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Abstract

Purpose of Review Recent advances in Artificial Intelligence (AI) present new and not widely recognized opportunities to
advance the rigor, scope, efficiency, and impact of epidemiologic research aiming to make causal inferences or causal deci-
sions. We describe recent developments, challenges, and examples for integrating varied Al tools into the steps of Petersen
and van der Laan’s causal inference roadmap and causal decision-making tasks.

Recent Findings Al tools relevant to causal research in epidemiology include predictive models, unsupervised learning,
causal structure learning, causal estimation, and generative models. Opportunities exist to integrate Al at each stage of the
causal roadmap. This includes the use of generative models to synthesize scientific literature and identify knowledge gaps;
causal structure learning to discover or hypothesize causal structures from data; unsupervised learning from unstructured
text to generate quantitative variables for analysis; predictive models to drive clinical or policy interventions; generative or
causal models to assess or establish identifiability; causal models for estimating statistical parameters; and generative models
to create text, tables, and figures to interpret and disseminate findings. Researchers must be mindful of potential pitfalls of
Al tools such as insufficient training data, poor accuracy, biases, and ethical and legal concerns.

Summary Diverse Al tools are available to support causal research in epidemiology. Steps of the causal inference roadmap
cannot yet be fully automated, but thoughtful “collaboration” between investigators and Al tools may accelerate or deepen
the research at each step.

Keywords Causal inference - Artificial intelligence - Machine learning - Large language models

Introduction

Artificial Intelligence (AI) tools are rapidly being integrated
into everyday technologies, including those used for epide-
miologic research. Al is a sub-discipline of computer science
focused on creating systems to complete tasks that usually
require human intelligence, such as analyzing or generating
text, images, or quantitative data. Al applications are often
powered or implemented through Machine Learning (ML),
processes by which computers use algorithms to analyze and
learn from data and then complete specific tasks such as gen-
erating insights, predictions, or decisions. Al tools present
numerous opportunities for advancing the rigor, scope, and
consequences of epidemiologic research, especially research
aiming to make causal inferences or causal decisions. For

< Ellicott C. Matthay
Ellicott.Matthay @nyulangone.org

Division of Epidemiology, Department of Population
Health, New York University Grossman School of Medicine,
New York, NY, USA

Courant Institute, Department of Computer Science, New
York University, New York, NY, USA

Robert F. Wagner Graduate School of Public Service, New
York University, New York, NY, USA

Center for Urban Science and Progress, Tandon School
of Engineering, New York University, New York, NY, USA

Division of Healthcare Delivery Science, Department
of Population Health, New York University Grossman School
of Medicine, New York, NY, USA

Division of Biostatistics, Department of Population Health,
New York University Grossman School of Medicine,
New York, NY, USA

Published online: 24 March 2025

example, Al tools can be used to automate data collection at
scale by converting unstructured text into quantitative vari-
ables for analysis [1]. In part for this reason, the number of
epidemiology journal articles addressing or incorporating
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Al has increased markedly in recent years (Figure 1). Appli-
cations of Al relevant to the COVID-19 pandemic further
fueled these advances [2].

Much has been written in the epidemiologic literature
about the uses, strengths, and limitations of ML in epide-
miologic research [3—14]. Researchers have highlighted the
use of ML to conduct statistical modeling on large datasets
with many predictor variables and complex, non-linear rela-
tionships among variables. They have also cautioned that the
computer alone is not enough: such algorithms cannot be
applied successfully without understanding the algorithm’s
assumptions, critically checking whether they are met, incor-
porating substantive knowledge on the variables of interest,
and taking explicit steps to ensure that models do not propa-
gate biases or discrimination.

However, Al-related discussion in the epidemiologic lit-
erature has focused almost exclusively on ML for predic-
tive modeling in the context of estimating causal effects or
heterogeneity in causal effects [3—14]. These methods con-
stitute a narrow subset of the Al tools now widely in use.
Recent advances in Generative Al, including Large Lan-
guage Models (LLMs) such as ChatGPT, are widely pub-
licized but rarely discussed in the epidemiologic literature.
These broader classes of Al tools could markedly alter the
conduct of epidemiologic research, for example by provid-
ing critical synthesis of the scientific literature; revealing
the causal connections among variables; accelerating the
pace and scale of data collection; automating components

of data processing or analysis; identifying alternative ways
to achieve causal identification or conditional exchange-
ability; assisting with producing text, tables, or figures for
scientific manuscripts; or determining the optimal combina-
tion of interventions needed to achieve a specific goal (for
example, identifying which intervention(s) should be used,
to whom the intervention(s) should be targeted, and how the
intervention(s) should be tailored to the target population to
optimally advance health equity).

