
Vol.:(0123456789)

Current Epidemiology Reports            (2025) 12:6  
https://doi.org/10.1007/s40471-025-00359-5

Integrating Artificial Intelligence into Causal Research in Epidemiology

Ellicott C. Matthay1 · Daniel B. Neill2,3,4 · Andrea R. Titus1 · Sunita Desai5 · Andrea B. Troxel6 · Magdalena Cerdá1 · 
Iván Díaz6 · Michele Santacatterina6 · Lorna E. Thorpe1

Accepted: 4 March 2025 
© The Author(s) 2025

Abstract
Purpose of Review  Recent advances in Artificial Intelligence (AI) present new and not widely recognized opportunities to 
advance the rigor, scope, efficiency, and impact of epidemiologic research aiming to make causal inferences or causal deci-
sions. We describe recent developments, challenges, and examples for integrating varied AI tools into the steps of Petersen 
and van der Laan’s causal inference roadmap and causal decision-making tasks.
Recent Findings  AI tools relevant to causal research in epidemiology include predictive models, unsupervised learning, 
causal structure learning, causal estimation, and generative models. Opportunities exist to integrate AI at each stage of the 
causal roadmap. This includes the use of generative models to synthesize scientific literature and identify knowledge gaps; 
causal structure learning to discover or hypothesize causal structures from data; unsupervised learning from unstructured 
text to generate quantitative variables for analysis; predictive models to drive clinical or policy interventions; generative or 
causal models to assess or establish identifiability; causal models for estimating statistical parameters; and generative models 
to create text, tables, and figures to interpret and disseminate findings. Researchers must be mindful of potential pitfalls of 
AI tools such as insufficient training data, poor accuracy, biases, and ethical and legal concerns.
Summary  Diverse AI tools are available to support causal research in epidemiology. Steps of the causal inference roadmap 
cannot yet be fully automated, but thoughtful “collaboration” between investigators and AI tools may accelerate or deepen 
the research at each step.
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Introduction

Artificial Intelligence (AI) tools are rapidly being integrated 
into everyday technologies, including those used for epide-
miologic research. AI is a sub-discipline of computer science 
focused on creating systems to complete tasks that usually 
require human intelligence, such as analyzing or generating 
text, images, or quantitative data. AI applications are often 
powered or implemented through Machine Learning (ML), 
processes by which computers use algorithms to analyze and 
learn from data and then complete specific tasks such as gen-
erating insights, predictions, or decisions. AI tools present 
numerous opportunities for advancing the rigor, scope, and 
consequences of epidemiologic research, especially research 
aiming to make causal inferences or causal decisions. For 
example, AI tools can be used to automate data collection at 
scale by converting unstructured text into quantitative vari-
ables for analysis [1]. In part for this reason, the number of 
epidemiology journal articles addressing or incorporating 

 *	 Ellicott C. Matthay 
	 Ellicott.Matthay@nyulangone.org

1	 Division of Epidemiology, Department of Population 
Health, New York University Grossman School of Medicine, 
New York, NY, USA

2	 Courant Institute, Department of Computer Science, New 
York University, New York, NY, USA

3	 Robert F. Wagner Graduate School of Public Service, New 
York University, New York, NY, USA

4	 Center for Urban Science and Progress, Tandon School 
of Engineering, New York University, New York, NY, USA

5	 Division of Healthcare Delivery Science, Department 
of Population Health, New York University Grossman School 
of Medicine, New York, NY, USA

6	 Division of Biostatistics, Department of Population Health, 
New York University Grossman School of Medicine, 
New York, NY, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s40471-025-00359-5&domain=pdf


	 Current Epidemiology Reports            (2025) 12:6     6   Page 2 of 16

AI has increased markedly in recent years (Figure 1). Appli-
cations of AI relevant to the COVID-19 pandemic further 
fueled these advances [2].

Much has been written in the epidemiologic literature 
about the uses, strengths, and limitations of ML in epide-
miologic research [3–14]. Researchers have highlighted the 
use of ML to conduct statistical modeling on large datasets 
with many predictor variables and complex, non-linear rela-
tionships among variables. They have also cautioned that the 
computer alone is not enough: such algorithms cannot be 
applied successfully without understanding the algorithm’s 
assumptions, critically checking whether they are met, incor-
porating substantive knowledge on the variables of interest, 
and taking explicit steps to ensure that models do not propa-
gate biases or discrimination.

