this efficient is that there are only
two distinct values of v;: for instance, if group A has a higher
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positive prediction rate, flipping the prediction of an indi-
vidual in group A from 1 to 0 reduces the disparity by ﬁ,
flipping the prediction of an individual in group B from 0 to
1 reduces the disparity by |T£\’ and other flips would increase
disparity. In this case, the optimal knapsack solution is to
flip the predictions of the k4 lowest-weight individuals with
fopt(xi) = 1 from group A and the kg lowest-weight individ-
uals with fopt(x;) = 0 from group B. We can then find the
optimal values of k4 and kg (that minimize disparity while
satisfying the constraint on accuracy) through a linear-time,
incremental search, as shown in Appendix A.1, Algorithm 1,
and thus the run time is dominated by the O(N log N) sorting
of items by weight.

4.1.2 Optimizing for error rate balance. We present an effi-
cient, O(N log N) fractional knapsack approach to find the
model that minimizes FPR or TPR disparity over the Rashomon
set Ry (€), to within O(ﬁ) of the optimal disparity, as de-
scribed in detail in Appendix A.2, Algorithm 2. Again, the goal
of this algorithm is to find the lowest-cost individual predic-
tions to flip to reduce disparity, until we either use up the
entire error tolerance € or completely remove the disparity.

In this case, however, there are more than two distinct val-
ues of v; (how much flipping an individual reduces disparity)
so the PPR solution described above does not work. Instead we
use an approximation, the fractional knapsack solution, which
flips individuals’ predictions (setting §; = 1) in descending
order of the ratio of their value v; (the amount they reduce
the model’s disparity) to their weight w; (the amount they
increase the model’s error). This continues until an individual
will not “fit” in the knapsack since maximum weight (i.e., error
threshold) is reached. Then, a “fraction” of this individual is
added to the knapsack. In our case, we cannot flip a fraction of
an individual— thus, rather than adding the fractional element,
we show that it would reduce disparity by an amount 6;v; that
is O(ﬁ). Since the fractional knapsack solution }; 6;v; is an
upper bound on the 0-1 knapsack solution, we know that our
solution (excluding the fractional element) reduces disparity
to within O( %) of the optimal disparity.
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4.2 Sampling models uniformly at random
from the Rashomon set

We now turn to showing how we can sample models uni-
formly from the Rashomon set, which shows us what typical
models from the Rashomon set look like. While we could just
sample random flip vectors and keep the ones that are in the
Rashomon set, this approach will be ineffective: as we discuss
in Appendix B, the vast majority of flip vectors will not be in
the Rashomon set. Instead, we propose a new approach based
on Gibbs sampling [15] to sample models uniformly from the
Rashomon set. This approach, described in Appendix B, Algo-
rithm 3, is computationally efficient, requiring O(N) time per
sample.

The key idea of Gibbs sampling is to exploit knowledge
of conditional distributions even when the full distribution is
unknown. In our setting, while we do not know the joint dis-
tribution of flip probabilities € for all records in the dataset, we
can easily compute the chance that a data record d; will flip
(6; = 1) conditional on which other data records are flipped
(0-;). We show in Appendix B that there are only two possi-
bilities: if the flip vector 6;=; (with 6; = 1 and all other flips
the same as 6_;) is in the Rashomon set, then there is a 50/50
chance that 6; = 1, and otherwise we know 0; = 0. We can
then redraw 0; with the corresponding probability (either 0.5
or 0) of being 1. Given this simple and computationally effi-
cient conditional sampling step, our Gibbs sampling approach
starts with the zero vector 0, which is guaranteed to be in the
Rashomon set, and iteratively samples 6; (given the current
values of 0_;) for all N data elements. To ensure uncorrelated
samples from the joint distribution, we take one sample ev-
ery 10 iterations (where one iteration includes resampling
all N elements of 6 in randomly permuted order), after an
initial burn-in period of 500 iterations. For each dataset and
each value of € considered, we run 10,000 iterations of Gibbs
sampling, resulting in 950 samples.

4.3 Experiments on real data

We now describe our experimental design for comparing ran-
domly sampled and optimally fair models within Rashomon
sets on real data, showing the importance of intentional fair-
ness. Throughout this paper, we present experimental results
on three real-world datasets that are commonly used as bench-
marks in the fair machine learning literature: German Credit
(“German”), Adult, and Heritage Health (“Health”). Details of
all three datasets are described in Appendix D.

As noted above, the Bayes-optimal probabilities p; are un-
known for these real-world datasets, but can be well-estimated
using sufficient training data. Since we wish to compare the
methods over all N data records (N = 1,000 for German,
N = 46,443 for Adult, and N = 184,308 for Health), we per-
formed 5-fold cross-validation to estimate these probabilities.
For each held-out 20% of the data, we trained a model ﬁ)pt(x)
using the remaining 80% of the data to approximate the Bayes-
optimal model fopt(x), and used its predicted probabilities f;
to estimate the Bayes-optimal probabilities p; for that fold.
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More precisely, we trained logistic regression models on each
dataset that matched typical (maximal) accuracies reported in
the wider literature. To check the robustness of our results to
the choice of model used for estimation of p;, we re-ran all ex-
periments using the estimated probabilities p; from XGBoost
models learned using 5-fold cross-validation (Appendix I), and
found no notable differences.

To test the difference between randomly sampling from the
Rashomon set and directly optimizing for the fairest model
within the set on real data, for each dataset and each € value,
we compared the model found by optimizing the desired fair-
ness metric (PPR, TPR, or FPR) over the Rashomon set Ry (€),
as described in Section 4.1, to the distributions of models found
by (i) uniform random sampling over all models (flip vectors)
0 € Ry (€), as described in Section 4.2, and (ii) a simple base-
line approach, sampling penalized logistic regression models
(and corresponding flip vectors 8) from Ry (¢), as described
in Section 4.3.1 below. For each distribution of samples, we
report the mean and 95% interquantile range, i.e., the 2.5 and
97.5 percentiles of the distribution.

We compare these approaches using three fairness criteria:
statistical parity, or balanced positive prediction rate (PPR),
balanced false positive rate (FPR), and balanced true posi-
tive rate (TPR). Disparities with respect to all three criteria
were measured between the protected class (A; = a) and non-
protected class (A; # a), using the sensitive attribute value for
each dataset described in Appendix D. All three measures of
disparity for a given flip vector § were computed using the
(estimated) Bayes-optimal probabilities p; and corresponding
weights w;, rather than the observed outcomes y;, as described
in Appendix A. Results for PPR disparity are shown in Fig-
ure 1, and results for FPR and TPR disparity are shown in
Appendix F, Figures 5 and 6.

Finally, to demonstrate that our results are robust to using
different training sets (drawn from the same distribution) to
learn the Bayes-optimal classifier, and that our optimal and
sampled models generalize to previously unseen data, we per-
form an additional experiment in Appendix E, using separate
partitions of the Adult dataset to estimate the Bayes-optimal
probabilities, to learn parameter values for random sampling
and class-specific decision thresholds for optimization, and to
evaluate disparity respectively. Results are shown in Appen-
dix E, Figure 4 and Appendix I, Figure 17.

4.3.1 Baseline approach: sampling linear models from the
Rashomon set. As a simple baseline for comparison, which
might be representative of how a company would typically
choose a predictive model for deployment, we assume that
a binary classifier is learned from a separate, large training
dataset, where the model class is chosen a priori and therefore
the set of possible flip vectors 0 is restricted to members of that
class. In particular, we assume that an Ly-penalized logistic
regression model is learned. For consistency (since our experi-
ments use all N data records), we use k-fold cross-validation
and compute all metrics using predictions (for a given data
record d;) made using a model learned from the other k — 1
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folds (excluding the fold that contains d;). Moreover, since
a company would typically explore the space of parameter
values and choose a model with high accuracy, we learn penal-
ized logistic regression models with different sources of ran-
dom variation, evaluate their accuracy, and keep those models
which are in the Rashomon set. More precisely, to sample over
the Rashomon set of Ly-penalized logistic regression models,
for a given dataset and value of € € {0.001,0.002,...,0.02}, we
sample 1,000 models, where for each model we randomly sam-
ple the number of cross-validation folds k € {2,3,...,10}, the
logistic regression solver, and the amount of Ly penalization
C € {0.001,0.01,0.1,1.0, 10, 100}, and then fit the penalized
logistic regression model using scikit-learn. Given the model’s

predictions, we compute the flip vector 8 and include the sam-

OWN 6

pled model in the Rashomon set if =

4.4 Takeaways for policy and practice

e A randomly sampled model within the Rashomon
set is nowhere near as fair as the fairest model at
any given €. As we can see from the gap between the
blue and green lines in Figure 1, searching intentionally
for the fairest model within the Rashomon set leads to
much fairer models at the same e than randomly sam-
pling within the set. This shows us that a random model
from the Rashomon set— one selected on the basis of
accuracy alone— will have an extremely low chance of
being the fairest, or even one of the fairer, models within
the set. This in turn underscores the necessity of explic-
itly searching for fairer models before deployment- i.e.,
an LDA search.

e In practice, it is often possible to completely eradi-
cate disparities by searching within the Rashomon
set for quite small €. As we can see in Figure 1, for Ger-
man Credit and Health datasets, a model exists that com-
pletely eradicates demographic disparity in the dataset
for € < 0.005, i.e., half a percentage point of accuracy
loss. While the Adult dataset requires very slightly more
than 2% accuracy loss to fully eradicate the disparity, this
is still a small enough gap considered to be acceptable
based on case studies of LDA searches [8].

e Using repeated random sampling as a search
strategy- i.e., looking across many models selected
on the basis of accuracy and searching for the fairest
among them—can give mixed results. While our theo-
retical setup does not map onto how LDA searches would
be done in practice— since we search through all the pos-
sible mappings of input to output for a dataset instead of
generating actual parametric models—loosely, repeated
random sampling corresponds to an LDA search that
does not directly use protected attribute information un-
til after all the models are trained, i.e., only as a step
to evaluate models and choose among them post-hoc.
Our optimal search method, on the other hand, corre-
sponds to an LDA search method that uses some direct
minimization of disparities across demographic groups
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during the model creation process, whether that be in hy-
perparameter tuning, optimization, or other parts of the
pipeline. There is disagreement in the legal literature as
to whether and to what extent interventions for disparity
reduction across demographic groups that use protected
class information are legally permissible [16, 19, 21]. Our
experimental results show that we gain a lot by being
able to directly intervene using protected attributes—
however, repeated random sampling without direct use
of protected attributes can in some cases be an effective
technique as well, even if not as effective as direct in-
tervention. In particular, we see that the German Credit
results allow for a large reduction in disparity. At € = .02
(i-e., 2% error tolerance from the optimal model), the total
PPR disparity could be reduced by 46% compared to the
Bayes-optimal model by reaching the 2.5 percentile of
the PPR disparity distribution, which could be achieved
in practice by taking the fairest (lowest PPR disparity)
of 40 samples from the Rashomon set. In addition, note
that while random sampling over the entire Rashomon
set of all possible mappings of x to y is not particularly
effective at reducing disparity in the Health dataset, only
searching within linear models is more effective—this is
promising given that in practice, LDA searches are typi-
cally done within various model classes and not across
all possible mappings. Divergence in the effectiveness of
different random sampling methods based on model class
is an interesting phenomenon that we look forward to
studying in future work.

5 Understanding Individual Flip
Probabilities

In this section, we present our results showing how to compute
expected flip probabilities for every record d; across all models
in the Rashomon set, i.e., the chance that a given individual
will experience a change in prediction from the Bayes-optimal
model in a randomly sampled model in the Rashomon set.
Knowing flip probabilities allows us to explore the arbitrari-
ness that arises from the Rashomon set: many authors have
pointed to the phenomenon of predictive multiplicity [23],
where an individual can have different outcomes among differ-
ent models in a Rashomon set, as a form of inequity through
arbitrariness [2, 23]. By seeing the flip probabilities of any in-
dividual in the Rashomon set, we can see who is more and less
susceptible to potentially arbitrary changes in outcome—and
as we discuss in Section 5.3, group-level disparities across who
is likely to experience a change in prediction.

5.1 Preliminaries and assumptions for our
large-sample theoretical results

Throughout Sections 5 and 6, we present various theoretical
results, and the corresponding takeaways for policy and prac-
tice, about individual flip probabilities, Rashomon set size, and
use of error tolerance, in the large-sample limit where the
number of data records N — co. For full statements and
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proofs of all theorems, see Appendix C. In this subsection,
we present the notation needed to understand the theoreti-
cal results, along with the key assumptions that these results
depend on.

As in Section 3, we assume data records d; = (xj,y;)
drawn i.i.d. from distribution D, with corresponding Bayes-
optimal probabilities p; = Pr(y = 1| x = xj), and
weights w; = |2p; — 1|. Let (d1,d2,...) denote an infinite
sequence of data records drawn i.i.d. from D, and let Dy
denote records (di,dy,...,dN), with corresponding Bayes-
optimal probabilities PNy = {(p1,p2,...,pN) and weights
Wx = (w1, wa, ..., WN). Moreover, let W be the distribution
of weights for data records drawn i.i.d. from D, w; ~ W for all
i, with probability density function (pdf) f(w).

