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Abstract

We present a scalable Gaussian process
model for identifying and characterizing
smooth multidimensional changepoints, and
automatically learning changes in expres-
sive covariance structure. We use Ran-
dom Kitchen Sink features to flexibly define
a change surface in combination with ex-
pressive spectral mixture kernels to capture
the complex statistical structure. Finally,
through the use of novel methods for additive
non-separable kernels, we can scale the model
to large datasets. We demonstrate the model
on numerical and real world data, includ-
ing a large spatio-temporal disease dataset
where we identify previously unknown het-
erogeneous changes in space and time.

1 Introduction

In human systems we are often confronted with
changes or perturbations which may not immediately
disrupt an entire system. Instead, changes such as pol-
icy interventions take time to affect deeply held habits
or trickle through a complex bureaucracy. The dy-
namics of these changes are non-trivial, with sophisti-
cated spatial distributions, rates, and intensity func-
tions. Using expressive models to fully characterize
such changes is essential for making accurate predic-
tions and yielding scientifically relevant results.

Typically, changepoint methods (Chernoff and Zacks,
1964) model system perturbations as discrete, or near-
discrete, changepoints. These points are either identi-
fied sequentially using online algorithms, or retrospec-
tively. Here we consider retrospective analysis (Brod-
sky and Darkhovsky, 2013; Chen and Gupta, 2011).
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Gaussian processes have been used for changepoint
modeling to provide a nonparametric framework.
Saatçi et al. (2010) extend the sequential Bayesian
Online Changepoint Detection algorithm (Adams and
MacKay, 2007), by using a Gaussian process to model
temporal covariance within a particular regime. Sim-
ilarly, Garnett et al. (2009) provide Gaussian pro-
cesses for sequential changepoint detection with mu-
tually exclusive regimes. These models focus on dis-
crete changepoints, where regimes defined by distinct
Gaussian processes change instantaneously at t = t0.
While such models may be appropriate for mechanical
systems, they do not permit modeling of the complex
changes common to many human systems.

A small collection of pioneering work has briefly con-
sidered the possibility of non-discrete Gaussian pro-
cess change-points (Wilson, 2014; Lloyd et al., 2014).
Yet these models rely on sigmoid transformations of
linear functions which are restricted to fixed rates of
change, and are demonstrated exclusively on small,
one-dimensional time series data. They cannot ex-
pressively characterize non-linear changes or feasibly
operate on large multidimensional data.

Applying changepoints to multiple dimensions, such as
spatio-temporal data, is theoretically and practically
non-trivial, and has thus been seldom attempted. No-
table exceptions include Majumdar et al. (2005) who
consider discrete spatio-temporal changepoints with
three additive Gaussian processes: one for t ≤ t0, one
for t > t0, and one for all t. Alternatively, Nicholls
and Nunn (2010) use a Bayesian onset-field process on
a lattice to model the spatio-temporal distribution of
human settlement on the Fiji islands.

The limitations of these models reflect a common crit-
icism that Gaussian processes are unable to convinc-
ingly respond to changes in covariance structure. We
propose addressing this deficiency with an expressive,
flexible, and scalable change surface model.

Throughout the paper we refer to change surfaces as
the multidimensional generalization of changepoints.
Unlike the discrete notion of changepoints, a change
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surface can have a variable rate of change and non-
monotonicity in the transition between functional
regimes. Additionally, changes can occur heteroge-
neously across the input dimensions. We formalize the
notion of a change surface through our model specifi-
cation in Section 3.

1.1 Main contributions

We introduce a scalable Gaussian process model,
which is capable of automatically learning expressive
covariance functions, including a sophisticated contin-
uous change surface. We derive scalable inference pro-
cedures leveraging Kronecker structure, and a lower
bound on the marginal likelihood using the Weyl in-
equality, as a principled means for scalable kernel
learning. Our contributions include:

1. A non-discrete Gaussian process change surface
model over multiple input dimensions. Our model
specification learns the change surface from data,
enabling it to approximate discrete changes or
gradual shifts between regimes. The input can
have arbitrary dimension, though we primarily
focus our attention on spatio-temporal modeling
over 2D space and 1D time.

2. The first scalable Gaussian process changepoint
model by using novel Kronecker methods. Mod-
ern datasets require methods which can scale to
hundreds of thousands of instances.

3. A novel method for estimating the log determi-
nant of additive positive semidefinite matrices
using the Weyl inequality. This enables scal-
able additive Gaussian process models with non-
separable kernels in space and time.

4. Random Kitchen Sink features to sample from a
Gaussian process change surface. This flexibil-
ity permits arbitrary changes which can adapt to
heterogeneous effects over multiple dimensions. It
also permits analytic optimization for the model.