However, AI-related discussion in the epidemiologic lit-
erature has focused almost exclusively on ML for predic-
tive modeling in the context of estimating causal effects or 
heterogeneity in causal effects [3–14]. These methods con-
stitute a narrow subset of the AI tools now widely in use. 
Recent advances in Generative AI, including Large Lan-
guage Models (LLMs) such as ChatGPT, are widely pub-
licized but rarely discussed in the epidemiologic literature. 
These broader classes of AI tools could markedly alter the 
conduct of epidemiologic research, for example by provid-
ing critical synthesis of the scientific literature; revealing 
the causal connections among variables; accelerating the 
pace and scale of data collection; automating components 

of data processing or analysis; identifying alternative ways 
to achieve causal identification or conditional exchange-
ability; assisting with producing text, tables, or figures for 
scientific manuscripts; or determining the optimal combina-
tion of interventions needed to achieve a specific goal (for 
example, identifying which intervention(s) should be used, 
to whom the intervention(s) should be targeted, and how the 
intervention(s) should be tailored to the target population to 
optimally advance health equity).

The existing focus in the epidemiologic literature on ML 
for predictive modeling suggests that some epidemiologists 
may be unaware of the broader suite of AI tools now avail-
able to support epidemiologic research. To take full advan-
tage of these advances, epidemiologists need guidance on 
tools available for integration into causal research, focus-
ing both on opportunities to improve efficiency, quality, and 
impact and on cautions and risks. We aim to fill this gap.

This paper provides a structured overview of AI tools rel-
evant to epidemiologic research. The term AI is loosely and 
ambiguously defined, and thus there exists debate on which 
approaches do or do not constitute AI; we do not attempt 
to weigh in on this debate but rather consider a wide scope 
of methods (ranging from statistical machine learning to 
deep learning with neural networks to large language mod-
els) that add value at different points in the causal inference 
and causal decision-making processes. As a guiding frame-
work, we apply Petersen and van der Laan’s roadmap for 
causal inference, [15] which traces the arc of a typical study 

Fig. 1   Number of publications with “artificial intelligence” or related 
terms in the title or abstract of selected epidemiology journals, 1982–
2024. Data generated from PubMed search “Results by Year” feature 
using the search term: ((("artificial intelligence"[Title/Abstract]) OR 
("AI"[Title/Abstract]) OR ("Large language models"[Title/Abstract]) 
OR ("natural language processing"[Title/Abstract]) OR ("NLP"[Title/
Abstract]) OR ("machine learning"[Title/Abstract]) OR ("ML"[Title/

Abstract]) ) AND (("American journal of epidemiology"[Journal]) 
OR ("International journal of epidemiology"[Journal]) OR 
("Epidemiology"[Journal]) OR ("Journal of epidemiology and com-
munity health"[Journal]) OR ("Annals of epidemiology"[Journal]) 
OR  ("European journal of epidemiology"[Journal]) OR ("Journal of 
clinical epidemiology"[Journal])))
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aiming to estimate causal effects from refining the target 
causal quantity and available data through estimation and 
interpretation. This paper builds on work by Petersen and 
colleagues piloting the use of LLMs as co-pilots throughout 
the causal roadmap [16, 17]. Our target audience is research-
ers with graduate-level training in epidemiologic methods 
and introductory causal inference. Using applied examples 
throughout, we underscore the contributions AI might make, 
potential challenges and limitations of relying on AI, and 
how epidemiologists can work with AI to do better causal 
research. We also discuss the advancements in theory, exper-
tise, data, and ethics that are needed for AI tools to reach 
their full potential for causal research in epidemiology.

A Simplified Typology of AI Tools Relevant to Causal 
Research in Epidemiology

No existing typology of AI tools comprehensively captures 
or distinguishes among tasks relevant to epidemiologists. 
Table 1 provides a loose classification by adapting and com-
bining several typologies [4, 18–20]. The categories are not 
mutually exclusive or collectively exhaustive, but offer some 
intuition about key distinctions among approaches. We cat-
egorize AI tools relevant to epidemiologists into: (1) predic-
tive models, (2) unsupervised learning, (3) causal structure 
learning, (4) causal estimation, and (5) generative models. 
For more precise definitions, see the original typologies [4, 
18–20]. Also note that many methods (e.g., random forests, 
support vector machines, artificial neural networks) can be 
used for tasks in multiple categories. Among these, deep 
learning with artificial neural networks has gained promi-
nence and fueled many of the most novel recent develop-
ments [21].