The existing focus in the epidemiologic literature on ML
for predictive modeling suggests that some epidemiologists
may be unaware of the broader suite of Al tools now avail-
able to support epidemiologic research. To take full advan-
tage of these advances, epidemiologists need guidance on
tools available for integration into causal research, focus-
ing both on opportunities to improve efficiency, quality, and
impact and on cautions and risks. We aim to fill this gap.

This paper provides a structured overview of Al tools rel-
evant to epidemiologic research. The term Al is loosely and
ambiguously defined, and thus there exists debate on which
approaches do or do not constitute Al; we do not attempt
to weigh in on this debate but rather consider a wide scope
of methods (ranging from statistical machine learning to
deep learning with neural networks to large language mod-
els) that add value at different points in the causal inference
and causal decision-making processes. As a guiding frame-
work, we apply Petersen and van der Laan’s roadmap for
causal inference, [15] which traces the arc of a typical study
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Fig. 1 Number of publications with “artificial intelligence” or related
terms in the title or abstract of selected epidemiology journals, 1982—
2024. Data generated from PubMed search “Results by Year” feature
using the search term: ((("artificial intelligence"[Title/Abstract]) OR
("AI"[Title/Abstract]) OR ("Large language models"[Title/Abstract])
OR ("natural language processing"[Title/Abstract]) OR ("NLP"[Title/
Abstract]) OR ("machine learning"[Title/Abstract]) OR ("ML"[Title/
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Abstract]) ) AND (("American journal of epidemiology"[Journal])
OR ("International journal of epidemiology"[Journal]) OR
("Epidemiology"[Journal]) OR ("Journal of epidemiology and com-
munity health"[Journal]) OR ("Annals of epidemiology"[Journal])
OR ("European journal of epidemiology"[Journal]) OR ("Journal of
clinical epidemiology"[Journal])))
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aiming to estimate causal effects from refining the target
causal quantity and available data through estimation and
interpretation. This paper builds on work by Petersen and
colleagues piloting the use of LLMs as co-pilots throughout
the causal roadmap [16, 17]. Our target audience is research-
ers with graduate-level training in epidemiologic methods
and introductory causal inference. Using applied examples
throughout, we underscore the contributions AI might make,
potential challenges and limitations of relying on Al, and
how epidemiologists can work with Al to do better causal
research. We also discuss the advancements in theory, exper-
tise, data, and ethics that are needed for Al tools to reach
their full potential for causal research in epidemiology.

A Simplified Typology of Al Tools Relevant to Causal
Research in Epidemiology

No existing typology of Al tools comprehensively captures
or distinguishes among tasks relevant to epidemiologists.
Table 1 provides a loose classification by adapting and com-
bining several typologies [4, 18-20]. The categories are not
mutually exclusive or collectively exhaustive, but offer some
intuition about key distinctions among approaches. We cat-
egorize Al tools relevant to epidemiologists into: (1) predic-
tive models, (2) unsupervised learning, (3) causal structure
learning, (4) causal estimation, and (5) generative models.
For more precise definitions, see the original typologies [4,
18-20]. Also note that many methods (e.g., random forests,
support vector machines, artificial neural networks) can be
used for tasks in multiple categories. Among these, deep
learning with artificial neural networks has gained promi-
nence and fueled many of the most novel recent develop-
ments [21].

Integrating Al Into the Causal Roadmap

This section maps the distinct roles that Al tools can play in
epidemiologic research aiming to estimate causal effects. A
common framework for causal effect estimation is Petersen
and van der Laan’s 2014 “roadmap” [15]. Their 7-step
approach—a widely used heuristic for teaching and apply-
ing causal inference concepts in epidemiology and biosta-
tistics—traces the arc of asking and answering questions
about causal effects. This includes specifying the informa-
tion that is already known (e.g., a directed acyclic graph
[DAG]), detailing the available data and desired causal effect
(e.g., the average treatment effect of an exposure in a des-
ignated population), assessing and establishing identifiabil-
ity, conducting estimation, and ultimately, interpreting the
resulting statistical parameter. Opportunities exist to inte-
grate Al into each of these steps (Table 2). The subsequent
section addresses opportunities to integrate Al into causal

decision making (i.e., selecting, targeting, or tailoring an
intervention).