Let Ry (e) denote the Rashomon set of models for error
tolerance € defined over data records (dy,...,dy). We rep-
resent each model in Ry (¢€) by a length-N binary flip vec-
tor @ € {0,1}N, where 6; = 1 if flxi) # fopt(xi), 6; = 0
if f(x;) = fopt(xi), and the Bayes-optimal classification
fopt(xi) = 1{p; > 0.5}. As shown in Section 3, a flip vector
0 € Ry (e) if and only if S'X,VN <e

Key assumptions underlying the theoretical results below
are threefold: (1) the number of data records N is large; (2)
the distribution of weights f(w) is continuous and positive
on the interval [0,1]; and (3) € is sufficiently small, less than
half of the average weight. We observe that these assump-
tions are reasonable for all three datasets considered: (1) N
is large enough (ranging from N = 1,000 for German Credit
to N = 184, 308 for Health) for the finite-sample results to be
very close to their large-sample limits; (2) there is enough vari-
ability in the weights w; to assume that they are drawn from
a continuous, positive distribution; and (3) average weights
for all three datasets range from 0.50 (German Credit) to 0.74
(Health), while the € values we consider for our Rashomon sets
are at most 0.02. Nevertheless, the assumptions might be vio-
lated for very small datasets (insufficient N); low-dimensional
datasets with discrete-valued predictor variables (insufficient
variability in w;); or datasets where the prediction is extremely
uncertain, p; ~ 0.5 and thus w; ~ 0, for many data records
(average weight too small for the range of € considered).

5.2 Individual flip probabilities

In order to reason about the arbitrariness of individual pre-
dictions, we define the flip probability qn ; for a given data
record d;, i € {1,...,N}, as the proportion of models in the
Rashomon set Ry (€) for which the model prediction f(x;) dif-
fers from the Bayes-optimal prediction fopt(x;) = 1{p; > 0.5},
or equivalently, the proportion of flip vectors for which 6; = 1:

10 eRy(e): 0 =1
N IRn (e)]

As N — oo for a given weight distribution W and error toler-
ance ¢, flip probabilities become pairwise independent (Appen-
dix C, Lemma C.5), and the flip probability g; = limy_—c0 gn,i
depends only on the weight w;. Thus we define the asymptotic
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flip probability function g(w) as the flip probability g; corre-
sponding to a data record d; with weight w; = w. We then
prove the following theorem (Appendix C, Theorem C.12):

THEOREM 5.1 (ASYMPTOTIC FLIP PROBABILITIES). Given the
preliminaries and assumptions above, as N — oo, the flip prob-
ability corresponding to a data record with weight w; = w
converges to

1

1+exp(C(e) w)’

where C(€) = g~ (€) and g(C) = /01 —1+‘:)3;((‘é)w)

q(w) =
dw.

As a consequence of this theorem, for a Rashomon set
RN (€) with N large, we can obtain the flip probabilities
for each individual, which we outline in Appendix C, The-
orem C.12. Computing these flip probabilities provides us with
multiple pieces of valuable information about the Rashomon
set. First, we can use the flip probabilities to exactly (in the
large-sample limit) and efficiently compute the average over
the entire Rashomon set of any metric (e.g., PPR, FPR, or TPR
disparity) which can be decomposed as a linear function of
the individual predictions, as shown in Appendix G. This can
help us better understand, without the need for computation-
ally expensive random sampling, how much fairness we ex-
pect for a model drawn randomly from the Rashomon set, i.e.,
whether or not we will arrive at a reasonably fair model by
optimizing solely for accuracy and not considering fairness.
Second, the flip probabilities gy ; are related to the size of
the Rashomon set (Appendix C, Lemma C.4), and thus, as we
show in Section 6.1, the asymptotic size of the Rashomon set
as N — oo can be computed from the quantity C(¢) defined
in Theorem 5.1.

Most importantly, however, understanding flip probabili-
ties helps us reason about arbitrariness of prediction in the
Rashomon set as we can see who is likely to be more and less
susceptible to potentially arbitrary changes in outcome. More
precisely, the flip probability g ; for a given individual is the
probability that their prediction will differ from that of the
Bayes-optimal model, across all models in the Rashomon set,
and we note that 0 < gn; < % foralli € {1,...,N}. There-
fore, individuals with gn7; = 0 have consistent predictions
across the Rashomon set, while individuals with gx7; # 0 may
receive either classification depending on which model hap-
pens to be drawn, i.e., their prediction is arbitrary. While we
expect individuals with low-confidence Bayes-optimal proba-
bilities p; = % to receive arbitrary predictions, and individuals
with high-confidence probabilities p; ~ 0 or p; ~ 1 to receive
consistent predictions, the question remains: how far from
the decision boundary p; = % must an individual be for their
predictions to be consistent? We see in Figure 2(left) that the
answer to this question differs across datasets and varies with
€.

In addition, understanding individual flip probabilities
within the Rashomon set can shed light on another source
of inequity: certain demographic subgroups may have sys-
tematically higher flip probabilities than others, meaning that
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they are more likely to be exposed to arbitrary, inconsistent
predictions, with potentially less reliable explanations for the
outcomes they receive [5].2 We note that this is a separate
form of group-level unfairness from the typical measures of
statistical parity and error rate balance, since two groups may
have equal positive prediction rates but very different flip
probabilities (see Appendix G for an example).

5.3 Experiments on real data

As in previous sections, we perform our experiments on the
German Credit, Adult, and Health datasets. We first calculate
the flip probabilities for all individuals in each dataset for
varying values of €, and use these flip probabilities to perform
four experiments.

First, we graph the overall (population average) flip prob-
ability for all three datasets for models sampled uniformly
at random from the Rashomon set Ry (¢€) as a function of ¢,
compared to sampling linear models from the Rashomon set
(Section 4.3.1) and the models that optimize PPR, FPR, and
TPR over the Rashomon set (Section 4.1). These graphs are
shown in Appendix G, Figure 7.

Second, we use the flip probabilities to calculate the average
fairness of the Rashomon set as a function of € for all three
datasets. We display the output in Appendix G, Figure 8. These
differ from the results in Section 4.3 since these are the average
fairness of models across the entire Rashomon set, not only
from a sample of models, but we note the close correspondence
between the sampled and entire-Rashomon-set results.

Third, in Figure 2(left) we turn to displaying empirical re-
sults about arbitrariness within the Rashomon set: we show
how the chance of an individual experiencing a flip in their
predictions in the Rashomon set (as a function of how close
their Bayes-optimal probability p; is to the threshold of 0.5)
differs across different datasets and values of error tolerance e.
To do this, we compute the value of C(¢) for each dataset and e,
and then compute the flip probability g(w) = m
for a fine grid of p values.

Fourth, we show the disparities in average flip probability
in the three datasets between protected and non-protected
groups as a function of €, suggesting that some groups have
systematically higher exposure than others to arbitrary, incon-
sistent decisions. We compare uniform sampling to the models
that optimize PPR, FPR, and TPR over the Rashomon set (as
described in Section 4.1). Graphs for the German, Adult, and
Health datasets are shown in Figure 2(right) and Appendix G,
Figure 9.

5.4 Takeaways for policy and practice

e Even a small error tolerance leads to a lot of indi-
vidual flips. We observe that, for uniform sampling, the

2As a caveat, these flip probabilities will not necessarily translate to who is most
likely to get flipped in any given search for a less discriminatory algorithm (LDA),
as LDA searches will typically restrict the class of models prior to searching,
and thus will not exactly match random sampling from within the Rashomon
set. However, it does let us understand who is most likely to get flipped in the
largest possible Rashomon set Ry (€).
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overall flip probability tends to be substantially higher
than the error tolerance €. In Figure 2(center), for € = .02,
we see that 12%, of predictions are flipped on average for
the German dataset. In Appendix G, Figure 7, we see that
this trend continues, with Adult and Health having 7%
and 5% respectively. The overall flip probability for models
that optimize fairness tends to be higher than the overall
flip probability for uniform sampling, for lower € values
where the optimization method is not able to remove all
of the disparity. Once the disparity is removed, the flip
probability for optimal models levels off, while the flip
probability for uniform sampling continues to increase
with e.
Increasing error tolerance € not only increases the
number of flips that occur, but which individuals are
likely to get flipped: more “certain” cases get flipped
with higher €. As € increases, individuals with true prob-
ability p; further and further away from a 50/50 coin toss,
i.e., more “certain” cases of a positive or negative outcome
get flipped. For example, as we see in Figure 2(left), in the
German Credit dataset at low € (red line) everyone who
has a predicted Bayes probability below 0.4 or above 0.6
has near-zero chance of experiencing a flip in prediction,
but at higher e (brown line), we see that individuals with
pi between 0.1 and 0.9 have a non-negligible chance of
getting flipped. Some prior work has suggested the nor-
mative view that individuals with higher certainty in their
outcome should be flipped less often [2]—to the extent
that this is true in certain contexts, it may be important to
balance the flip probability over a threshold of certainty
with the need to reduce outcome-based unfairness. We
also see large differences in flip probabilities between
datasets: for the same € value, an individual with a given
true probability p; is much less likely to be flipped for
German Credit as compared to Adult or Health.
Asymmetries in the underlying model—e.g. un-
even distributions of predicted probabilities across
groups—lead to disparities in flip probabilities across
demographic groups. As we can see from Figure 2(right)
and Appendix G, Figure 9, all three datasets have dispar-
ities in their average flip probabilities, though it is not
always the disadvantaged group with a higher flip proba-
bility. Since the flip probability for uniform random sam-
pling is a function of an individual’s weight within the
data-i.e., their distance from the threshold probability of
0.5—the individuals who are flipped more often are those
for whom the Bayes-optimal model is less certain of its
prediction. In the Adult dataset, it is the advantaged group
that has a higher density of true probabilities p; around
0.5, meaning that they are more likely to get flipped. In
the German Credit and Health datasets, the disadvantaged
group has a higher density of p; = 0.5, and thus a higher
flip probability.
o We observe across datasets that optimizing for fair-
ness and uniform sampling lead to large differences
in who is flipped: while both optimization and uniform
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Figure 2: Left: Flip probability gx ; as a function of the Bayes-optimal probability p,— in other words, how likely is
an individual i to experience a change of prediction among models in the Rashomon set as a function of their true
probability that y; = 1? We show results for the German Credit, Adult, and Health datasets for ¢ € {0.001,0.01,0.02},
and see that there is large variation in flip probability distribution both as a function of dataset and ¢. Center: Overall
(population average) flip probability as a function of error tolerance € for the German Credit dataset, for uniformly
sampled models, linear models, and optimally fair models from the Rashomon set. For results for Adult and Health
datasets, see Appendix G, Figure 7. Right: Group average flip probability, comparison between protected group (solid
lines) and non-protected group (dashed lines), for the German Credit dataset, as a function of the error tolerance e.
Comparison of methods for optimizing PPR, FPR, and TPR (Section 4.1) and uniform random sampling (Section 4.2),
over the Rashomon set Ry (¢). For results for Adult and Health datasets, see Appendix G, Figure 9.

sampling approaches tend to flip individuals who are near
the decision boundary and thus have lower weights w;,
the optimization approaches also tend to flip individuals
who are from the group that is less represented in the
dataset and thus have higher values v;, because flipping
one person’s prediction has a larger impact on the group
average for the group that is smaller in size. In our datasets,
the disadvantaged group (women for German and Adult,
individuals over the age of 60 for Health) is also less repre-
sented. Thus, if the disadvantaged group is already flipped
more than the advantaged group on average, because they
tend to be closer to the decision boundary (as is the case
for German and Health), optimizing for fairness will fur-
ther exacerbate this disparity in who is receiving arbitrary
and inconsistent predictions. For example, for German
Credit, at € = 0.004 (the point at which PPR disparity is
eliminated), the flip proportion for uniform random sam-
pling is balanced (6.2% for women vs. 5.1% for men), but
the model that optimizes PPR demonstrates a substantial
disparity in who is flipped (11.6% for women vs. 3.3% for
men). On the other hand, if the disadvantaged group is
flipped substantially less than the advantaged group on
average, because they tend to be farther from the decision
boundary (as is the case for Adult), optimizing for fairness
will instead mitigate this disparity.

6 Rashomon Set Size and Error Tolerance

In this section, we present results on the size of the Rashomon
set and the distribution of how much of the error tolerance €
is used in the models of the Rashomon set. From these results,
we suggest another set of takeaways— that when a company
sets out to do a search for a less discriminatory algorithm
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(LDA), they should choose the highest error tolerance possible.
However, especially when relying on repeated random sam-
pling as an LDA search method, they should make sure they
are comfortable with having a model that uses all of the error
tolerance provided.