Integrating AI Into the Causal Roadmap

This section maps the distinct roles that AI tools can play in 
epidemiologic research aiming to estimate causal effects. A 
common framework for causal effect estimation is Petersen 
and van der Laan’s 2014 “roadmap” [15]. Their 7-step 
approach—a widely used heuristic for teaching and apply-
ing causal inference concepts in epidemiology and biosta-
tistics—traces the arc of asking and answering questions 
about causal effects. This includes specifying the informa-
tion that is already known (e.g., a directed acyclic graph 
[DAG]), detailing the available data and desired causal effect 
(e.g., the average treatment effect of an exposure in a des-
ignated population), assessing and establishing identifiabil-
ity, conducting estimation, and ultimately, interpreting the 
resulting statistical parameter. Opportunities exist to inte-
grate AI into each of these steps (Table 2). The subsequent 
section addresses opportunities to integrate AI into causal 

decision making (i.e., selecting, targeting, or tailoring an 
intervention).

Specifying the Causal Model and Existing 
Knowledge

Causal inference tasks often begin by specifying a causal 
model or drawing a DAG representing the investigator’s 
assumptions about the causal structure and time ordering 
of relevant variables. DAGs are typically based on prior 
research, observed data, and expert knowledge [15]. At 
this step, AI may serve two purposes: First, Generative AI 
can synthesize the existing scientific literature and identify 
knowledge gaps. Second, AI tools can be used to learn or 
hypothesize causal structures.

Multiple LLMs, both publicly available (e.g., ChatGPT) 
and privately developed, are capable of synthesizing scien-
tific literature, but to date, their reliability is poor [57–59]. 
LLMs learn patterns of text, speech, or language, and gen-
erate new text based on what they have learned about these 
patterns. However, these models do not “understand” the 
text’s content, and they are sensitive to choice of text on 
which they are trained [64]. Anecdotally, public LLMs tend 
to produce incomplete literature reviews, provide inaccurate 
assessments of study quality, and fabricate both facts and 
references to scientific articles (“hallucinations”) [57, 58]. 
LLMs that are trained on more complete bodies of scientific 
literature and that are tailored to the task of summarizing 
scientific literature (e.g., iris.ai [65], scite assistant [66], 
Stanford STORM [67]) may be more reliable, but must be 
validated for substantive and methodologic domains of epi-
demiologic research. Accuracy and completeness may also 
improve as this technology advances (e.g., from GPT-3 to 
GPT-4). If deemed adequately accurate and complete, these 
tools could be used to conduct targeted literature reviews to 
evaluate the strength of evidence for each candidate edge 
between two nodes in a DAG. At present, the optimal use of 
Generative AI may be to accelerate the work of traditional 
literature reviews by conducting a “first pass” that is subse-
quently verified by the investigator.

AI tools can also be used to learn a causal structure, such 
as a DAG [45]. Given a dataset and a set of assumptions 
(causal Markov condition, faithfulness, sufficiency, and 
acyclicity), the Peter and Clark (PC) algorithm [68] can 
be used to automate causal structure learning of Bayesian 
networks. PC and similar approaches identify the sets of 
causal structures (nodes and directed edges between them) 
that are consistent with the data and assumptions provided. 
Expert knowledge (e.g., regarding the temporal order of the 
variables), stronger assumptions (such as parametric model 
assumptions, e.g., linear relationships with non-Gaussian 
noise [46, 47]), or different data (e.g., on an experiment vs. 
observational) can be used to reduce the number of causal 
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structures in the consistent set. Alternatively, approaches 
such as Fast Causal Inference [69]—an extension of the 
PC algorithm—can be used to find causal structures under 
weaker assumptions (e.g., relaxing the assumption of “no 
unmeasured confounders”), usually at the cost of increased 
runtime and a larger consistent set.

In practice, AI tools for learning causal structures have 
been used to evaluate the effects of gene expression on dis-
ease; [70] delineate how firearm laws, firearm ownership, 
and firearm mortality mutually affect one another over 
time; [71] and determine the temporal ordering of causal 
effects between depression and sleep problems [72]. Struc-
ture learning is often challenging in epidemiologic settings 
because of spatially and temporally correlated data. Newer 
approaches such as Gaussian process modeling [73] or trans-
fer entropy in temporal data [74] may help disentangle spa-
tiotemporal correlations from causal relationships between 
variables. Additionally, because any artefacts of bias or dis-
crimination (e.g., based on race) present in the input data or 
input assumptions are likely to be propagated through AI 
algorithms, critical evaluation of the equity-related value 
judgements built in to the output causal structure(s) is essen-
tial [75–77].