Specifying the Causal Model and Existing
Knowledge

Causal inference tasks often begin by specifying a causal
model or drawing a DAG representing the investigator’s
assumptions about the causal structure and time ordering
of relevant variables. DAGs are typically based on prior
research, observed data, and expert knowledge [15]. At
this step, Al may serve two purposes: First, Generative Al
can synthesize the existing scientific literature and identify
knowledge gaps. Second, Al tools can be used to learn or
hypothesize causal structures.

Multiple LLMs, both publicly available (e.g., ChatGPT)
and privately developed, are capable of synthesizing scien-
tific literature, but to date, their reliability is poor [57-59].
LLMs learn patterns of text, speech, or language, and gen-
erate new text based on what they have learned about these
patterns. However, these models do not “understand” the
text’s content, and they are sensitive to choice of text on
which they are trained [64]. Anecdotally, public LLMs tend
to produce incomplete literature reviews, provide inaccurate
assessments of study quality, and fabricate both facts and
references to scientific articles (‘“hallucinations”) [57, 58].
LLMs that are trained on more complete bodies of scientific
literature and that are tailored to the task of summarizing
scientific literature (e.g., iris.ai [65], scite assistant [66],
Stanford STORM [67]) may be more reliable, but must be
validated for substantive and methodologic domains of epi-
demiologic research. Accuracy and completeness may also
improve as this technology advances (e.g., from GPT-3 to
GPT-4). If deemed adequately accurate and complete, these
tools could be used to conduct targeted literature reviews to
evaluate the strength of evidence for each candidate edge
between two nodes in a DAG. At present, the optimal use of
Generative Al may be to accelerate the work of traditional
literature reviews by conducting a “first pass” that is subse-
quently verified by the investigator.

Al tools can also be used to learn a causal structure, such
as a DAG [45]. Given a dataset and a set of assumptions
(causal Markov condition, faithfulness, sufficiency, and
acyclicity), the Peter and Clark (PC) algorithm [68] can
be used to automate causal structure learning of Bayesian
networks. PC and similar approaches identify the sets of
causal structures (nodes and directed edges between them)
that are consistent with the data and assumptions provided.
Expert knowledge (e.g., regarding the temporal order of the
variables), stronger assumptions (such as parametric model
assumptions, e.g., linear relationships with non-Gaussian
noise [46, 47]), or different data (e.g., on an experiment vs.
observational) can be used to reduce the number of causal
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e Ensure statistical modeling assumptions are

Potential roles for investigator

e Obtaining valid statistical inferences (stand-

ard errors, confidence intervals)

Key challenges and limitations
e Limited uptake

e Incorporate flexible data-adaptive statistical

Potential roles for Al

6. Estimate. Estimate the target parameter of

Step (directly quoted from [15])

Springer

met

modeling into estimators of the target causal

quantity or quantities

the observed data distribution, respecting the

statistical model.

e Does not solve threats to validity arising

from unmeasured confounding, positivity

violations, or measurement error

e Discuss the likelihood that identifiability

e Limited accuracy

e Interpret results based on the chosen causal

7. Interpret. Select among a hierarchy of inter-

conditions are met
o Use knowledge of substantive area and politi-

e Need for human verification

model, observed data, target causal param-

eter, and identification strategy
e Assist in developing text, tables, and figures

pretations, ranging from purely statistical to
approximating a hypothetical randomized

trial.

e May violate journal or funder policies

cal, organizational, and scientific context to
review, validate, refine, and add nuance to

reports of findings produced by Al

to report findings

structures in the consistent set. Alternatively, approaches
such as Fast Causal Inference [69]—an extension of the
PC algorithm—can be used to find causal structures under
weaker assumptions (e.g., relaxing the assumption of “no
unmeasured confounders”), usually at the cost of increased
runtime and a larger consistent set.

In practice, Al tools for learning causal structures have
been used to evaluate the effects of gene expression on dis-
ease; [70] delineate how firearm laws, firearm ownership,
and firearm mortality mutually affect one another over
time; [71] and determine the temporal ordering of causal
effects between depression and sleep problems [72]. Struc-
ture learning is often challenging in epidemiologic settings
because of spatially and temporally correlated data. Newer
approaches such as Gaussian process modeling [73] or trans-
fer entropy in temporal data [74] may help disentangle spa-
tiotemporal correlations from causal relationships between
variables. Additionally, because any artefacts of bias or dis-
crimination (e.g., based on race) present in the input data or
input assumptions are likely to be propagated through Al
algorithms, critical evaluation of the equity-related value
judgements built in to the output causal structure(s) is essen-
tial [75-77].