6.1 Rashomon set size

We derive an analytical expression for the asymptotic size of
the Rashomon set, |Rp (€)|, as a function of the error tolerance
€, as the number of data records N that the Rashomon set is
defined over goes to co. We note that |Ry(€)| also depends on
the distribution of weights f(w) and thus is dataset-dependent.
We provide the theorem here, with proof in Appendix C, The-
orem C.13.

THEOREM 6.1 (ASYMPTOTIC SIZE OF RASHOMON SET). Given
the preliminaries and assumptions in Section 5.1 above, let Ry (€)
denote the Rashomon set of models for error tolerance e defined

over data records {dy, ...,dnN). Then
log|R
i, P =g

where B(e) = exp (/06 C(x)dx), C(e) = g~1(e), and g(C) =

/(*)1

w w

s dw.

In other words, for large N, the size of the Rashomon set
|Rw (€)] converges (in the sense above) to B(e)N. Thus the size
of the Rashomon set grows exponentially in N, the number
of elements in the dataset, but the base of the exponential
function B is an increasing function of €. For ¢ = 0 and f(w)
continuous, |Ry(€)| = 1 regardless of N, so B = 1. For suffi-
ciently large €, all 2N flip vectors are in the Rashomon set, so
B = 2. But the rate at which B increases from 1 to 2 with €
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Figure 3: Left: Rashomon set size as a function of € for Adult, German Credit, and Health datasets, and for uniformly
distributed weights. Note that the German Credit and uniform weights curves coincide. The size of the Rashomon set
is |Ry (€)| = B(e)N, where the exponential base B (plotted here) ranges between 1 (for € = 0) and 2 (for large ¢). We also
separately plot |Ry (¢€)| for each dataset in Appendix H, Figure 10. Right three figures: Proportion of error tolerance

used, %le’\’, for the German, Adult, and Health datasets, as a function of the error tolerance ¢. Comparison of methods
for optimizing PPR (Section 4.1.1), optimizing FPR (Section 4.1.2), optimizing TPR (Section 4.1.2), uniform random
sampling (Section 4.2), and sampling linear models (Section 4.3.1) over the Rashomon set Ry (¢).

will vary between datasets, depending on the distribution of
weights f(w), as we show in Figure 3(left). We give details on
how to calculate B(e), and therefore the size of the Rashomon
set B(¢)N, in Appendix C, Theorem C.13. We also derive an
exact value and an upper bound for B(e) when the distribution
of weights within the data records is uniform (Appendix C,
Corollary C.14).

As we discuss in our takeaways, although a company has
no control over N, it does have control over €. As € determines
the base of the exponent B, this means that the size of the
Rashomon set |Ry (€)| = B(e)N grows extremely quickly in e
as well.

6.2 Usage of error within the Rashomon set

We now show that as the number of data records N over
which the Rashomon set Ry (¢€) is defined goes to infinity (i.e.,
as the dataset grows large), as long as the error tolerance e
is sufficiently small (less than half of the average weight w;),
the models in the Rashomon set will use almost all of the
error tolerance. That is, the average accuracy of a model in
the Rashomon set will converge to the accuracy of the Bayes-
optimal model minus e.

Let acc(Ry (€)) denote the average accuracy of models in
RN (€), and let accy(6p) denote the accuracy of the Bayes-
optimal classifier f(x;) = 1{p; > 0.5} for data records
(d1,...,dn). The average error tolerance used is the difference
accn (6o) — acc(Ry (€)), and must be less than or equal to e.
We now formally state the main result below, with proof in
Appendix C (Theorem C.9):

THEOREM 6.2 (ASYMPTOTIC USE OF THE ENTIRE ERROR TOLER-
ANCE). Given the preliminaries and assumptions in Section 5.1
and the definitions above, let Ry(€) denote the Rashomon
set of models for error tolerance € defined over data records
(di,...,dN)-
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Then as N — oo, the average error tolerance used by models
in the Rashomon set converges to €:

Alim (acen (8o) — acc(Rn (€))) = e

This result implies that, for large N, there is a clear tradeoff
between having a larger space of models to search over (since
the size of the Rashomon set grows very rapidly with increas-
ing €) and the accuracy of the models one might find with this
search, since the vast majority of models in the Rashomon set
have accuracy very close to the Bayes-optimal accuracy minus
€. While we are not typically interested in the Rashomon set
for very large values of € where the assumption that € is less
than half of the average weight would not hold, we note that
in such cases the entire error tolerance would not be used.
Instead, as N becomes large, all flip probabilities would con-
verge to 0.5, all or almost all of the 2V possible flip vectors
would be in the Rashomon set, and the average amount of er-
ror tolerance used would converge to half the average weight,
which is less than e.

6.3 Experiments on real data

6.3.1 Rashomon set size experiments. Given that the size of
the Rashomon set |[Ry (€)| can be written as B(e)N, where the
exponential base B increases from 1 to 2 for increasing €, we
plot the values of B as a function of € for the German Credit,
Adult, and Health datasets in Figure 3(left). As noted above, we
also derived both the exact value and the upper bound of B for
uniformly distributed weights (Appendix C, Corollary C.14),
and we plot these in Figure 3(left) for comparison. For small
€, the upper bound for uniformly distributed weights, B(e) =
exp(n\/e/_'j), coincides closely with the exact values. We also
plot the Rashomon set size |Ry (€)| separately for the German
Credit, Adult, and Health datasets in Appendix H, Figure 10.
While we do not yet have a way of computing the (reduced)
Rashomon set size when restricting our search to the space of
linear models (Lz-penalized logistic regression) as described
in Section 4.3.1, we can nevertheless examine what fraction
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of the sampled linear models are in the Rashomon set as a
function of €. This is shown for the German Credit, Adult, and
Health Datasets in Appendix H, Figure 11.

6.3.2  Use of error tolerance experiments. Given that, as N —
o0, we expect the entire error tolerance € to be used by mod-
els in the Rashomon set, we examine whether this holds for
the three real-world datasets as well. In Figure 3(right), we
plot the average proportion of the error tolerance used, 9}\‘;\2\’ ,
for 950 flip vectors sampled uniformly at random from the
Rashomon set Ry (¢€), as described in Section 4.2, for each
€ € {0.001,0.002, . ..,0.02}. We also plot the 95% interquantile
range for proportion of the error tolerance used, using the
2.5 and 97.5 percentiles of this distribution. For comparison,
we also plot for each dataset in Figure 3(right) the propor-
tion of the error tolerance used when (i) optimizing PPR, TPR,
FPR, and over the Rashomon set, as in Sections 4.1.1 and 4.1.2,
and (ii) searching over the set of linear models (Lz-penalized
logistic regression) in the Rashomon set, as in Section 4.3.1.

6.4 Takeaways for policy and practice

e Increasing e drastically increases the size of the
Rashomon set, especially for smaller €: thus, com-
panies searching for LDAs may want to set as large
of an € as possible to maximize the number of
potential LDAs. For example, in the German Credit
dataset (N = 1,000), increasing € from 0.005 to 0.02
moves the exponential base from 1.16 to 1.32 (Figure 3
(left)), increasing the Rashomon set size from 5 x 10%°
to 6 x 1011? (Appendix H, Figure 10).

Especially when using random sampling to search
for fairer models, our results suggest that most
models found will use the entire error tolerance.
In Figure 3(right), we see that, as expected from The-
orem 6.2, the average proportion of the error toler-
ance used by uniform random sampling over the entire
Rashomon set is very close to 1 for all three datasets, and
for the larger datasets (Adult and Health), even the 2.5
percentile of the distribution is virtually indistinguish-
able from 1. Similarly, for the optimization approaches,
all of the error tolerance is used until the entire dispar-
ity is mitigated; then the proportion of error tolerance
used decreases as % for larger e. Thus, while using a
higher error tolerance € could increase a company’s
opportunity to find fairer models within the Rashomon
set, the company should be ready to use a model within
the outer limits of that tolerance.

Caveats: Searching within particular model classes
may not use up all of the error tolerance. As we
see from Figure 3(right), when restricting the search to
linear models, the (non-exhaustive) set of linear models
we found in the Rashomon set did not use up all of the
error tolerance. In fact, the average proportion of the
error tolerance used by randomly sampled linear mod-
els is much smaller than 1: about 40%, 15%, and 2% for
German Credit, Adult, and Health datasets respectively.
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7 Discussion

Before concluding, we discuss in more detail how our
modeling set-up relates to practical searches that companies
may make to look for less discriminatory models.

Models as Mappings. As explained in Section 3, we think of
models in the Rashomon set as mappings from input features
to binary decisions in {0, 1}. As this is an exhaustive set of all
possible mappings that satisfy the accuracy constraint, this
paper explores behavior of the largest possible Rashomon set.
It may be the case that some of these models may not be
reachable by typical training methods, such as using stochastic
gradient descent to search for linear or deep models. However,
we note that the model defined by a flip vector 6 is reachable by
a randomized classifier that deviates from the Bayes-optimal
model (e.g., by randomizing labels as a function of the Bayes-
optimal probability, rather than using a hard threshold at 0.5).
To put it more practically, while some of the models in Ry (€)
may not be easy to find in a real-world search for LDAs if a
company is limiting their search to a particular model class,
e.g. linear models, this limitation is not a necessary choice.
A company could search over many possible model classes,
including flexible models that fit arbitrarily complex functions,
and could also deviate from a learned model (such as their
estimate of the Bayes-optimal classifier) to achieve fairness
goals, e.g., by randomizing predictions or changing decision
thresholds—by doing so, they could have the entire Rashomon
set Ry (€) at their disposal.

Relatedly, we clarify that the models discussed in this
paper, and the techniques we present to find fairer models,
generalize to previously unseen data, as we discuss in more
detail in Section 4.3 and Appendix E. In particular, the models
that we consider as alternatives in this paper represent
systematic deviations from the Bayes-optimal classifier. Given
that the Bayes-optimal classifier is estimated from labeled
data and that its probabilistic predictions can be used to make
classification decisions for previously unseen examples, a
rule which defines how a given classifier deviates from Bayes-
optimal will also generalize. As we discuss in Appendix E,
our optimization approaches are equivalent to defining an
optimal prediction threshold for each class, and our uniform
sampling approach is equivalent to randomizing labels as a
function of the Bayes-optimal probability. For sampling, the
model disagrees with the Bayes-optimal prediction for each
new data record with probability g; = m, as shown
in Theorem 5.1. In each case, the parameters (prediction
thresholds for optimization and the constant C for sampling)
can be learned from one (unlabeled) partition of the data
and then applied to optimize fairness over the Rashomon
set, or to uniformly sample from the Rashomon set, for a
different data partition. We demonstrate that our sampling
and optimization methods generalize well to previously
unseen data in Appendix E.
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Bayes-optimal model. Finally, we note that while we assume
access to the Bayes-optimal classifier for our theoretical
results, in practice, our findings do not rely on having the
exact Bayes-optimal model. Concretely, we believe that it
is reasonable for a company to start from their estimated
“most accurate” classifier, whether learned via a flexible
classification approach or even within a specific model
class, and then use our optimization approaches to identify
class-specific decision thresholds that optimize fairness while
obtaining accuracy within € of their original model. Since we
define our Rashomon set in terms of deviation from a baseline
model, it is important to find as accurate as possible a baseline
model when using this method of Rashomon set exploration
in practice. We show in Appendix E that assuming access
to a reasonably-sized training set, our results do not change
substantially using estimates of the Bayes-optimal model
learned from different partitions of the data. Nevertheless, if
there is not enough labeled data to estimate a good model,
then the Rashomon set and fairer models found in it may not
be accurate or useful.

Overall, the modeling choices we make serve the main goal
of this work, which is to more deeply understand the funda-
mental properties of the Rashomon set and the importance of
intentionally searching for fairer models. In particular, they al-
low us to see what is possible to achieve within the Rashomon
set with maximum flexibility, allowing us to see how much we
can strive to accomplish. At the same time, while our results
may deviate somewhat from what people observe in practice
(e.g., if they search only through limited model classes), we
believe our work can provide companies with a fairness goal
to strive for, and suggest specific approaches that might help
them approach that goal.

8 Conclusion

We introduce key results that help us to understand the largest
possible Rashomon set, from the average fairness of models
within the Rashomon set, to the probability of individuals hav-
ing their prediction changed across all models in the set, and
the size of the Rashomon set. These results lead us to several
takeaways: (1) it is critical to search for fair models within
the Rashomon set (to be intentional about fairness); (2) the
arbitrariness of prediction within the Rashomon set changes
drastically depending on the dataset and the error tolerance
€; and (3) companies should think carefully about setting €
when searching for fairer models within the Rashomon set, bal-
ancing flexibility of the search with accuracy of the resulting
models. We hope this work shows the importance of searching
for fair models within the Rashomon set, and sheds light on
how to balance fairness gains with risks of arbitrariness.
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A Optimizing Fairness over the Rashomon
Set

In this section, we propose efficient algorithms to find (i) the
exact fairest model in the Rashomon set as measured by pos-
itive prediction rate (PPR) disparity, and (ii) a model that is
guaranteed to have false positive rate (FPR) or true positive
rate (TPR) disparity within O(%) of the fairest model in the
Rashomon set.