Specifying the Observed Data and their Link 
to the Causal Model

The next step of the roadmap is to specify the variables that 
have been or will be measured and what units or participants 
will be observed or sampled. At this step, AI tools can sup-
port and enhance data collection and refinement of variables 
and measures.

Unsupervised learning tools such as natural language 
processing (NLP) and LLMs can generate the observed 
data, for example by extracting and converting unstructured 
text or images into quantitative variables for analysis [1]. 
Epidemiologic investigators are applying these methods 
to generate policy exposure variables from legal text; [42, 
78–80] measure neighborhood environments from archived 
Google Street View imagery; [81] quantify neighborhood 
cannabis retail environments; [82, 83] measure social norms, 
processes, or sentiments (e.g., racism) from social media 
posts or mass media coverage; [41, 84, 85] identify and clas-
sify food advertisements targeting children; [86] determine 
social, behavioral, or clinical factors from clinical notes in 
Electronic Health Records (EHR); [40, 87, 88] characterize 
circumstances of suicides from narrative reports of medical 
examiners or law enforcement; [89] estimate current and 
future levels of air pollution exposures or disease outbreaks 
from historical datasets; [90–92] and track emerging disease 
outbreaks when cases are under diagnosed [28].

AI tools may change the scale, pace, and nature of data 
collection in other ways. LLMs can code themes from Ta
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interview transcripts, making it possible to complete in-
depth qualitative research at quantitative scale. Recent 
tests of these techniques show moderate to high consist-
ency against human-coded interviews [93–95]. Com-
puter programs can be trained as interviewers for survey 
research, a practice that may reduce the risk of certain 
biases (e.g., social desirability) while increasing the risk of 
other issues (e.g., nonsensical responses) [96, 97]. LLMs 
may be trained to enhance questionnaire design or impute 
missing public opinion data, although these remain possi-
bilities rather than established techniques [97]. Data qual-
ity monitoring must now incorporate checks to ensure that 
surveys intended for humans are not fraudulently com-
pleted by Generative AI programs [97]. Automation of 
data collection tasks also presents opportunities to itera-
tively refine the definitions of measures or add sensitivity 
analyses, since changing data collection prompts amounts 
to changing lines of code rather than restarting extraction 
from scratch.

Advancements in AI-based data harmonization and data 
sharing technologies present notable opportunities to create 
and analyze large datasets derived from separate sources. 
Although early in development, LLMs have been lever-
aged to define Common Data Elements and accelerate the 
process of data harmonization in biomedical research [98]. 
Paired with federated learning, an AI technique that permits 
separate groups to contribute private decentralized data to 
train a single centralized model, these tools can facilitate the 
compilation and analysis of diverse measures across distinct 
health systems or cohorts while protecting private sensitive 
information [99]. These advancements show promise, for 
example, in assessing nationwide clinical outcomes among 
organ transplant recipients [99]. AI tools for harmonizing 
data across separate sources may also enhance internal valid-
ity by facilitating adjustment for confounders only available 
across distinct datasets, and external validity by incorporat-
ing separate cohorts to increase population representative-
ness. More recently, researchers have also applied foundation 
models—another type of generative AI—to large streams of 
geo-indexed data to achieve state-of-the-art performance for 
forecasting and interpolating county-level health, environ-
mental, and socioeconomic indicators.

AI-driven paradigm shifts in epidemiologic data collec-
tion pose new ethical questions and challenges [97]. Prop-
agation of biases or discrimination in training data are a 
threat to fairness and validity [97]. Predicting individuals’ 
opinions may raise new questions about participant con-
sent. AI-based data collection powered by proprietary algo-
rithms may hinder reproducibility. Interview transcripts and 
patient notes in electronic health records contain identifiers 
and private information protected by the Health Insurance 
Portability and Accountability Act (HIPAA) and therefore 
cannot legally be input into public LLMs. Investigators must 

therefore proceed using private, HIPAA-compliant LLMs, 
or human- or AI-driven de-identification [100].

Specifying the Target Causal Quantity

The third step is to define the research question as a formal 
quantity or parameter corresponding to the causal effect of a 
specific intervention or exposure on an outcome variable in a 
defined target population. It may be possible to train LLMs 
to select or define causal parameters of interest. For instance, 
given a causal model and a research question, a generative 
AI tool could instruct the investigator on which target causal 
quantities are identifiable, and which of those best reflects 
the original research question.