Specifying the Observed Data and their Link
to the Causal Model

The next step of the roadmap is to specify the variables that
have been or will be measured and what units or participants
will be observed or sampled. At this step, Al tools can sup-
port and enhance data collection and refinement of variables
and measures.

Unsupervised learning tools such as natural language
processing (NLP) and LLMs can generate the observed
data, for example by extracting and converting unstructured
text or images into quantitative variables for analysis [1].
Epidemiologic investigators are applying these methods
to generate policy exposure variables from legal text; [42,
78-80] measure neighborhood environments from archived
Google Street View imagery; [81] quantify neighborhood
cannabis retail environments; [82, 83] measure social norms,
processes, or sentiments (e.g., racism) from social media
posts or mass media coverage; [41, 84, 85] identify and clas-
sify food advertisements targeting children; [86] determine
social, behavioral, or clinical factors from clinical notes in
Electronic Health Records (EHR); [40, 87, 88] characterize
circumstances of suicides from narrative reports of medical
examiners or law enforcement; [89] estimate current and
future levels of air pollution exposures or disease outbreaks
from historical datasets; [90-92] and track emerging disease
outbreaks when cases are under diagnosed [28].

Al tools may change the scale, pace, and nature of data
collection in other ways. LLMs can code themes from
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interview transcripts, making it possible to complete in-
depth qualitative research at quantitative scale. Recent
tests of these techniques show moderate to high consist-
ency against human-coded interviews [93-95]. Com-
puter programs can be trained as interviewers for survey
research, a practice that may reduce the risk of certain
biases (e.g., social desirability) while increasing the risk of
other issues (e.g., nonsensical responses) [96, 97]. LLMs
may be trained to enhance questionnaire design or impute
missing public opinion data, although these remain possi-
bilities rather than established techniques [97]. Data qual-
ity monitoring must now incorporate checks to ensure that
surveys intended for humans are not fraudulently com-
pleted by Generative Al programs [97]. Automation of
data collection tasks also presents opportunities to itera-
tively refine the definitions of measures or add sensitivity
analyses, since changing data collection prompts amounts
to changing lines of code rather than restarting extraction
from scratch.

Advancements in Al-based data harmonization and data
sharing technologies present notable opportunities to create
and analyze large datasets derived from separate sources.
Although early in development, LLMs have been lever-
aged to define Common Data Elements and accelerate the
process of data harmonization in biomedical research [98].
Paired with federated learning, an Al technique that permits
separate groups to contribute private decentralized data to
train a single centralized model, these tools can facilitate the
compilation and analysis of diverse measures across distinct
health systems or cohorts while protecting private sensitive
information [99]. These advancements show promise, for
example, in assessing nationwide clinical outcomes among
organ transplant recipients [99]. Al tools for harmonizing
data across separate sources may also enhance internal valid-
ity by facilitating adjustment for confounders only available
across distinct datasets, and external validity by incorporat-
ing separate cohorts to increase population representative-
ness. More recently, researchers have also applied foundation
models—another type of generative AI—to large streams of
geo-indexed data to achieve state-of-the-art performance for
forecasting and interpolating county-level health, environ-
mental, and socioeconomic indicators.

Al-driven paradigm shifts in epidemiologic data collec-
tion pose new ethical questions and challenges [97]. Prop-
agation of biases or discrimination in training data are a
threat to fairness and validity [97]. Predicting individuals’
opinions may raise new questions about participant con-
sent. Al-based data collection powered by proprietary algo-
rithms may hinder reproducibility. Interview transcripts and
patient notes in electronic health records contain identifiers
and private information protected by the Health Insurance
Portability and Accountability Act (HIPAA) and therefore
cannot legally be input into public LLMs. Investigators must

therefore proceed using private, HIPAA-compliant LLMs,
or human- or Al-driven de-identification [100].

Specifying the Target Causal Quantity

The third step is to define the research question as a formal
quantity or parameter corresponding to the causal effect of a
specific intervention or exposure on an outcome variable in a
defined target population. It may be possible to train LLMs
to select or define causal parameters of interest. For instance,
given a causal model and a research question, a generative
Al tool could instruct the investigator on which target causal
quantities are identifiable, and which of those best reflects
the original research question.