A.1 Optimizing for statistical parity

In this sub-section, we propose an efficient knapsack solution
(Algorithm 1), to find the exact fairest model that minimizes
disparities in positive prediction rate (PPR) over the Rashomon
set Ry (€), in O(N log N) time.

Our first step is to derive expressions for the FPR and TPR
disparities corresponding to a given flip vector 6. To do so, let
P4 and Pg be the vectors of Bayes-optimal probabilities p; for
subgroups A (the protected class, data records d; with sensitive
attribute value A; = a) and B (the non-protected class, data
records d; with sensitive attribute value A; # a) respectively.
Let FOPt = (Ff‘pt, ng ") denote the vector of Bayes-optimal
binary predictions fopt(x;), and let F = (Fy4, Fg) denote the
vector of binary predictions f(x;) corresponding to flip vector
0 = (0. 05). We note that Fy = F3*' 0(1-0,4)+(1-F") 00,
and Fg = ngt ©(1-0p)+(1- ngt) O 0g, where © denotes
element-wise product.

We can then define the positive prediction rate disparity as:

disparityppp = |[E[f(x;) | di € A] —E[f(x;) | d; € B]|
= |Pr(f(xi) = 1]d; € A) = Pr(f(xi) =1|d; € B)|

_ |11Ealls _ [IFBll

1Al |B|
_ Fqs-1 Fp- 1‘
1Al |B|

(ngt@ (1-0)+(1-F oe) 1
|A|

(ngt ©(1-0+1-FP @e) 1
|B|

FP - (1-0)+(1-FP -0
|A]

FP (-0 +1-FM -6
|BI

As noted in Section 4.1, we can express the minimization
of PPR disparity over flip vectors 6, subject to the constraint
that 0 is in the Rashomon set Ry (€), as a knapsack problem,
where each data record d; has a weight w; = |2p; — 1| and a
value v, and 0; = 1 corresponds to the inclusion of element i
in the knapsack, adding w; to the total weight and v; to the
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total value. The 0-1 knapsack problem is then the constrained
optimization with capacity Ne: max }; 6;0; subject to 0; €
{0,1} and }; O;w; < Ne.

We now consider the expression for v;, the change in PPR
disparity when the prediction f(x;) is flipped (i.e., when 6; is
changed from 0 to 1). Assume without loss of generality that

subgroup A has higher PPR, % > %. Then we see

from the expression for PPR disparity above that flipping a

prediction in group A from 1 to 0, or flipping a prediction in

group B from 0 to 1, reduces disparity by ﬁ or |T£\ respec-

tively, while other flips increase disparity. To see this, for a
data record d; € A with F?pt =1,

opt opt
FP o (1-0)+ (1-F7) -0

us Al
6=0,F"=1
FP(1-0)+(1-FP) -0 1 o
|A| 9_1 Fopt_l - |A| '
R

We note that v; for other cases can be calculated similarly.
Thus we can write the value of element i for the knapsack
I 1

problem as v; = TAT ifd; € AandF;’pt =1,0; = il ifd; € B

and F?pt =0, and v; = 0 otherwise.

We now make the key observation that enables our efficient
knapsack algorithm: there are only two distinct values v; > 0,
ﬁ and ﬁ for group A and B respectively. Thus, the optimal
knapsack solution will consist of the k4 lowest-weight items
from group A and the kp lowest-weight items from group B,
for some k4 and kg.

Optimal values of k4 and kg (i.e., those values that most re-
duce the disparity) could be calculated by a O(N?) brute-force
search across all combinations of k4 and kp that fit the capac-
ity. However, through incremental search, that is, by keeping
track of the optimal kp for a given k4, one can incrementally
update kp for k4 — 1 by adding the remaining lowest weight
B items until the capacity is full, resulting in an incremen-
tal linear O(N) search. Thus the run time is dominated by
the O(N log N) sorting of items by weight. We present the
algorithm below.

A.2 Optimizing for error rate balance

In this sub-section, we propose an efficient, O(N log N) frac-
tional knapsack solution (Algorithm 2), to find the model that
minimizes disparities in false positive rate (FPR) or true posi-
tive rate (TPR) over the Rashomon set Ry (€), to within O(ﬁ)
of the optimal disparity, in O(N log N) time.

Our first step is to derive expressions for the FPR and TPR
disparities corresponding to a given flip vector 6. To do so,
as in Appendix A.1, let P4 and Pg be the vectors of Bayes-
optimal probabilities p; for subgroups A (the protected class,
data records d; with sensitive attribute value A; = a) and B
(the non-protected class, data records d; with sensitive attribute
value A; # a) respectively. Let FOPt = (szt, ngt) denote the
vector of Bayes-optimal binary predictions fopt(x;), and let
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Algorithm 1 0-1 Knapsack Algorithm for minimizing PPR
disparity

1: Given: data records Dy = (x;, yi)|l{i1, Bayes-optimal
(true) probabilities Py = pl|1 1> capacity Ne

2. Output: final disparity fd, flip vector 6

3. Calculate the value v; of each record (either ﬁ, ﬁ, or 0)
as described in the text above
4: Calculate the weight of each record i, w; = |2p; — 1|

5. Calculate the initial disparity in the data, id

6: if id = 0 or € = 0 then
7. return 0 =0, fd = id
s8: end if

9: Calculate weights W4, sorted in ascending order, along
with their indices I4 for records in A with v; > 0

10: Calculate weights Wp, sorted in ascending order, along
with their indices Ig for records in B with v; > 0

11: Calculate the maximum number of items in A with v; > 0,
maxA, that fit the capacity, adding items in ascending
order of weight

12: Calculate the maximum number of items in B with v; > 0,
maxB, that fit the capacity along with the maxA items,
adding items in ascending order of weight

maxA + maxB
|A] [B]
14: Initialize the best number of items in A (k4) to maxA and

the best number of items in B (kg) to maxB

13: Initialize the best value (bestval) to

15: for a from maxA —1to 0 do

16:  Remove the highest-weight item in A with v; > 0, and
add items in B with v; > 0 until the capacity is filled,
adding items in ascending order of weight. Let b be the
total number of items in B with v; > 0 that have been

added
17 if % |A| | | > bestval then
— _ b
18: Set kg = a, kg = b, bestval = ﬁ + 18]
19:0  endif
20: end for

21: Calculate optimal flip vector 6 and final disparity fd, set-
ting 0; = 1 for the k4 lowest-weight items in A with v; > 0
and the kp lowest-weight items in B with v; > 0.

22: return 0, fd

F = (Fy, Fp) denote the vector of binary predictions f(x;)
corresponding to flip vector 8 = (64, 0g). We note that F4 =
FP o (1-04)+(1-F") ©04,and Fg = Fp?' © (1-0p) +

(1- gp ) © 0, where © denotes element-wise product.
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We can then define the false positive rate disparity and true
positive rate disparity as:

disparityppg = |E[f(xi) | di € A, yi =0] —E[f(xi) | di € B, y; =0]|

=|Pr(f(x;) =1]di € A yi =0) —Pr(f(x;) =1|d; € B, y; =0)|

_|Pr(f(xi)) =L yi=0]di € A) Pr(f(xi)=1y;=0]|di € B)
Pr(y; =0|d; € A) Pr(y; =0|d; € B)

_|(1=Pa)-Fa (1-Pp)-Fp

[11 = Palls [11 - Pglli

disparityrpg = |[E[f(x;) | di € A, yi =1] —E[f(x;) | d; € B, y; = 1]|
=|Pr(f(x;) =1|di € A,yi=1) =Pr(f(x;) =1|d; € Byy; =1)|

_ Pr(f(xi)zl,yizlldiEA) _Pr(f(xi)zl,yizlldiGB)
Pr(yizlldiEA) Pr(yizlldieB)

|Pa-Fa Pg-Fp

NPalli  1IPBlI1 ]

We now compute the values v; (the change in disparity
when the prediction f(x;) is flipped, i.e., when 0; is changed
from 0 to 1) for FPR and TPR respectively.

For FPR, assume without loss of generality that subgroup

: (1=Pa)-Fa (1-Pg)-Fp
A has higher FPR, T=Pall > T=Psll,

prediction in group A from 1 to 0, or flipping a prediction

. Then flipping a

in group B from 0 to 1, reduces the disparity by Hll__TP/;m

or HII:Tépsilll respectively, while other flips increase disparity.
Thus we can write the value of element i for the knapsack

opt 1-p;
||1 PAII ifdi€e Aand F;*" = 1,0; =

[11-Pglx
ifd; € Band FiOpt =0, and v; = 0 otherwise.
For TPR, assume without loss of generality that subgroup

Pa-Fa _ Pg-Fg
A has higher TPR, TPall > ||PBH

in group A from 1 to 0, or flipping a prediction in group B from
0 to 1, reduces the disparity by 1 PZ T, or respectively,

problem as v; =

. Then flipping a prediction

_Dbi
Iz ;
while other flips increase disparity. Thus we can write the

value of element i for the knapsack problem as v; = H;ﬁ if

d; € AandF;)pt =1,0; = ||P || ifd; € BandFop =0, and
v; = 0 otherwise.

To minimize FPR or TPR disparity over the Rashomon set
Rn (€), we note that elements have more than two distinct
values, so we cannot apply the solution for PPR above. In-
stead, we approximate the 0-1 knapsack problem with the frac-
tional knapsack problem: max }; 6;v; subject to 6; € [0, 1]
and }; 0iw; < Ne. The standard solution to the fractional
knapsack, which requires O(N log N) time, adds elements to
the knapsack (setting 6; = 1) in descending order of their ratio
—L until no further elements can be (fully) added, then adds a
fractlon of the next element (0 < 6; < 1) to fill the remaining
capacity. Rather than adding the fractional element, we show
that it would reduce disparity by an amount 6;0; that is O( ﬁ)

To see this, we note for FPR disparity, for an individual

. 1-p;

in group A, that §; < 1, and v; = Hl—lilll < ||1_}JA||1 =
m = O(%). Therefore 0;0; = O(%). The other
cases, for TPR disparity and for group B, proceed similarly.
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Finally, since the fractional knapsack solution }; 6;0; is an
upper bound on the 0-1 knapsack solution, we know that our
solution (excluding the fractional element) reduces disparity
to within O(%) of the optimal disparity.

Thus we propose an O (N log N) fractional knapsack algo-
rithm to find the final disparity and flip vector. The algorithm
is a linear scan of values and weights, sorted by the ratio of
their value to their weight. Thus the run time is dominated
by the O(N log N) sorting of items by their ratio of value to
weight. We present the algorithm below.

Algorithm 2 Fractional Knapsack Algorithm for minimizing
FPR or TPR disparity

N
=1

(true) probabilities Py = p; capacity Ne
2: Output: final disparity fd, flip vector 6

1: Given: data records Dy = (xj,y;)|
|N
i=1’

Bayes-optimal

3: Calculate the value v; of each record as described in the
text above

4: Calculate the weight of each record i, w; = |2p; — 1|

s: Calculate the initial disparity in the data, id

6: if id = 0 or € = 0 then
7. return 0 =0, fd =id, fracVal =0
s8: end if

9: Calculate weights W and values V, along with their indices

I, of records with v; > 0, sorted by %, in descending order

10: Initialize record index variable i, total weight totWei, and
total value totVal to 0

11: while totVal < id and totWei < Capacity and i <
len(I) do
12:  # Attempt to add next element i with v; > 0; note that
elements are added in descending order of %
13 if totWei + w; < Capacity then
14: Add weight of element i to total weight totWei

15: Add value of element i to total value totVal

16: Increment i by 1

17:  else

18: Calculate the fractional value of element i

that would fill the entire capacity, fracVal =
(Capacity—totWei) v
N A4

Wi
19: break
20 endif
21: end while
22: Calculate flip vector 6, setting 6; = 1 for all elements i

added to the knapsack, excluding the fractional element.
Calculate final disparity fd = id — totVal

# Note that fracVal is an upper bound on the difference
between fd and the true optimal disparity.

return fd, 0, fracVal

23:
24:

25:
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B Gibbs sampling algorithm for uniform
sampling from the Rashomon set

Algorithm 3 Sampling Flip Vectors Uniformly at Random
from the Rashomon Set

1: Given: error tolerance €; number of data records N; weight
vector Wy = (w1, ..., wn). Note that w; = |2p;—1|, where
pi is the Bayes-optimal probability Pr(y = 1 | x = x;) for
data record d;, i € {1,...,N}.