Another salient use of AI at this stage is as the interven-
tion itself. As an intervention, an AI tool might determine 
what exposure variable to intervene on and how to modify 
the chosen exposure. The research then aims to infer its 
causal effect of this system on the outcome in the target 
population. For example, clinical researchers have applied 
predictive models to EHR data to stratify patients based on 
their risk of cancer recurrence, sepsis, post-surgery com-
plications, or high utilization of healthcare resources, and 
used these risk predictions to provide tailored support for 
clinician decision-making in caring for each patient (i.e., 
applying dynamic treatment rules) [101–107]. The target 
causal quantity could then be the average level of the out-
come had all eligible patients been exposed to the decision 
support tool compared with the average outcome had all 
eligible patients not been exposed to the tool (i.e., an average 
treatment effect), but other summaries of the counterfactual 
outcome distributions based on subgroups or effect modifiers 
may also be of interest.

Beyond healthcare, public policy interventions involving 
AI may also be exposures of interest to epidemiologists. For 
example, the US Department of Justice invested in research 
to evaluate the use of ML to predict the future recidivism 
risk among individuals released from prison to parole and to 
tailor programming accordingly [108]. As with data collec-
tion, AI-based interventions present opportunities to reduce 
certain biases, for example by reducing interpersonal racial 
discrimination in sentencing, but may increase the risk of 
other concerns, including ethical or safety risks to patients or 
parolees if decision support tools fail and risks of propagat-
ing biases and discrimination [109].

Assessing and Establishing Identifiability

Assessing identifiability means determining, for a given 
causal model (e.g., DAG) and target causal quantity, whether 
the measured variables and observations are sufficient to 
meet the required conditions [15, 110]. This typically 
means ensuring that all confounders have been correctly 
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identified, measured, and controlled, or that there exists a 
valid instrumental variable that can be leveraged to make 
causal inferences [111]. AI tools are available to determine 
whether these criteria are met, and to select or generate con-
trol groups or datasets that are more likely to meet these 
(untestable) criteria.

For a given causal model with variables designated as 
measured or unmeasured, simple automated software such 
as DAGitty can readily identify sets of variables sufficient to 
control confounding [112]. ML has also been used to build 
control groups or counterfactuals. For example, synthetic 
control methods create artificial control groups by taking 
weighted averages of the outcomes in untreated units, with 
the weights selected algorithmically by minimizing differ-
ences in confounder values between the treated and synthetic 
control units [113, 114]. These methods have been used in 
epidemiologic research to estimate the causal effects of a 
variety of public policies. ML algorithms for automated 
discovery of valid instruments in large datasets have been 
developed to identify local average treatment effects, [48, 
49] although these methods have not yet been applied in 
epidemiologic research.

Theoretically, LLMs could be trained to analyze news 
media, proposed bills, legislation, regulations, or legal docu-
ments to identify new opportunities for quasi-experiments, 
for example if a new public policy were rolled out via lot-
tery. We are not aware of any existing applications of this 
approach. Further, in situations where there is uncertainty 
about whether the assumptions required for identification 
are met, LLMs could be used to simulate datasets or causal 
models under alternative scenarios to determine how iden-
tification could be achieved under each scenario. As with 
literature reviews, human verification of the accuracy of 
LLM output is essential.

Stating the Statistical Estimation Problem

At the fifth step, researchers must specify the statistical 
model to be used to estimate the target causal quantity and 
determine whether the observed data are adequate to esti-
mate the target. If so, the study can proceed with estimation. 
If not, the target must be altered or the set of assumptions 
expanded (i.e., return to the previous step). AI tools to sup-
port these decisions are similar to those described for assess-
ing and establishing identifiability. More broadly, at this 
stage, LLMs can support analytic decision-making by syn-
thesizing recommended approaches in the scientific litera-
ture or supporting simulations to guide the choice of analytic 
modifications. For example, Generative AI could be used to 
simulate complex, realistic datasets with known parameters 
for the researcher to use to select among alternative estima-
tion approaches [115]. The identified optimal approach can 
then be applied to the real data. Similarly, interactions with 

Generative AI can stimulate ideas for sensitivity or falsifica-
tion analyses. As with step 1, Generative AI should only be 
used to synthesize information or make recommendations if 
the accuracy and quality of the output can be verified.

Estimating the Target Causal Quantity

The most common application of AI in epidemiologic 
research is the use of semi-parametric modeling techniques 
when estimating causal effects [4, 15, 116]. For example, 
random forests, artificial neural networks, support vector 
machines, or a combination of these might be used to model 
the outcome variable as a function of the exposure and con-
founders, replacing traditional parametric regressions. These 
approaches are advantageous because they allow for data-
driven model selection, flexible shapes of the relationships 
between variables, many predictor variables, and complex 
interactions among predictors [117–119]. Recent appli-
cations of deep learning may further optimize the task of 
causal estimation by automating the selection of estimators 
across a vast array of possible data structures and statistical 
procedures [120] or automating the derivation of formulas to 
compute standard errors [121]. All of these tools are relevant 
to analyses estimating average treatment effects as well as 
causal mediation and transportability analyses [122–124].