Another salient use of Al at this stage is as the interven-
tion itself. As an intervention, an Al tool might determine
what exposure variable to intervene on and how to modify
the chosen exposure. The research then aims to infer its
causal effect of this system on the outcome in the target
population. For example, clinical researchers have applied
predictive models to EHR data to stratify patients based on
their risk of cancer recurrence, sepsis, post-surgery com-
plications, or high utilization of healthcare resources, and
used these risk predictions to provide tailored support for
clinician decision-making in caring for each patient (i.e.,
applying dynamic treatment rules) [101-107]. The target
causal quantity could then be the average level of the out-
come had all eligible patients been exposed to the decision
support tool compared with the average outcome had all
eligible patients not been exposed to the tool (i.e., an average
treatment effect), but other summaries of the counterfactual
outcome distributions based on subgroups or effect modifiers
may also be of interest.

Beyond healthcare, public policy interventions involving
Al may also be exposures of interest to epidemiologists. For
example, the US Department of Justice invested in research
to evaluate the use of ML to predict the future recidivism
risk among individuals released from prison to parole and to
tailor programming accordingly [108]. As with data collec-
tion, Al-based interventions present opportunities to reduce
certain biases, for example by reducing interpersonal racial
discrimination in sentencing, but may increase the risk of
other concerns, including ethical or safety risks to patients or
parolees if decision support tools fail and risks of propagat-
ing biases and discrimination [109].

Assessing and Establishing Identifiability

Assessing identifiability means determining, for a given
causal model (e.g., DAG) and target causal quantity, whether
the measured variables and observations are sufficient to
meet the required conditions [15, 110]. This typically
means ensuring that all confounders have been correctly
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identified, measured, and controlled, or that there exists a
valid instrumental variable that can be leveraged to make
causal inferences [111]. Al tools are available to determine
whether these criteria are met, and to select or generate con-
trol groups or datasets that are more likely to meet these
(untestable) criteria.

For a given causal model with variables designated as
measured or unmeasured, simple automated software such
as DAGitty can readily identify sets of variables sufficient to
control confounding [112]. ML has also been used to build
control groups or counterfactuals. For example, synthetic
control methods create artificial control groups by taking
weighted averages of the outcomes in untreated units, with
the weights selected algorithmically by minimizing differ-
ences in confounder values between the treated and synthetic
control units [113, 114]. These methods have been used in
epidemiologic research to estimate the causal effects of a
variety of public policies. ML algorithms for automated
discovery of valid instruments in large datasets have been
developed to identify local average treatment effects, [48,
49] although these methods have not yet been applied in
epidemiologic research.

Theoretically, LLMs could be trained to analyze news
media, proposed bills, legislation, regulations, or legal docu-
ments to identify new opportunities for quasi-experiments,
for example if a new public policy were rolled out via lot-
tery. We are not aware of any existing applications of this
approach. Further, in situations where there is uncertainty
about whether the assumptions required for identification
are met, LLMs could be used to simulate datasets or causal
models under alternative scenarios to determine how iden-
tification could be achieved under each scenario. As with
literature reviews, human verification of the accuracy of
LLM output is essential.

Stating the Statistical Estimation Problem

At the fifth step, researchers must specify the statistical
model to be used to estimate the target causal quantity and
determine whether the observed data are adequate to esti-
mate the target. If so, the study can proceed with estimation.
If not, the target must be altered or the set of assumptions
expanded (i.e., return to the previous step). Al tools to sup-
port these decisions are similar to those described for assess-
ing and establishing identifiability. More broadly, at this
stage, LLMs can support analytic decision-making by syn-
thesizing recommended approaches in the scientific litera-
ture or supporting simulations to guide the choice of analytic
modifications. For example, Generative Al could be used to
simulate complex, realistic datasets with known parameters
for the researcher to use to select among alternative estima-
tion approaches [115]. The identified optimal approach can
then be applied to the real data. Similarly, interactions with
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Generative Al can stimulate ideas for sensitivity or falsifica-
tion analyses. As with step 1, Generative Al should only be
used to synthesize information or make recommendations if
the accuracy and quality of the output can be verified.