2: Initialize © as an empty list

3. Initialize § = 6y, where 0y is the length-N binary flip
vector consisting of all zeros.

4 fort=1to T do

5. for i in random permutation of {1,..., N} do

6: Calculate current amount of error tolerance used,
current

7: Calculate Pr(0; = 1| 0_;):

8: if Ecurrent + (1 - 0;) 3 < € then

9 Pr(0;=1|0-;)=1%

10: else

11: Pr(0;=1]6-;)=0

12: end if

13: Sample 0; from Bernoulli(Pr(6; = 1| 6—;))

14:  end for

15:  if t > Band (¢t — B) mod K == 0 then

16: Append 0 to ©

17 end if

18: end for

19: return ©

The definition of the Rashomon set Ry (€) in Section 3 sug-
gests that a simple rejection sampling approach could be used
to draw models uniformly at random from the Rashomon
set. That is, one could draw a binary flip vector 8 € {0, 1}V
uniformly at random from the set of all 2V possible flip vec-
tors by drawing 0; ~ Bernoulli(0.5) for alli € {1... N}, and
then keep only those vectors 8 that are in the Rashomon
set, i.e., with % < €. The problem with this simple ap-
proach is that, as N increases, the probability that 6 is in the
Rashomon set goes to 0. This can be seen from Appendix C,
Theorem C.13: for € less than half the average weight, B(e) < 2,

Ry (o) _ s BN _
N —00 THN

Thus we propose an alternative approach based on Gibbs
sampling [15]. The key idea is to sequentially sample one el-
ement 0; of the flip vector at a time, conditional on all the
other elements 6_;. While we do not have a closed form
for the joint distribution of (61,...,0n) for 8 € Ry(e),
computing the conditional distribution of 6; given 6_; is
straightforward. Let 0;=p = (01,...,60i-1,0,0i41,...,0Nn) and
0i=1 = (01,...,0;—1,1,0i41,...,0n). Then we know that
ei:[]]\']WN < G'X]VN < 91‘:11\'IWN . This implies that, if 0 € Ry (€)
and 0; = 1, then 0;= and 0;=1 are both in the Rashomon
set, so Pr(6; = 1]60_;) = 1. If 0 € Ry(e) and 6; = 0, then
0i=o € Ry (€), but we must check whether 6;=1 € Ry (¢), i.e.,

and limy_, e
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whether W <e. Ifso,thenPr(f; =1|60_;) = % and if
not, then Pr(6; =11]6_;) =0.

Given this simple and computationally efficient conditional
sampling step, our Gibbs sampling approach starts with the
zero vector 6y, which is guaranteed to be in the Rashomon
set, and iteratively samples 0; ~ Bernoulli(p), where p =
Pr(0; = 1| 0-;) as described above, for each i € {1,...,N}.
To ensure uncorrelated samples from the joint distribution,
we take one sample every 10 iterations (where one iteration
includes resampling all N elements of 6 in randomly permuted
order), after an initial burn-in period of 500 iterations. For each
dataset and each value of € considered, we run 10,000 iterations
of Gibbs sampling, resulting in 950 samples.

Algorithm 3 presents the pseudocode for our Gibbs sam-
pling approach, enabling us to sample length-N binary flip vec-
tors uniformly at random from the Rashomon set Ry (€). The
sampling algorithm follows the idea [15], in which the Markov
chain is the sequence of flip vectors 9(0), 9(1), el o(T) gen-
erated as the algorithm progresses. Each 0 is a point 6 €
{0, 1}¥ that does not violate the Rashomon set constraint
% < ¢, and thus 09 € Ry (e).

Specifically, we start by initializing the flip vectors © as an
empty list. We then initialize flip vector 8 = 6y, the length-
N binary vector of zeros, which is guaranteed to be in the
Rashomon set since 90% =0.

Throughout T = 10,000 iterations, where each iteration
involves resampling each of the N elements of 8 in randomly
permuted order, we keep track of the current amount of
error tolerance used, Ecyrrent = % which can be done
through incremental updates of Ecyrrent Whenever an ele-
ment 6; is modified. To resample element 6;, we first compute
Pr(6; = 1 | 6_;), the probability of §; = 1 conditional on
the current values of the other elements of 6, and then draw
0; ~ Bernoulli(Pr(6; = 1| 6—;)). To compute Pr(6; =1 | 0-;),
we note that all flip vectors in the Rashomon set must be
equally likely to be drawn. Thus, if 0;=¢ and 0;=; are both in the
Rashomon set, we know Pr(0; =1 | 6_;) = % while if 6;—¢ is
in the Rashomon set and 6;=1 is not, then Pr(6; =1 | 6—;) = 0.
We note that 6;=¢ will always be in the Rashomon set, as de-
scribed in the main text. To check if 0;=1 is in the Rashomon set,
we must evaluate whether 9‘:1% = Ecurrent + (1—0;) % <e

To ensure that each sampled flip vector 8 is drawn inde-
pendently from the joint distribution of (6, ..., 0x), we be-
gin recording 6 only after the number of iterations exceeds
the burn-in period B = 500, and thereafter sample one value
of 0 every K = 10 iterations (i.e., at iterations 510, 520, ...).
When the algorithm terminates, all recorded flip vectors are
appended to O, resulting in the final list of sampled vectors.

We see that each iteration requires stepping through the
O(N) data records. For each data record, we perform an O(1)
check (whether or not the flip vector with 6; = 1 is in the
Rashomon set; note that we keep track of the current value of
B'XIVN throughout for computational efficiency) and an O(1)
resampling of 6; from either Bernoulli(0.5) or Bernoulli(0).
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Since the number of iterations is a fixed constant, this means
that the overall runtime of the algorithm is O(N).

C Proofs of Theorems

In this section, we formally derive the theoretical results in
the main paper, Sections 5 and 6. Note that the order in which
we derive these results is different than the order in which
they are presented in the main paper, as many of the results
build on each other.

Let (d1,dy, . . .) denote an infinite sequence of data records
drawn i.i.d. from distribution D, and let Dy denote the subse-
quence (dj,dy, . ..,dn). Assume that each d; = (x;, y;) where
x; represents a set of predictor variables and y; is a binary
outcome variable. Let p; denote the Bayes-optimal probabil-
ity, pi = Pr(y = 1| x = x;), and let w; denote the cor-
responding weight, w; = |2p; — 1|. We define the vectors
PN = (p1,p2,---,PN), and W = (w1, wa, ..., wn). Moreover,
let P and W be the distributions of Bayes-optimal probabilities
and weights respectively, for data records drawn i.i.d. from D.

Let Ry (Dn, €) denote the largest possible Rashomon set
of models for data records (ds, ..., dn). Since Ry can be com-
puted using only the weights Wy, we can also write Ry (Pn, €),
RN (Wn, €), or simply Ry (€) when the context (specifically,
the weight vector Wy) is clear. Each distinct model in Ry (€)
represents a different binary classification of the data records
(di,....,dN), (f(x1),..., f(xN)), where f(x;) € {0,1} for all
i €{1,...,N}, and thus there are at most 2N models in Ry (€).
Note that the classifier can be probabilistic, i.e., two data
records with identical x; could have different f(x;) values.
The Bayes-optimal classifier (the classifier with the lowest ex-
pected 0/1 loss, or equivalently, the highest expected accuracy)
is a deterministic function of the Bayes-optimal probabilities
pit fopt(xi) = 1if p; > 0.5, and fopt(x;) = 0 otherwise. We rep-
resent each model in Ry (€) by a binary flip vector 8 € {0, 1}V,
where 0; = 1if f(x;) # fopt(x;), and 6; = 0if f(x;) = fopt(x:).

Definition C.1 (Accuracy of a model defined by a flip vec-
tor0). Let DN = (d1,d2, ...,dn) be data records drawn i.i.d.
from distribution D with corresponding Bayes-optimal prob-
abilities PNy = (p1,p2,...,pN) and corresponding weights
WN = (w1, wa,...,wN), where w; = |2p; — 1|. The accuracy
of a model with flip vector 0 is

ace® =5 > (pif () + (1= pi)(1 = f(xi))

i=1...N
= ace(80)+ 5 >, 0 (((1=p) = pi)1{p > 0.5)
i=1..N
+ (pi — (1= pi))1{pi < 0.5}))

1
= ace(00) ~ > bilepi- 1|
i=1..N
0- Wy
o

=acc(y) —

where acc(6p) is the accuracy of the Bayes-optimal classifier
(and corresponding flip vector 6y consisting of all zeros).
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Definition C.2 (Rashomon set). The Rashomon set of mod-
els Ry (€) for error tolerance € defined over data records
(d1,...,dn) is defined as the set of all models with correspond-
ing flip vectors 8 € {0,1}N such that acc(8) > acc(fy) — e.
Therefore, from Definition C.1 above, Ry (¢) = {6 € {0, 1}V :
OWn < €}.

N

Definition C.3 (Flip probability). Let Ry(e) denote the
Rashomon set of models for error tolerance € defined over data
records (dy, . ..,dn). For a given datarecord d;, i € {1,...,N},
the flip probability qn ; is defined as the proportion of models
in the Rashomon set for which the model prediction f(x;) dif-
fers from the Bayes-optimal prediction fopt(x;) = 1{p; > 0.5},
or equivalently, the proportion of flip vectors for which 6; = 1:

|6 € Ry(€) : 0; = 1]
N,i =
N IRy (0)]

LEMMA C.4 (RELATIONSHIP BETWEEN FLIP PROBABILITY,
WEIGHT, AND RASHOMON SET SIZE).

Ne-w;
R (M=)
gN,i = s
R (M=t )| + Rt (85|

where Ry —;(€) is the Rashomon set of models for error tolerance
€ defined over the N —1 data records (d1, . . ., di—1,di+1, . .., dAN)-

ProoOF. We can rewrite the criterion for membership in
the Rashomon set, G'XIVN <€ as ;- Wy_;+0iw; < Ne,
where 0_; and Wy _; are the flip vector omitting element i
and the weight vector omitting element i respectively. The
numerator of the above expression, and the first term of the

denominator, represent the flip vectors 6 for which 6; = 1.

To satisfy % < ¢ for these flip vectors, we must have
0 Wi —w
0_;i-Wn—-;i < Ne—wj, or ’N—_q]' < % The second

term of the denominator represents the flip vectors 6 for which

0; = 0. To satisfy % < € for these flip vectors, we must
O-i-Wn, i N
have 0_; - Wy,—; < Ne, or Z=ig=0=t < (7€, i

LEmMA C.5 (AsymMPTOTIC PAIRWISE INDEPENDENCE OF FLIP
PROBABILITIES). Let Ry (€) denote the Rashomon set of models
for error tolerance € defined over data records {dy, . .., dn). For
anyi,j € {1,...,N},i # j, as N — oo, the flip probability q;
becomes independent of 0;. Specifically:

li 16;=1) = li i 16; =0).
Ngllw(qN,JI i=1) Nglm(qN,,l i =0)

Proor. We consider two cases:

Case 1: w; = 0.

When w; = 0, flipping element j has no impact on total er-
ror. Therefore gy, j = % regardless of 0, so limy 00 (qn, |0 =
1) = limy oo (gn,j | 6i = 0) = 3.

Case 2: w; # 0.

We compute the asymptotic odds ratio limy_,c lquNJ, for
both 6; = 0 and 6; = 1, and show that these two quantities are
equal.
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(1) For 6; = 0, using identical logic to Lemma C.4 above, the
odds ratio is:

NG—Wj
Nj |RN"’?‘J'( N2 )

o o (35)

s

where |RN,_ i j(e)| is the size of the Rashomon set with error
tolerance € over the N — 2 elements of (dy, ..., dn) excluding
d; and d;.

Next, we define log B(€) = limn_,o0 , and note
that, since Ry (¢) has minimum size 1 (for € = 0) and maximum
size 2N (for large €), B(e) € [1,2] forall 0 < ¢ < 1. We
can also write log B(€) = limy_—00 w Taking the
logarithm of the expression above and letting N — oo, we

obtain:
qN.j )
g(l—fJN,j
Ne
R [T [
e
Ne

—_Wj)—logB( Ne ))
N-2 N-2

By the definition of the derivative of log B, and noting that
Wi
N-2

log [Rn (€)|
N

lim lo
N—oo

N€—Wj
N-2

= li log |Rn —i—i -1
Ninm(()g N,—1, j( og

= A}gnw(N -2) (logB (

— 0 as N — oo, we can write:

log B XEZM ) _1ogp (M) -
B N2 | T B N2

Wj
N-2

lim
N—oo

and thus,

lim log (qN—])
N—ooo 1 —‘IN,j

(2) For 6; = 1, using identical logic to Lemma C.4 above, the
odds ratio is:

Ne—w;—w;
qN.j _)RN*"’*J'( N-2 )
LN ‘RN,—i,—j (Nfr:yi )

Taking the logarithm and letting N — oo, we obtain:

lim log(ﬂ) = lim (log RN (M)
N—oo 1_qN,j N—oo N-2
~ log RN_i_j(M)‘)
» N-2
. Ne —w; —wj
= (N -2) (1°g3 (T)

Ne —w;
“logB (_))
N-2
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By the definition of the derivative of log B, and noting that
—% — 0as N — oo, we can write:

Ne —wi — wi Ne —
lim (logB SeTwiTw) log B cT Wi
N—o0 N-2 N-2
. wj (dlogB
= l1 _
Noow N-2 de Ne-w;’
N—
and thus,
j dlogB
lim log J )= I -wj o8
N—oo 1- qN.,j N-ooo de N]f]:wl-
dlog B
(SN
Thus for both §; = 0 and 6; = 1, limy_, log ( 1?2}61) =
-wj (dl;EB) , and the proof is completed. O
€

LEMMA C.6 (FUNCTIONAL FORM OF FLIP PROBABILITIES).
Let DN = (di,d2,...,dN) be data records drawn i.i.d. from
distribution D with corresponding Bayes-optimal probabili-
ties PN = (p1,p2, ..., pN) and corresponding weights Wy =
(w1, wa, ..., wN), where w; = |2p; — 1|. Assume w; ~ W where
distribution W has pdf f(w) > 0 forw € [0,1]. Let Rx(€)
denote the Rashomon set of models for error tolerance € de-
fined over data records (di, ...,dN). Consider the flip proba-
bilities qn; corresponding to Rashomon set Ry (€), and define
qi = limyN_,00 gN,i- Then we can write:

1

@=T7 exp(Cw;)’

where C is constant for a given € and a given weight distribution

w.