Substantial progress and attention have also been directed 
to ML tools for estimating heterogeneous treatment effects 
(HTEs). Here, multiple distinct tasks are relevant, including 
data-driven identification of subgroups that respond differ-
ently to [53, 54] or benefit most from [125] an intervention, 
or testing for heterogeneity across all covariate subgroups 
[126]. For example, researchers used causal forest modeling 
to identify subgroups of randomized trial participants who 
benefitted most from an intensive weight loss intervention, 
according to their HbA1c and self-reported general health at 
baseline [127].

Obtaining valid statistical inferences from statistical 
models that incorporate ML can be a challenge, because 
there is limited statistical theory on which to base the esti-
mation of standard errors or confidence intervals [128]. Tar-
geted Maximum Likelihood Estimation (TMLE), debiased 
machine learning, and balancing estimators are exceptions 
[129–133]. Among these, TMLE has gained distinction in 
epidemiologic research [134].

Interpreting and Reporting Results

Once the target causal parameter has been estimated, the 
results must be interpreted and reported appropriately. At 
this stage, generative AI may assist in selecting among the 
possible levels of interpretation, ranging from a statistical 
parameter of the observed data to an effect that approximates 
that from a randomized trial [15]. As the strength of the 
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interpretation depends on the likelihood that the identifi-
ability conditions are met, ML algorithms for learning causal 
structures and establishing identification may also come into 
play here (see step 4 above).

Generative AI may also support investigators in creating 
the text, tables, and figures for scientific manuscripts and 
presentations reporting study findings [60, 135]. For these 
tasks, AI tools may be best thought of as a collaborator in the 
writing process, rather than a stand-alone production tool. 
For example, LLMs can support the efficiency or quality of 
writing by developing outlines or first drafts or providing 
feedback on grammar or logical arguments. Studies testing 
AI for scientific and medical writing have found that Chat-
GPT can improve readability of abstracts and introduction 
sections compared with human-generated text, but in some 
cases the content quality was inferior, [61, 62] emphasiz-
ing the need for adequate investigator oversight to prevent 
biases and inaccuracies [60, 136]. One large evaluation of 
LLM-generated feedback on research papers found substan-
tial overlap between LLM and human feedback, demonstrat-
ing the potential utility of LLMs as a complement to expert 
feedback [137]. Incorporating LLMs into the writing process 
may also have beneficial effects on equity in scientific fields 
by reducing barriers experienced by non-native English 
speakers. Other opportunities for enhancing dissemination 
of research findings, for example creating eighth-grade read-
ing level summaries, [138] continue to be explored.

Most funders, journals, and publishers now have poli-
cies regarding the use of AI in scientific writing [139]. For 
example, the Journal of the American Medical Association 
(JAMA) discourages but does not ban the use of AI-gener-
ated content, and requires that authors disclose how AI was 
used in the study’s conduct and reporting [140]. Generative 
AI models cannot generally be considered authors because 
they cannot be held responsible for a manuscript’s contents 
[140]. The National Institutes of Health permits the use of 
Generative AI to assist in grant writing, but bans its use in 
peer review [141]. There are currently few practical ways 
to enforce these bans but, as with the technology itself, this 
could change rapidly [142]. Because LLMs can memorize 
and regurgitate their training data, the risk of plagiarism 
may be substantial [143]. It is therefore wise to run all drafts 
through plagiarism detection software.

Integrating AI into Causal Decision‑making

Beyond causal effect estimation, epidemiologists also 
aim to make causal decisions—for example, determin-
ing which intervention(s) should be used, to whom 
the intervention(s) should be targeted, or how the 
intervention(s) should be tailored to the target population 
[144, 145]. This task is distinct from causal effect estima-
tion because the quantity of interest is the intervention 

assignment itself, not the effect of the intervention on the 
outcome [144]. However, AI tools similarly present multi-
ple opportunities to enhance causal decision-making tasks.