Estimating the Target Causal Quantity

The most common application of Al in epidemiologic
research is the use of semi-parametric modeling techniques
when estimating causal effects [4, 15, 116]. For example,
random forests, artificial neural networks, support vector
machines, or a combination of these might be used to model
the outcome variable as a function of the exposure and con-
founders, replacing traditional parametric regressions. These
approaches are advantageous because they allow for data-
driven model selection, flexible shapes of the relationships
between variables, many predictor variables, and complex
interactions among predictors [117-119]. Recent appli-
cations of deep learning may further optimize the task of
causal estimation by automating the selection of estimators
across a vast array of possible data structures and statistical
procedures [120] or automating the derivation of formulas to
compute standard errors [121]. All of these tools are relevant
to analyses estimating average treatment effects as well as
causal mediation and transportability analyses [122—-124].

Substantial progress and attention have also been directed
to ML tools for estimating heterogeneous treatment effects
(HTEs). Here, multiple distinct tasks are relevant, including
data-driven identification of subgroups that respond differ-
ently to [53, 54] or benefit most from [125] an intervention,
or testing for heterogeneity across all covariate subgroups
[126]. For example, researchers used causal forest modeling
to identify subgroups of randomized trial participants who
benefitted most from an intensive weight loss intervention,
according to their HbA . and self-reported general health at
baseline [127].

Obtaining valid statistical inferences from statistical
models that incorporate ML can be a challenge, because
there is limited statistical theory on which to base the esti-
mation of standard errors or confidence intervals [128]. Tar-
geted Maximum Likelihood Estimation (TMLE), debiased
machine learning, and balancing estimators are exceptions
[129-133]. Among these, TMLE has gained distinction in
epidemiologic research [134].

Interpreting and Reporting Results

Once the target causal parameter has been estimated, the
results must be interpreted and reported appropriately. At
this stage, generative Al may assist in selecting among the
possible levels of interpretation, ranging from a statistical
parameter of the observed data to an effect that approximates
that from a randomized trial [15]. As the strength of the
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interpretation depends on the likelihood that the identifi-
ability conditions are met, ML algorithms for learning causal
structures and establishing identification may also come into
play here (see step 4 above).

Generative Al may also support investigators in creating
the text, tables, and figures for scientific manuscripts and
presentations reporting study findings [60, 135]. For these
tasks, Al tools may be best thought of as a collaborator in the
writing process, rather than a stand-alone production tool.
For example, LLMs can support the efficiency or quality of
writing by developing outlines or first drafts or providing
feedback on grammar or logical arguments. Studies testing
Al for scientific and medical writing have found that Chat-
GPT can improve readability of abstracts and introduction
sections compared with human-generated text, but in some
cases the content quality was inferior, [61, 62] emphasiz-
ing the need for adequate investigator oversight to prevent
biases and inaccuracies [60, 136]. One large evaluation of
LLM-generated feedback on research papers found substan-
tial overlap between LLM and human feedback, demonstrat-
ing the potential utility of LLMs as a complement to expert
feedback [137]. Incorporating LLMs into the writing process
may also have beneficial effects on equity in scientific fields
by reducing barriers experienced by non-native English
speakers. Other opportunities for enhancing dissemination
of research findings, for example creating eighth-grade read-
ing level summaries, [138] continue to be explored.

Most funders, journals, and publishers now have poli-
cies regarding the use of Al in scientific writing [139]. For
example, the Journal of the American Medical Association
(JAMA) discourages but does not ban the use of Al-gener-
ated content, and requires that authors disclose how Al was
used in the study’s conduct and reporting [140]. Generative
Al models cannot generally be considered authors because
they cannot be held responsible for a manuscript’s contents
[140]. The National Institutes of Health permits the use of
Generative Al to assist in grant writing, but bans its use in
peer review [141]. There are currently few practical ways
to enforce these bans but, as with the technology itself, this
could change rapidly [142]. Because LLMs can memorize
and regurgitate their training data, the risk of plagiarism
may be substantial [143]. It is therefore wise to run all drafts
through plagiarism detection software.

Integrating Al into Causal Decision-making

Beyond causal effect estimation, epidemiologists also
aim to make causal decisions—for example, determin-
ing which intervention(s) should be used, to whom
the intervention(s) should be targeted, or how the
intervention(s) should be tailored to the target population
[144, 145]. This task is distinct from causal effect estima-
tion because the quantity of interest is the intervention

assignment itself, not the effect of the intervention on the
outcome [144]. However, Al tools similarly present multi-
ple opportunities to enhance causal decision-making tasks.