Proor. Consider any three data records d;, d;, and di such
that w; + wj = wy.. We know that such triples exist as N — oo
because of the continuity and positivity of the weight distribu-
tion. Next we consider any pair of flip vectors 6,8’ € {0, 1}N
such that (6;, 05, 0) = (1,1,0), (67, 9}, 9,’() =(0,0,1),and §; =
91’ foralll € {1,2,...,N}, 1 ¢ {i, j, k}. The total weight is the
same for both vectors: 0- Wy = wi+wj+Wyest = Wi+ Wyes =
0 - Wy, where Wrest = Yieq12,. N} ig{ijk} Orwi, and thus
either both flip vectors 6,0” € Rn(e), or both flip vectors
0,0” ¢ Rn(€). This means that, for flip vectors 6 € Ry (¢€), the
probability that (6;, 0, 6;) = (1,1,0) and the probability that
(6:,05,0r) = (0,0,1) are equal. For N — oo, pairwise inde-
pendence (Lemma C.5) allows us to write these probabilities
as qi(q;)(1—qx) and (1 —q;)(1 - gj)qx respectively, and thus
qi(q;)(1 = qx) = (1 - gi)(1 - qj)q. We can then rearrange
terms and take the logarithm:

o 2 s (2 ) e 2
i j

This establishes that for any data elements d;, d;, and dj
with w;+w;j = wg, h(w;) +h(w;j) = h(wy), where the function
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h(w) = log ( - ?ff(?v) ) The equation h(w;)+h(w}) = h(wi+w))

is Cauchy’s functional equation for additive functions.
Moreover, the function h(w) is monotone for w € (0, 1).
To see this, we note that flip probability g(w) is monotoni-
cally decreasing with w, since for every possible configuration
0_;, higher weight w; monotonically decreases (i.e., does not
increase) the probability that 8; = 1 is in the Rashomon set,
and does not change the probability that ; = 0 is in the

Rashomon set. Moreover, log %]) is increasing with g, so
q(w)

h(w) = log ({202

Monotonicity of h(w) is a sufficient condition for ensuring
that the Cauchy functional equation does not have patholog-
ical (non-linear) solutions, and thus the only solutions are
linear functions h(w) = —Cw, where C is a constant (for a
given W and €). Therefore, the log-odds of the flip probability
is proportional to the weight:

) is monotone.

qi
1 ——— | = —Cwj.
og(l—%‘) i

Finally, the flip probability g; can be expressed as:

1

=Ty exp(Cw;)’

which completes the proof. (Note that the value of C, as a
function of e, will be obtained in Corollary C.10 below.) O

LEMMA C.7 (ASYMPTOTIC SIZE OF RASHOMON SET AS A
FUNCTION OF C). Let DN = (d1,d>,...,dN) be data records
drawn ii.d. from distribution D with corresponding Bayes-
optimal probabilities Py = (p1,p2,...,pN) and correspond-
ing weights Wy = (w1, wa,...,wN), where w; = |2p; — 1.
Assume w; ~ W where distribution W has pdf f(w) > 0
for w € [0,1]. Let Ry (€) denote the Rashomon set of mod-
els for error tolerance € defined over data records (dy, . ..,dN).
Let C(€) denote the constant in the asymptotic flip probability,
gi =limy_00 N, = m’for error tolerance €. Then:

log Ry ()| _
N

B(e) = exp (‘/06 C(x)dx) .

Proor. From Lemma C.4, we know

o (=)
4= A}im Ne—w Ne \|”
= R (35 R (25

where Ry _;(¢e) is the Rashomon set of models for er-

ror tolerance € defined over the N — 1 data records

(di,...,di-1,dit+1,...,dN). And from Lemma C.6, we know
S S ; i,

that ¢; = ; Tep(ClE ) Setting these quantities equal to each

other, we have:

lim

N—>o0

log B(e),

where
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R (=) 1
lim N =1 c —.
N—co )RN,—i( Ae]:;vl)‘ + )RN,—i (1\1]\]—61)‘ +exp(C(e)w;)
Inverting both sides:
| R (39
1\}11100 1+ m =1+ exp(C(e)wi).
N,—i \"N-1

Subtracting 1 and taking the logarithm of both sides:

N€—Wl‘
N-1

Ne
v e

li 1 RN —i
Ninoo(og N, l(

Dividing both sides by w;:

Ne—w;
N-1

)

By the definition of derivative, noting that % — 0 as

log |RN,,,- (%H —log ‘RN,,i (

=C(e).
(N-1D)x% (©

lim
N—>oo

N — co:
1 dlog|Rn —i(e
lim glfnil] .
N—oo \N -1 de e
N-1
Equivalently, we can write:
dlog|R
lim (X dlog|Ry (e)] = C(e).
N—oo \ N de €

Integrating both sides with respect to €:

. 1 €
A}inm (ﬁ) log |Rn(€)| = ‘/0 C(x) dx + constant

We know that the constant is 0 since, for € = 0, we have:

lim |R =1
dim Ry (©)]

‘/OE C(x) dx.

Finally, defining B(€) = exp (/06 C(x)dx), we can write:

Thus we have:

log IRy ()] _
N

lim

N—-oo

lim

I
im e LA |I;\I]\](€)| =log B(e).

O

Definition C.8 (Average accuracy of models in the Rashomon
set). Let Dy = (di1,da,...,dN) be data records drawn i.i.d.
from distribution D with corresponding Bayes-optimal prob-
abilities PNy = (p1,p2,...,pN) and corresponding weights
WN = (w1, wa,...,wN), where w; = |2p; — 1|. Let Ry (€) de-
note the Rashomon set of models for error tolerance € defined
over datarecords (dj, . . ., dN), and consider the corresponding

e
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flip probabilities g ;. Then the average accuracy of models
0 € Ry (€) can be written as:

TR (€)= s ) ace(?)

0eRn (€)
= acen (6) — m Hel%(e) 9%
Taeentth) = m 0eRn (€) i=1..N %
= acen (6p) — % Z Wim Z 0;

i=1..N OeRn (€)

1
acen (60) — D wiani
i=1.N

where accy (0p) is the Bayes-optimal accuracy for data ele-
ments {(dy,...,dn).

Further, assume w; ~ W where distribution W has pdf
f(w) > 0for w € [0,1]. Then we can write the asymptotic
average accuracy as:

1
im_acc(Ry (€)) = acc(6o) —/o wq(w) f(w) dw,

where acc(6y) is the asymptotic Bayes-optimal accuracy,
acc(bp) = limn_00 acen (6p), and g(w) denotes the asymp-
totic flip probability g; = limn_,« qN,; corresponding to an
element i with weight w.

THEOREM C.9 (ASYMPTOTIC USE OF THE ENTIRE ERROR TOL-
ERANCE). Let Dy = (d1,d2,...,dn) be data records drawn
i.i.d. from distribution D with corresponding Bayes-optimal
probabilities Py = (p1, P2, - . ., pN) and corresponding weights
WN = (w1, Wy, ..., wN), where w; = |2p; — 1|. Assume w; ~ W
where distribution W has pdf f(w) > 0 forw € [0,1]. Let
Ry (€) denote the Rashomon set of models for error tolerance €
defined over data records {(d1, .. .,dN), and assume that € is less
than half of the average weight, i.e., /01 w f(w)dw > 2¢. Let
q(w) denote the asymptotic flip probability q; = imn_c qN,i
corresponding to an element i with weight w.

Then as N — oo, the average error tolerance used by models
in the Rashomon set converges to €:

ace(fn) = lim e (R () = [ " g(w) flwydw =c.

ProoF. As every flip vector 0 in the Rashomon set Ry (¢€)
must satisfy Zﬁl % < €, we have:

1 Ow; 1 Z 1
hUMCAS wj———— 0i
IR ()] 0€RN (€) i=1..N N N i=1..N IRy (e)] 0€RN ()
;>
= — WigN,i
N i=1..N
<e.
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As N — oo, we can replace the summation with the integral:

/1 wq(w) f(w)dw < e.
0

Since g(w) = from Lemma C.6, we have:

1
1+exp(C(€) w)

1
w
—_— dw < e.

/0 1+ exp(C(e) w) flwdw<e

Next, the assumption /01 w f(w)dw > 2€ ensures that
C(e) > 0. To see this, we first note that the expected error
.[01 w q(w) f(w)dw is a monotonically decreasing function
of C(¢€). Then if we assume C(e) < 0, the flip probability
becomes q(w) > % leading to an average error of at least
% /01 w f(w)dw > ¢, which contradicts the fact above that
the expected error can be at most €.

Now consider any § > 0 with 0 < § < e. We apply
Lemma C.7 to compute the asymptotic sizes of the Rashomon

sets at € and € — § respectively:
€
/ C(x) dx.
0

/0 0 ) dr.

BVl ([ omr g [ e e
|RN<e—5>|‘(/o cax- [ C(’“)d)
:/e C(x) dx.
[

Since C(x) > 0 for x < €, we know that /:_5 C(x)dx > 0,
and exp (.[:—5 C(x) dx) > 1. Therefore we have:

oo [ ctnan))” = .

This implies that for large N, the number of flip vectors
(models) with total error in the interval [e — 6, €] dominates
the Rashomon set. The proportion of flip vectors with error
less than € — § becomes negligible. Since almost all flip vectors
in Ry (€) have errors between € — § and ¢, the asymptotic
expected error fol w q(w) f(w) dw is greater than or equal to
€ — 0. Because § > 0 is arbitrary and can be made as small as
desired, we have:

log [Ry(6)] _
N

lim
N—>oo

and

i 1OBIRN (=0 _
m — =
N

N—-ooo

Thus we can write

1
lim —1
Ninoo N ©

Ry _
N—>oo |RN(€—5)| N—>oo

1
/ wq(w) f(w)dw >e—3§ foralld > 0.
0

Combining with the initial inequality, we have:

1
e—5§/ wq(w) f(w)dw < e foralld >0,
0

and thus
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Ji Cwg(w) fwydw=c,
0

which completes the proof. O

CoroLLARY C.10 (VALUE OF C). Let Dy = {d1,d>, ...,dN)
be data records drawn i.i.d. from distribution D with corre-
sponding Bayes-optimal probabilities Py = (p1,p2, ..., PN)
and corresponding weights Wy = (w1, wa, ..., wn), where
wi = |2p; — 1|. Assume w; ~ W where distribution W has
pdf f(w) > 0 forw € [0,1]. Let Rn(€) denote the Rashomon
set of models for error tolerance € defined over data records
(di,...,dN), and assume that € is less than half of the average
weight, i.e., /01 w f(w) dw > 2e.

Then the value of C(€) in Lemmas C.6 and C.7 can be written

asC(e) = 9_1(6), where g(C) = fol 14—:3;% dw.

Proor. From Theorem C.9, we have

1
/0 waq(w) f(w)dw =c,

and from Lemma C.6, we have

g(w) :

i exp(C(e) w)’
Putting these together with the function g defined above,

we have
[ wiw) _
9(C(e) = /0 1+ exp(C(e) w) dw=¢,

or equivalently, C(e) = g~ (¢), and the proof is completed. O

CoroLLARY C.11 (VALUE OF C FOR UNIFORMLY DISTRIBUTED
WEIGHTS). Let Dy = (d1,d2,...,dN) be data records drawn
i.i.d. from distribution D with corresponding Bayes-optimal
probabilities Py = (p1, P2, - . ., pN) and corresponding weights
WN = (wi,wa,...,wN), where w;j = |2p; — 1|. Assume
wj ~ Uniform[0, 1]. Let Rn (€) denote the Rashomon set of mod-
els for error tolerance € defined over data records (d, . ..,dn),
and assume that € is less than half of the average weight, i.e.,
/01 w f(w) dw > 2e.

Then the value of C(€) in Lemmas C.6 and C.7 can be written
as C(e) = g~ (), where:

1 w
C) = —d
9(©) /0 1+ exp(Cw) W
_ 12Liz(—e™©) — 12Clog(e ™ +1) + 7
- 12C2 '
_x_ ~ I
Moreover, C(€) < Ve and C(¢) Vize for smalle.