Given a set of candidate interventions, estimates of their 
causal effects on a health outcome of interest for relevant 
populations, and chosen constraints (e.g., budget, fair-
ness), predictive modeling and optimization approaches 
can be used to determine which intervention(s) will 
achieve a specific goal, for example maximally reducing 
the given outcome in the overall population [146–149]. 
For example, one study applying this approach concluded 
that designated targets for reducing overdose deaths in the 
US are only possible if broader availability of medication 
treatment for opioid use disorder is paired with increased 
distribution of the overdose reversal agent naloxone, but 
not if either policy is enacted alone [51]. The optimiza-
tion may also include constraints or penalties designed to 
improve fairness or reduce disparities between groups, to 
ensure that the benefits of an intervention are more equi-
tably distributed across the population.

AI tools for causal decision-making can also support 
geographic targeting of an intervention to areas where it is 
most likely to be most effective. For example, researchers 
have applied predictive modeling to anticipate where burden 
will be highest and to dynamically adapt where resources 
are targeted in response. The PROVIDENT trial is testing 
this approach to anticipate and prevent local surges in drug 
overdoses [52, 150, 151]. Similarly, predictive models that 
identify subgroups who benefit most from an intervention 
can be used to determine to whom an intervention should be 
targeted [152]. Statistical methods for transporting or gener-
alizing causal effect estimates can also incorporate predic-
tive modeling and inform targeting efforts by estimating the 
potential impact of an intervention in a novel target popu-
lation that differs in composition from the original study 
population [153, 154].

AI tools may also be leveraged to inform the tailoring of 
intervention(s) to each individual according to their baseline 
characteristics or responses to the intervention(s) over the 
course of the study, as in the case of estimating optimal 
dynamic treatment rules [155]. For example, investiga-
tors have applied AI algorithms to identify which justice-
involved adults would most-benefit from cognitive behav-
ioral therapy to reduce criminal-reoffending [156]. These 
task are similar in nature to those used to estimate HTEs.

Importantly, applications of AI—particularly those 
involving risk-based targeting or tailoring of interventions—
can perpetuate harmful stereotypes and discrimination based 
on race, ethnicity, gender, ability, and other social statuses 
[157, 158]. For example, Obermeyer found evidence of 
racial bias in one AI algorithm widely used in US health 
care, such that the algorithm assigned the same level of risk 
to sicker Black patients as to healthier white patients [159].
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Because of the potential harms arising from discrimina-
tory algorithms, transparent and structured evaluations of 
fairness—ideally led by members of minoritized groups and 
individuals with lived experience of marginalization—must 
be incorporated into the design and application of causal deci-
sion-making algorithms. For example, AI analyses grounded 
in the epidemiologic concept of “allowable” covariates and 
the inherent value judgements in covariate selection may be 
better positioned to prevent or mitigate AI bias [76]. Addi-
tionally, investigations supported by sociological theory or 
frameworks underlying the relationship between the interven-
tion and health inequities may be better positioned to identify 
and disrupt rather than reinforce inequities [160]. In response 
to concerns about AI bias, the National Institute on Minority 
Health and Health Disparities developed the Science Collabo-
rative for Health disparities and Artificial intelligence bias 
Reduction (ScHARE) platform [161]. ScHARE provides a 
low-cost collaborative cloud computing platform and access 
to big datasets on social determinants and health care out-
comes with the goals of increasing participation of under-
represented groups in AI science and mitigating AI bias in 
health research. Overall, fairness in AI is a rapidly evolving 
area of research in computer science, bioethics, and related 
fields, and advancements in this area will likely have impor-
tant implications for epidemiologic research involving causal 
effect estimation and causal decision-making.

Discussion

We provide a structured summary of opportunities to inte-
grate recent advances in AI into causal inference and causal 
decision-making in epidemiology. Along the arc of a causal 
epidemiologic research project, AI tools for prediction, unsu-
pervised learning, causal structure learning, causal estima-
tion, and content generation may enhance the scale, com-
plexity, efficiency, or quality of the research. Yet substantial 
limitations in accuracy, fairness, ethics, and safety remain. 
AI cannot yet be used to automate the scientific process; 
human experts remain the foundation of sound epidemiologic 
research. However, when viewed as an assistant in the process 
of conducting causal research, AI presents opportunities for 
thoughtful “collaboration”. AI brings new tools, but the major 
goals, processes, and requirements of causal research in epi-
demiology remain unchanged [162].

To leverage the full potential of AI in research, epidemi-
ologists must build interdisciplinary partnerships, develop 
tailored data and computational resources, and navigate ethi-
cal considerations. Teams aiming to rigorously incorporate 
AI into epidemiologic research will benefit from interdis-
ciplinary expertise in subdisciplines of computer science 
including AI and data science, statistics, machine learning, 
bioinformatics, medical and research ethics, and relevant 

clinical or substantive areas. Clear communication of the 
uses and outputs of a given AI tool is also essential, because 
perceived “black boxes” are less likely to be trusted or used 
by researchers, practitioners, or the public. In our experi-
ence, effective collaborations require introducing causal 
inference concepts to computer and data scientists, intro-
ducing AI concepts to epidemiologists, and developing tools 
tailored to epidemiologic research.