Given a set of candidate interventions, estimates of their
causal effects on a health outcome of interest for relevant
populations, and chosen constraints (e.g., budget, fair-
ness), predictive modeling and optimization approaches
can be used to determine which intervention(s) will
achieve a specific goal, for example maximally reducing
the given outcome in the overall population [146-149].
For example, one study applying this approach concluded
that designated targets for reducing overdose deaths in the
US are only possible if broader availability of medication
treatment for opioid use disorder is paired with increased
distribution of the overdose reversal agent naloxone, but
not if either policy is enacted alone [51]. The optimiza-
tion may also include constraints or penalties designed to
improve fairness or reduce disparities between groups, to
ensure that the benefits of an intervention are more equi-
tably distributed across the population.

Al tools for causal decision-making can also support
geographic targeting of an intervention to areas where it is
most likely to be most effective. For example, researchers
have applied predictive modeling to anticipate where burden
will be highest and to dynamically adapt where resources
are targeted in response. The PROVIDENT trial is testing
this approach to anticipate and prevent local surges in drug
overdoses [52, 150, 151]. Similarly, predictive models that
identify subgroups who benefit most from an intervention
can be used to determine to whom an intervention should be
targeted [152]. Statistical methods for transporting or gener-
alizing causal effect estimates can also incorporate predic-
tive modeling and inform targeting efforts by estimating the
potential impact of an intervention in a novel target popu-
lation that differs in composition from the original study
population [153, 154].

Al tools may also be leveraged to inform the tailoring of
intervention(s) to each individual according to their baseline
characteristics or responses to the intervention(s) over the
course of the study, as in the case of estimating optimal
dynamic treatment rules [155]. For example, investiga-
tors have applied Al algorithms to identify which justice-
involved adults would most-benefit from cognitive behav-
ioral therapy to reduce criminal-reoffending [156]. These
task are similar in nature to those used to estimate HTEs.

Importantly, applications of Al—particularly those
involving risk-based targeting or tailoring of interventions—
can perpetuate harmful stereotypes and discrimination based
on race, ethnicity, gender, ability, and other social statuses
[157, 158]. For example, Obermeyer found evidence of
racial bias in one AI algorithm widely used in US health
care, such that the algorithm assigned the same level of risk
to sicker Black patients as to healthier white patients [159].

@ Springer



6 Page 10 of 16

Current Epidemiology Reports (2025) 12:6

Because of the potential harms arising from discrimina-
tory algorithms, transparent and structured evaluations of
fairness—ideally led by members of minoritized groups and
individuals with lived experience of marginalization—must
be incorporated into the design and application of causal deci-
sion-making algorithms. For example, Al analyses grounded
in the epidemiologic concept of “allowable” covariates and
the inherent value judgements in covariate selection may be
better positioned to prevent or mitigate Al bias [76]. Addi-
tionally, investigations supported by sociological theory or
frameworks underlying the relationship between the interven-
tion and health inequities may be better positioned to identify
and disrupt rather than reinforce inequities [160]. In response
to concerns about Al bias, the National Institute on Minority
Health and Health Disparities developed the Science Collabo-
rative for Health disparities and Artificial intelligence bias
Reduction (ScCHARE) platform [161]. SCHARE provides a
low-cost collaborative cloud computing platform and access
to big datasets on social determinants and health care out-
comes with the goals of increasing participation of under-
represented groups in Al science and mitigating Al bias in
health research. Overall, fairness in Al is a rapidly evolving
area of research in computer science, bioethics, and related
fields, and advancements in this area will likely have impor-
tant implications for epidemiologic research involving causal
effect estimation and causal decision-making.

Discussion

We provide a structured summary of opportunities to inte-
grate recent advances in Al into causal inference and causal
decision-making in epidemiology. Along the arc of a causal
epidemiologic research project, Al tools for prediction, unsu-
pervised learning, causal structure learning, causal estima-
tion, and content generation may enhance the scale, com-
plexity, efficiency, or quality of the research. Yet substantial
limitations in accuracy, fairness, ethics, and safety remain.
Al cannot yet be used to automate the scientific process;
human experts remain the foundation of sound epidemiologic
research. However, when viewed as an assistant in the process
of conducting causal research, Al presents opportunities for
thoughtful “collaboration”. Al brings new tools, but the major
goals, processes, and requirements of causal research in epi-
demiology remain unchanged [162].