Proor. Given w; ~ Uniform[0, 1], we know that the pdf
f(w) =1for w € [0, 1]. Plugging this into the result of Corol-
lary C.10, we obtain

1

w
—————dw=¢e.

/0 1+ exp(Cw) w=e
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The integral can be computed as:

w 12 Liz(-e~€) - 12C log(e™

C+1)+n2

[

where Lis is the dilogarithmic (Spence’s) function Since the

1+ exp(Cw) 12C?

first two terms of the rhs are negative for all C, Z=; > €, and

thus C < \/1—7

terms of the rhs go to 0 from below. Thus we have 2=

and C ~ \/ﬁ

’ 12C
As € — 0, C becomes large, and the first two

1zc2 s
O

TueorReM C.12 (ASYMPTOTIC FLIP PROBABILITIES). Let
Dn = (di1,da,...,dN) be data records drawn i.id. from dis-
tribution D with corresponding Bayes-optimal probabilities
PNy = {(p1.p2,....pN) and corresponding weights Wx =
(w1, wa, ..., wN), where w; = |2p; — 1|. Assume w; ~ W where
distribution W has pdf f(w) > 0 forw € [0,1]. Let Ry (€)
denote the Rashomon set of models for error tolerance € defined
over data records {(d1,...,dn), and assume that € is less than
half of the average weight, i.e., fol w f(w) dw > 2e. Consider
the flip probabilities qn; corresponding to Rashomon set Ry (€),
and define q; = limy_,00 qN,;- Then

1
=Ty exp(C(e) w;)’
— 1
where C(€) = g~ 1(e) and g(C) = _/0 14—2}@% dw.
Proor. The statement follows immediately from

Lemma C.6, which gives the functional form of ¢;, and
Corollary C.10, which gives the expression for C. O

Remark. As a consequence of this theorem, for a Rashomon
set Ry (e) with N large, we can obtain the flip probabilities
for each individual in two steps: (1) calculate the value of C
for the given weight distribution W and error tolerance €; and
(2) compute gq; = m for each individual i. To calcu-
late C if the pdf f(w) of the weight distribution W is known,

we solve the integral equation g(C) = /0 1 +g; ((1(4:‘)14; )
Alternatively, given a finite dataset of size N, we estimate the
true weight distribution W using the empirical distribution

; 1 Wi —
W, and thus solve the equation ;=1 N Trexp(Cwp) =

dw = e.

In either case, we note that the lhs decreases monotonically
with C, allowing an efficient solution by binary search.

THEOREM C.13 (ASYMPTOTIC SIZE OF RASHOMON SET). Let
DN = (d1,da,...,dN) be data records drawn i.i.d. from dis-
tribution D with corresponding Bayes-optimal probabilities
{p1,p2,...,pN) and corresponding weights Wy =
(w1, wa, ..., wN), where w; = |2p; — 1|. Assume w; ~ W where
distribution W has pdf f(w) > 0 forw € [0,1]. Let Ry (€)
denote the Rashomon set of models for error tolerance € defined
over data records {(di, ...,dn), and assume that € is less than

half of the average weight, i.e., /01 w f(w) dw > 2e. Then
log [Ry ()] _
N

PNy =

lim

N-oox

log B(e),

s
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where B(e) = exp (foe C(x)dx), C(e) = g~Y(e), and g(C) =
f _wflw)
0 1+exp(Cw)

Proor. The statement follows immediately from
Lemma C.7, which gives the size of the Rashomon set in

terms of C, and Corollary C.10, which gives the expression for
C. [m}

Remark. To compute the exponential base B(¢), and therefore
the Rashomon set size |[Ry (¢)| = B(e)", given a finite dataset
of size N, we can calculate the value of C(¢) for a fine grid
of € values by solving the equation ﬁ Di=1..N HCXI;WW =
€. We then use numerical integration to estimate B(e) =
exp ( /Oe C(x)dx). Alternatively, for N — oo with a known
W with pdf f(w), we instead
dw = € to obtain C(e).

distribution of weights, w; ~

solve the integral /01 H:g;%

CoroLLARY C.14 (ASYMPTOTIC SIZE OF RASHOMON
SET FOR UNIFORMLY DISTRIBUTED  WEIGHTS). Let
DNy = (di,da,...,dN) be data records drawn iid. from
distribution D with corresponding Bayes-optimal proba-
bilities Py = {(p1,p2,.-.,pN) and corresponding weights
Wn (w1, wa,...,WN), where w; [2p; — 1|. Assume
w; ~ Uniform[0,1]. Let Rx(€e) denote the Rashomon set
of models for error tolerance € defined over data records

(di,...,dN), and assume that € is less than half of the average
weight, ie., /01 w f(w) dw > 2e. Then
log|R

where B(e) = exp (fOE C(x)dx) C(e) = g~Y(e), and g(C) =

f w dw = 12 Liy(—e~€) - 12C10g(e_c+1)+71'
0 l+exp(Cw) 12C?

Moreover, B(€) < exp (n\/g) and B(€) ~ exp (n\/g) for

small e.

Proor. The statement follows from Lemma C.7, which
gives the size of the Rashomon set in terms of C, and
Corollary C.11, which gives the exact and approximate (up-
per bound) expressions for C for uniform weights. Since

Cle) < \/1LT we know that B(e) = exp (/06 C(x)dx) <
exp (/0 de) = exp (ﬁ\/g) And since C(e) = & for
€ — 0, we know that B(e) ~ exp (n %) fore — 0. O

D Description of benchmark datasets

Throughout this paper, we present experimental results on
three real-world datasets that are commonly used as bench-
marks in the fair machine learning literature: German Credit
(“German”), Adult, and Heritage Health (“Health”).

We use a preprocessed version of the German Credit
data [20] publicly available on Kaggle [14], which includes
credit risk as an outcome variable. Numerical attributes in
the dataset, namely Age, Job, Credit Amount, and Duration,
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were discretized to a categorical attribute as follows: Age was
discretized based on whether Age > 25 or otherwise; Job was
discretized based on the number of jobs (no job, one job, or
more than one job); Credit Amount, whose values range from
250 to 18,400, was discretized into five bins; and Duration,
whose values range from 4 to 72, was discretized into five bins.
Categorical and binary attributes were unchanged. Finally,
attributes were 1-hot encoded.

We use a publicly available version of the Adult data [1],
which includes income as an outcome variable. Numerical
attributes in the dataset, namely age, fnlwgt (final weight),
education-num (education level), capital-gain, capital-loss, and
hours-per-week, were binarized using their median value as the
threshold. Categorical and binary attributes were unchanged.
Finally, attributes were 1-hot encoded.

We use a publicly available version of the Heritage Health
data [25]. We use similar features as the winning team, Market
Makers [27]. We generate the features using the SQL script
in the Appendix of [27], which generates the majority of the
variables in data set 1. Since the ageMISS feature corresponds
to whether the age value is missing or not, all rows with
ageMISS = 1 were removed, and the ageMISS feature was
dropped. Additionally, the sensitive feature S was created with
S = 0 when the age is between 0 and 59 (age_05 = 1 or
age_15 = 1 orage_25 = 1 or age_35 = 1 or age_45 = 1 or
age_55 = 1), and S = 1 otherwise. Numerical attributes were
binarized using their median value as the threshold. Categori-
cal and binary attributes were unchanged. Finally, attributes
were 1-hot encoded.

In German Credit (N = 1, 000), there are 690 men (labeled
gender = 1 in the dataset) and 310 women (gender = 0). The
outcome variable (high risk) is whether an individual is consid-
ered high-risk for a loan. Women (gender = 0) are the minority
class (31.0% of the dataset) and are disadvantaged (35.2% likely
to be considered high risk for a loan, vs. 27.7% for men).

In Adult (N = 46, 443), there are 15,203 women (labeled
sex = 1 in the dataset) and 31,240 men (sex = 0). The out-
come variable (income) is whether a person has income over
$50,000. Women (sex = 1) are the minority class (32.7% of the
dataset) and are disadvantaged (11.2% likely to be predicted
high income vs. 30.9% for men).

In Health (N = 184, 308), there are 73,535 individuals over
the age of 60 (labeled S = 1 in the dataset) and 110,773 other
individuals (S = 0). The outcome variable (DaysInHospital)
represents whether a person will spend any days in the hop-
sital that year. Individuals over the age of 60 (S = 1) are the
minority class (39.9% of the dataset) and are disadvantaged
(DaysInHospital = 1 19.6% of the time, vs. 10.6% for others).

As noted in Section 4.3 above, we estimate the the Bayes-
optimal probabilities p; for all three datasets using 5-fold cross-
validation, using two different approaches, logistic regression
(main paper) and XGBoost (Appendix I). We report the cross-
validated accuracy scores for each dataset using the approx-
imate Bayes-optimal predictions fopt(x;) = 1{f; > 0.5} and
observed outcomes y;. For logistic regression, accuracy was
73.7%, 84.4%, and 86.2% for German, Adult, and Health datasets

66

EAAMO ’°25, November 05-07, 2025, Pittsburgh, PA, USA

respectively. For XGBoost, accuracy was 69.4%, 84.3%, and
88.8% for German, Adult, and Health datasets respectively.

E Experiments on generalization to
previously unseen data

Given that our models (as characterized by flip vectors ) are
defined in terms of their labeling of the N training samples
(as compared to the labels produced by the Bayes-optimal
classifier), one might ask how flip vectors correspond to gener-
alizable models that could be used to label previously unseen
test data. We consider two natural approaches for generaliza-
tion. First, for an arbitrary flip vector 6, we can consider its
corresponding labels §j; = 1{(p; > 0.5 and 6; = 0) or (p; <
0.5 and 6; = 1)} as training data, and define the correspond-
ing 1-nearest neighbor classifier with ties in distance broken
uniformly at random. This would imply that, if a given test
sample has been seen one or more times in the training data,
its predicted label is drawn from the same distribution as the
training predictions, and if not, nearby points are used to as-
sign the label. In either case, this approach potentially results
in a randomized classifier. Alternatively, many flip vectors 0
might be created by rules that generalize from training to test
data. Given that the Bayes-optimal classifier is estimated from
labeled data and that its probabilistic predictions can be used
to make classification decisions for previously unseen exam-
ples, a rule which defines how a given classifier deviates from
Bayes-optimal (e.g., by changing the classification threshold
from 0.5 to a different value, or by randomizing labels as a
function of the Bayes-optimal probability), will also generalize.

In particular, the algorithms we present for finding fairer
models through optimal search and random sampling general-
ize since they effectively create rules for how to deviate from
the Bayes-optimal predictor. For optimal search, separate pre-
diction thresholds are created for each class. For sampling, the
model disagrees with the Bayes-optimal prediction for each
new data record with probability ¢; = m. For each
value of the error tolerance ¢, the prediction thresholds for
optimization and the constant C for sampling can be learned
from one (unlabeled) sample of the data and generalize to
another.

To illustrate that our approach and results generalize in
practice, we perform the following experiment. For six differ-
ent trials, we split the Adult dataset into three partitions, using
one to estimate the Bayes-optimal probabilities Pr(y = 1 | x),
one to learn C values for random sampling and class-specific
decision thresholds for PPR, FPR, and TPR optimization, and
one to recreate PPR, FPR, and TPR disparity curves (as a func-
tion of €) for our sampling method (green) and our optimal
search methods (blue). Critically, note that we do not use train-
ing labels for the second and third partitions, only for learning
the Bayes-optimal classifier. As shown in Figure 4 and Ap-
pendix I, Figure 17, for PPR and FPR, all six permutations of
the three partitions produced disparity curves that were very
close to each other and to the curves estimated from the entire
dataset with no splitting: all curves’ standard deviations and
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RMSEs, averaged across epsilon values, were less than 0.008.
The differences are larger for TPR, as expected for the small
effective sample size.

Thus the above experiment demonstrates that the flip vec-
tors 6 learned by our optimal search and sampling approaches
can generalize from one “training” partition of the data to a
second “test” partition. This is not surprising given that the
training and test partitions are both unlabeled, while labeled
data is used only to estimate the Bayes-optimal model. The
above experiment also demonstrates the robustness of our
results to estimation of the Bayes-optimal model Pr(y = 1| x).
Model estimates across the three partitions of the data differed,
yet we did not see substantial differences in disparity curves
generated either by optimization or by sampling. Similarly, our
conclusions remained consistent when using a different model
class to estimate Bayes-optimal probabilities (Appendix I).

F Additional results for Section 4.3

(Intentional Fairness)

Figures 5 and 6 show the disparity in false positive rate (FPR)
and true positive rate (TPR) respectively, as a function of the
error tolerance €. These figures compare the methods for opti-
mizing FPR and TPR disparities over the Rashomon set Ry (€)
(Section 4.1) to uniform random sampling (Section 4.2) and
sampling linear models (Section 4.3.1). We see that both sets
of results are very similar to the results presented for PPR
disparity in Figure 1.