Data present concerns in at least three regards. First, the 
types of epidemiologic data best suited to AI applications 
are not yet established. Second, AI algorithms depend on the 
quality and completeness of the data used to train them [2]. 
Gaps in the data necessary for appropriate training of AI mod-
els—for example because of publication bias—will limit the 
utility of the resulting tools. Third, the evolution of many AI 
technologies has gone hand-in-hand with the increasing avail-
ability of large, high-dimensional datasets. Many of these big 
datasets come with their own issues and biases. Because the 
use of AI in epidemiology intersects with big data, there are 
overlaid technical and analytical challenges to causal infer-
ence in the combined context of big data and AI that must 
be addressed in concert. For example, AI models run on big 
data can be extremely computationally intensive. Taking 
full advantage of AI therefore often requires proficiency and 
resources in cloud computing and super computers. Changes 
in the distribution of big data over time, or differences among 
data collected in different jurisdictions, may limit the gener-
alizability of causal inferences and the quality of estimation.

Generative AI should only be used to synthesize informa-
tion or make recommendations if the accuracy and quality of 
the output can be verified. This raises questions about how 
researchers should evaluate performance or accuracy. One 
large systematic review of this topic found that current prac-
tices for evaluation are varied, limited, and unstandardized, and 
consequently proposed a framework for standardizing human 
evaluation of LLMs in healthcare [163]. Similar investigations 
and standardization of practices for incorporating AI into epi-
demiologic research may help promote more rigorous use of 
these tools.

Much has been written about ethical and safety concerns 
with AI in medical and public health research [96, 157, 158, 
164–168]. Concerns about health information privacy, data man-
agement, and data sharing are prevalent, as public LLMs such 
as ChatGPT cannot be used with information protected by the 
Health Insurance Protection and Accountability Act (HIPAA). 
Our institution, NYU Langone Health, is one of few academic 
medical centers with a private, internal, HIPAA-compliant 
instance of GPT-4 for use in scientific research and clinical care. 
The prior section discussed issues of bias and discrimination. 
AI tools also present novel threats to study participant safety, 
biosecurity, and biosafety that may require institutional review 
boards to learn about new technologies and adapt accordingly. 
Epidemiologist will have an important role to play in research 
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supporting the regulation of AI in health care and biomedicine, 
for example by conducting post-market monitoring of AI-ena-
bled medical devices [169]. Questions about intellectual prop-
erty, peer review, and replication arise when generative AI is 
used to create research products, making it important to monitor 
evolving regulations and avoid plagiarism and policy violations 
[139, 142, 164]. Greater consensus is needed on what respon-
sibilities researchers have for judging the quality of AI-assisted 
research and managing the societal implications of using AI 
models that may be “overconfident”, inadvertently cause harm, 
or reduce public trust in science [158]. The field of epidemiol-
ogy will need to wrestle with these questions, and would likely 
benefit from developing trainings for doctoral and post-doctoral 
investigators in the responsible use of AI.

We note some limitations of this review. First, AI and 
research on its uses in science are evolving rapidly. We aim to 
illustrate potential uses and considerations for AI within causal 
frameworks, but the applications, opportunities, and limita-
tions described here are not exhaustive. Second, we describe 
opportunities to fit AI into causal frameworks, but the relation 
between causal inference and AI is in fact bidirectional, with 
opportunities to inject causal thinking into AI frameworks as 
well (see for example [170]). Finally, we focus on applications 
to causal research in epidemiology, as there is unique comple-
mentarity and rapid advancement happening at the intersection 
of AI and causal inference, but AI may also be useful for other 
undertakings fulfilled by epidemiologists including descrip-
tive epidemiology, evidence synthesis, and implementation 
research.

Rigorous epidemiologic research incorporating AI can 
advance causal inference and causal decision-making in 
public health. Many AI tools are underutilized but poised to 
boost the innovation, efficiency, and scope of epidemiology 
research if applied thoughtfully and ethically with wariness 
of potential pitfalls. Causal research in epidemiology can-
not yet be automated but anticipating which components of 
the research process are likely to be rigorously automated 
soon will facilitate long-term planning for the evolution of 
epidemiologic research as a field.
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