To leverage the full potential of Al in research, epidemi-
ologists must build interdisciplinary partnerships, develop
tailored data and computational resources, and navigate ethi-
cal considerations. Teams aiming to rigorously incorporate
Al into epidemiologic research will benefit from interdis-
ciplinary expertise in subdisciplines of computer science
including Al and data science, statistics, machine learning,
bioinformatics, medical and research ethics, and relevant
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clinical or substantive areas. Clear communication of the
uses and outputs of a given Al tool is also essential, because
perceived “black boxes” are less likely to be trusted or used
by researchers, practitioners, or the public. In our experi-
ence, effective collaborations require introducing causal
inference concepts to computer and data scientists, intro-
ducing Al concepts to epidemiologists, and developing tools
tailored to epidemiologic research.

Data present concerns in at least three regards. First, the
types of epidemiologic data best suited to Al applications
are not yet established. Second, Al algorithms depend on the
quality and completeness of the data used to train them [2].
Gaps in the data necessary for appropriate training of AI mod-
els—for example because of publication bias—will limit the
utility of the resulting tools. Third, the evolution of many Al
technologies has gone hand-in-hand with the increasing avail-
ability of large, high-dimensional datasets. Many of these big
datasets come with their own issues and biases. Because the
use of Al in epidemiology intersects with big data, there are
overlaid technical and analytical challenges to causal infer-
ence in the combined context of big data and Al that must
be addressed in concert. For example, Al models run on big
data can be extremely computationally intensive. Taking
full advantage of Al therefore often requires proficiency and
resources in cloud computing and super computers. Changes
in the distribution of big data over time, or differences among
data collected in different jurisdictions, may limit the gener-
alizability of causal inferences and the quality of estimation.

Generative Al should only be used to synthesize informa-
tion or make recommendations if the accuracy and quality of
the output can be verified. This raises questions about how
researchers should evaluate performance or accuracy. One
large systematic review of this topic found that current prac-
tices for evaluation are varied, limited, and unstandardized, and
consequently proposed a framework for standardizing human
evaluation of LLMs in healthcare [163]. Similar investigations
and standardization of practices for incorporating Al into epi-
demiologic research may help promote more rigorous use of
these tools.

Much has been written about ethical and safety concerns
with Al in medical and public health research [96, 157, 158,
164-168]. Concerns about health information privacy, data man-
agement, and data sharing are prevalent, as public LLMs such
as ChatGPT cannot be used with information protected by the
Health Insurance Protection and Accountability Act (HIPAA).
Our institution, NYU Langone Health, is one of few academic
medical centers with a private, internal, HIPAA-compliant
instance of GPT-4 for use in scientific research and clinical care.
The prior section discussed issues of bias and discrimination.
Al tools also present novel threats to study participant safety,
biosecurity, and biosafety that may require institutional review
boards to learn about new technologies and adapt accordingly.
Epidemiologist will have an important role to play in research
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supporting the regulation of Al in health care and biomedicine,
for example by conducting post-market monitoring of Al-ena-
bled medical devices [169]. Questions about intellectual prop-
erty, peer review, and replication arise when generative Al is
used to create research products, making it important to monitor
evolving regulations and avoid plagiarism and policy violations
[139, 142, 164]. Greater consensus is needed on what respon-
sibilities researchers have for judging the quality of Al-assisted
research and managing the societal implications of using Al
models that may be “overconfident”, inadvertently cause harm,
or reduce public trust in science [158]. The field of epidemiol-
ogy will need to wrestle with these questions, and would likely
benefit from developing trainings for doctoral and post-doctoral
investigators in the responsible use of Al

We note some limitations of this review. First, Al and
research on its uses in science are evolving rapidly. We aim to
illustrate potential uses and considerations for Al within causal
frameworks, but the applications, opportunities, and limita-
tions described here are not exhaustive. Second, we describe
opportunities to fit Al into causal frameworks, but the relation
between causal inference and Al is in fact bidirectional, with
opportunities to inject causal thinking into Al frameworks as
well (see for example [170]). Finally, we focus on applications
to causal research in epidemiology, as there is unique comple-
mentarity and rapid advancement happening at the intersection
of Al and causal inference, but Al may also be useful for other
undertakings fulfilled by epidemiologists including descrip-
tive epidemiology, evidence synthesis, and implementation
research.

Rigorous epidemiologic research incorporating Al can
advance causal inference and causal decision-making in
public health. Many Al tools are underutilized but poised to
boost the innovation, efficiency, and scope of epidemiology
research if applied thoughtfully and ethically with wariness
of potential pitfalls. Causal research in epidemiology can-
not yet be automated but anticipating which components of
the research process are likely to be rigorously automated
soon will facilitate long-term planning for the evolution of
epidemiologic research as a field.
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