G Additional results for Section 5.2 and 5.3
(Flip Probabilities)

As noted in Section 5.2, we can exactly (in the large-sample
limit) and efficiently compute the average over the entire
Rashomon set Ry (€) of any metric (such as accuracy, PPR
disparity, FPR disparity, or TPR disparity) which can be de-
composed as a linear function, h? + h} f(xi), of the individual
predictions f(x;) using the flip probabilities g ;. To see this,

we can write:
1

‘@] (W + hifxr)

0cRy (€) i=L.N
1 Z 0, 1
S (RO + K1 (0:1{p; < 0.5}
IR (€)1 0€Ry (¢) i=1..N
+(1-0;)1{p; > 0.5}))
1
= h + hl—— (6:1{p; < 0.5}
i:;N i:;N IRn (€)1 aeg\;(e)
+(1-6:)1{p; > 0.5})
= Z R + Z B (1{p; > 0.5} + (1{p; < 0.5}

i=1..N i=1.N
20cRy (o) Oi
R (€] )
= > K+ > RI(1{p: > 05} + (1{p; < 0.5}
i=1..N i=1..N
- 1{p; > 0.5})qn ) -
Concretely, for accuracy we have h(l.) = % and h} = %
For PPR disparity, assuming wlog that subgroup A has greater

PPR, we have h? =0 and h} = I{TZ‘jA} 1{‘7353}. For FPR

- 1{p; > 0.5})
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disparity, assuming wlog that subgroup A has greater FPR, we
0 _ 1 _ (1-pi)1{dieA}  (1-pi)1{dieB}

have iy = 0 and h; = =5 7p Iy =P,

For TPR disparity, assuming wlog that subgroup A has greater

TPR, we have h? =0and h} = p"lllg,d"EA} _ pilldieB)
alll [1PBll1

Second, as noted in Section 5.2, comparing the amount of
arbitrariness (as defined by the average flip probability) across
demographic groups provides a very different notion of group
fairness compared to typical definitions including statistical
parity and error rate balance. As a simple proof-of-concept
example, imagine that we have two equally-sized subgroups
A and B with Bayes-optimal probabilities p; = 0.6 for all
members of group A, while group B is evenly split between
pi = 0.51 and p; = 0.99. The Bayes-optimal classifier would
predict everyone as positive, leading to PPR = FPR = TPR = 1
for both groups and no observed disparities. Yet the average
flip probability for models in the Rashomon set Ry (€) would
be greater for one group than another depending on the value
of €. For a small value of € = .001, group B would be 32% more
likely to be flipped than group A, while for a larger value of
€ = .02, group B would be 14% less likely to be flipped.

We now present three figures discussed in Section 5.3. In
Figure 7, we graph the overall (population average) flip prob-
ability for all three datasets for models sampled uniformly
at random from the Rashomon set Ry (€) as a function of €,
compared to sampling linear models from the Rashomon set
(as described in Section 4.2) and the models that optimize
PPR, FPR, and TPR over the Rashomon set (as described in
Section 4.1).

In Figure 8, we use the flip probabilities to compute the
average PPR, FPR, and TPR disparities of the entire Rashomon
set Ry (€) as a function of the error tolerance € for the German,
Adult, and Health datasets. While these quantities can also
be approximated by sampling a large number of flip vectors
uniformly at random from the Rashomon set and computing
their sample averages, as described in Section 4.2, using the
flip probabilities is both exact and much more computationally
efficient. We see that the sample averages (orange curves) and
entire-Rashomon-set averages (blue curves) match closely in
Figure 8, but the orange curves include a small amount of
random noise while the blue curves are smooth.

In Figure 9, we compute the group average flip probabilities
for the protected and non-protected groups as a function of the
error tolerance € for the German, Adult, and Health datasets.

. Finally,

H Additional results for Section 6.3.1

(Rashomon set size experiments)

We plot the Rashomon set size |Ry (€)| for the German Credit,
Adult, and Health datasets in Figure 10. We observe that the
Rashomon set sizes are very large and scale rapidly with e,
since |[Ry (€)| = B(e)™. For the maximum e value we consider,
€ = 0.02, we have B = 1.32 for German Credit, B = 1.22 for
Adult, and B = 1.17 for Health.

Additionally, while we do not yet have a way of comput-
ing the (reduced) Rashomon set size when restricting our
search to the space of linear (Ly-penalized logistic regression)
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models as described in Section 4.3.1 above, we can neverthe-
less examine what fraction of the sampled linear models are
in the Rashomon set as a function of €. This is shown (for
€ € {0.001,0.002,...,0.02}) for the German Credit, Adult, and
Health datasets in Figure 11. We see that, for the Adult and
Health datasets, most of the randomly sampled linear models
are in the Rashomon set, even for low e-values. For the Ger-
man Credit data, a substantial fraction of linear models are
not in the Rashomon set, even when e is large.

I Robustness check: use of an alternate
model to estimate Bayes-optimal
probabilities

As noted above, the Bayes-optimal probabilities p; are un-
known for real-world datasets, but can be well-estimated using
sufficient training data. In the main paper, we used logistic
regression to estimate these probabilities. To check the robust-
ness of our results to the choice of model used for estimation of
pi, we re-ran all experiments using the estimated probabilities
pi from XGBoost models learned using 5-fold cross-validation.
Here we present results comparing our methods for optimizing
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PPR (Section 4.1.1), optimizing FPR (Section 4.1.2), optimizing
TPR (Section 4.1.2), uniform random sampling (Section 4.2),
and sampling linear models (Section 4.3.1) over the Rashomon
set Ry (€). Results for PPR disparity, FPR disparity, TPR dispar-
ity, overall flip probability, and proportion of error tolerance
used, all using the XGBoost-generated probability estimates,
are shown in Figures 12-16. These can be compared to the
corresponding results for logistic regression-generated proba-
bility estimates for PPR disparity, FPR disparity, TPR disparity,
overall flip probability, and proportion of error tolerance used
in Figures 1, 5, 6, 7, and 3(right) respectively. The primary
difference we observe is that none of the randomly sampled
linear models were in the Rashomon set for the German and
Health datasets. For the Adult dataset, we observed randomly
sampled linear models in the Rashomon set for € > 0.008, as
compared to € > 0.001 for the logistic regression-generated
probability estimates. These differences are not surprising
given that linear models might not be able to fit the more com-
plex, non-linear relationships modeled by XGBoost. Otherwise,
results are very similar to those using the logistic regression-
generated probability estimates, supporting our conclusions
and policy takeaways above.



EAAMO ’25, November 05-07, 2025, Pittsburgh, PA, USA

Comparison of PPR disparity for Adult dataset (LR)
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‘Comparison of FPR disparity for Adult dataset (LR)
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Figure 4: Generalization experiments. Disparity in positive prediction rate (left), false positive rate (center), and true
positive rate (right) for the Adult dataset, as a function of the error tolerance ¢. For optimization (Section 4.1) (blue)
and uniform random sampling (Section 4.2) (green), the six dashed lines are formed using three separate partitions of
the data for learning the Bayes-optimal model, learning C values for random sampling and class-specific decision
thresholds for optimization, and forming disparity curves respectively; the first partition is labeled data and the
second and third partitions are unlabeled. The solid lines represent our original results using the entire dataset.
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linear models (Section 4.3.1) over the Rashomon set Ry (¢).
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Comparisen of flip probability for German dataset Comparison of flip probability for Adult dataset Comparison of flip probability for Health dataset
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Figure 7: Overall (population average) flip probability for the German, Adult, and Health datasets, as a function
of the error tolerance . Comparison of methods for optimizing PPR (Section 4.1.1), optimizing FPR (Section 4.1.2),
optimizing TPR (Section 4.1.2), uniform random sampling (Section 4.2), and sampling linear models (Section 4.3.1)
over the Rashomon set Ry (¢).
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computed using flip probabilities (blue) and random sampling (orange)
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Figure 8: Comparison of calculated PPR, FPR, and TPR disparities as a function of ¢ for the German, Adult, and Health
datasets. Blue curves: average disparity of the entire Rashomon set calculated using the flip probabilities, as described
in Appendix G. Orange curves: average disparity of 950 flip vectors sampled uniformly at random from the Rashomon
set, as described in Section 4.2
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Comparisen of flip probability for German dataset Comparison of flip probability for Adult dataset Comparison of flip probability for Health dataset
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Figure 9: Group average flip probability, comparison between protected group (solid lines) and non-protected group
(dashed lines), for the German, Adult, and Health datasets, as a function of the error tolerance ¢. Comparison of
methods for optimizing PPR (Section 4.1.1), optimizing FPR (Section 4.1.2), optimizing TPR (Section 4.1.2), and uniform
random sampling (Section 4.2), over the Rashomon set Ry (¢).

Size of Rashomon Set |R(epsilon)| for German Credit Dataset

Size of Rashomon Set |R(epsilon)| for Adult Dataset Size of Rashomon Set |R(epsilon)| for Health Dataset
%000
10118 10
1012000
10102 10%00
10000
T 109 5 10%0 _ o
g 3 2
@ 107 b g
g 10 8 10 g 1099
g 10 z =
K § 1000
H 3 2 1080
i z z
2 109 < oy
£ E o100 E
000
10% 10
101000
105 102000
1050
0.000 0.005 0.010 0.015 0.020 0.000 0.005 0010 0015 0020 0.000 0.005 0010 0.015 0.020
epsilon epsilon epsilon

Figure 10: Rashomon set size |[Ry (¢)| for the German Credit, Adult, and Health datasets. Note the logarithmic scale of
the y-axis.
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Figure 11: Proportion of randomly sampled linear models that are in the Rashomon set Ry (¢) as a function of the
error tolerance ¢, for the German Credit (left), Adult (center), and Health (right) datasets. The y-axis represents how
many of the 1000 randomly sampled linear models are (blue) and are not (orange) in the Rashomon set.
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Figure 12: Robustness check using XGBoost instead of logistic regression to estimate Bayes-optimal probabilities.
Disparity in positive prediction rate for the German, Adult, and Health datasets, as a function of the error tolerance e.
Comparison of methods for optimizing PPR (Section 4.1.1), uniform random sampling (Section 4.2), and sampling
linear models (Section 4.3.1) over the Rashomon set Ry (¢). Note that no linear models were in the Rashomon set for

German and Health datasets.
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Figure 13: Robustness check using XGBoost instead of logistic regression to estimate Bayes-optimal probabilities.
Disparity in false positive rate for the German, Adult, and Health datasets, as a function of the error tolerance e.
Comparison of methods for optimizing FPR (Section 4.1.2), uniform random sampling (Section 4.2), and sampling
linear models (Section 4.3.1) over the Rashomon set Ry (¢). Note that no linear models were in the Rashomon set for

German and Health datasets.
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Figure 14: Robustness check using XGBoost instead of logistic regression to estimate Bayes-optimal probabilities.
Disparity in true positive rate for the German, Adult, and Health datasets, as a function of the error tolerance €.
Comparison of methods for optimizing TPR (Section 4.1.2), uniform random sampling (Section 4.2), and sampling
linear models (Section 4.3.1) over the Rashomon set Ry (¢). Note that no linear models were in the Rashomon set for

German and Health datasets.
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Comparison of flip probability for Adult dataset
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Figure 15: Robustness check using XGBoost instead of logistic regression to estimate Bayes-optimal probabilities.
Overall (population average) flip probability for the German, Adult, and Health datasets, as a function of the error
tolerance ¢. Comparison of methods for optimizing PPR (Section 4.1.1), optimizing FPR (Section 4.1.2), optimizing TPR
(Section 4.1.2), uniform random sampling (Section 4.2), and sampling linear models (Section 4.3.1) over the Rashomon
set Ry (€). Note that no linear models were in the Rashomon set for German and Health datasets.
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Figure 16: Robustness check using XGBoost instead of logistic regression to estimate Bayes-optimal probabilities.
Proportion of error tolerance used, %lé", for the German, Adult, and Health datasets, as a function of the error
tolerance ¢. Comparison of methods for optimizing PPR (Section 4.1.1), optimizing FPR (Section 4.1.2), optimizing TPR
(Section 4.1.2), uniform random sampling (Section 4.2), and sampling linear models (Section 4.3.1) over the Rashomon
set Ry (€). Note that no linear models were in the Rashomon set for German and Health datasets.
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Figure 17: Robustness check using XGBoost instead of logistic regression to estimate Bayes-optimal probabilities.
Disparity in positive prediction rate (left), false positive rate (center), and true positive rate (right) for the Adult dataset,
as a function of the error tolerance . For optimization (Section 4.1) (blue) and uniform random sampling (Section 4.2)
(green), the six dashed lines are formed using three separate partitions of the data for learning the Bayes-optimal
model, learning C values for random sampling and class-specific decision thresholds for optimization, and forming
disparity curves respectively; the first partition is labeled data and the second and third partitions are unlabeled. The
solid lines represent our original results using the entire dataset.
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