5. We use logistic functions to normalize the weights
on all latent functions (one per regime), thereby
providing a very interpretable model. Addi-
tionally, we permit arbitrary specification of the
change surface parameterization, allowing experts
to specify interpretable models for how the change
surface behaves over the input space.

6. A novel initialization method for spectral mixture
kernels by fitting a Gaussian mixture model to the
Fourier transform of the data. This provides good
starting values for hyperparameters of expressive
stationary kernels, allowing for proper optimiza-
tion over a multimodal parameter space.

7. A nonparametric Bayesian framework for discov-
ering and characterizing continuous changes in
large observational data. We demonstrate our ap-
proach on numerical and real world data, includ-
ing a recently developed public health dataset.
We demonstrate how the effect of the measles vac-
cine introduced in the U.S. in 1963 was spatio-
temporally varying. Our model discovers the time
frame in which the measles vaccine was intro-
duced, and accurately represents the change in
dynamics before and after the introduction, thus
providing new insights into the spatial and tem-
poral dynamics of reported disease incidence.

1.2 Outline

In the remainder of the paper, Section 2 provides back-
ground on Gaussian processes. Section 3 describes our
change surface model including the weighting, warp-
ing, and kernel functions. Section 4 introduces a novel
algorithm for approximating the log determinant of
additive kernels. Section 5 details a new initialization
procedure for spectral mixture hyperparameters. Sec-
tion 6 describes our numerical and real-world experi-
ments. Finally, we conclude with summary remarks in
section 7.

2 Gaussian Processes

Given data (y,x), where y = {y1...yn}, are outputs
or response variables, and x = {x1...xn}, xi ∈ RD are
inputs or covariates, we assume that the responses are
generated from the inputs by a latent function with a
Gaussian process prior and Gaussian noise, such that
y = f(x)+ε, f(x) ∼ GP (m, k), ε ∼ N (0, σε). A Gaus-
sian process is a nonparametric prior over functions
completely specified by mean and covariance functions:

f(x) ∼ GP(m(x), k(x, x′)) (1)

m(x) = E[f(x)] (2)

k(x, x′) = cov(f(x), f(x′)) (3)

Any finite collection of function values is normally dis-
tributed [f(x1)...f(xp)] ∼ N (µ,K) where µi = m(xi)
and p× p matrix Ki,j = k(xi, xj).

In order to learn hyperparameters, we often desire to
optimize the marginal likelihood of the data, condi-
tioned on kernel hyperparameters θ, and inputs, x.

p(y|θ,x) =

∫
p(y|f,x)p(f |θ)df (4)

In the case of a Gaussian observation model we can
express the log marginal likelihood as,

log p(y|θ) ∝ − log |K + σεI| − y>(K + σεI)−1y (5)

We assume familiarity with the basics of Gaussian pro-
cesses as described by Rasmussen and Williams (2006).
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3 Smooth Change Surface Model

Change surface data consists of latent functions
f1, . . . , fr defining r regimes in the data. The transi-
tion between any two functions is considered a change
surface. Were these r functions not mutually exclu-
sive, we could consider an input dependent mixture
model such as (Wilson et al., 2012),

y(x) = w1(x)f1(x) + · · ·+ wr(x)fr(x) + εn (6)

where the weighting functions, wi(x) : RD → R1, de-
scribe the mixing proportions over the input domain.
However, for data with changing regimes we are partic-
ularly interested in latent functions that exhibit some
amount of mutual exclusivity.

We induce this partial discretization with a warping
function, σ(z) : R1 → [0, 1], which has support over
the entire real line but a range which is concentrated
towards 0 and 1. Additionally, we choose σ(z) such
that it produces a convex combination over the weight-
ing functions,

∑r
i=1 σ(wi(x)) = 1. In this way, each

wi(x) defines the strength of latent fi over the do-
main, while σ(z) normalizes these weights to induce
weak mutual exclusivity.

A natural choice for flexible, smooth change surfaces is
the softmax function since it can approximate a Heav-
iside step function or gradual changes. For r latent
functions, the resulting warping function is

σ(wi(x)) = softmax(w(x))i =
exp(wi(x))∑r
j=1 exp(wj(x))

. (7)

Our model is thus,

y(x) = σ(w1(x))f1(x) + · · ·+ σ(wr(x))fr(x) + εn (8)

If we assume Gaussian process priors on all latent func-
tions f1(x), . . . , fr(x) we can define y(x) = f(x) + ε
where f(x) has a Gaussian process prior with covari-
ance function,

k(x, x′) = σ(w1(x))k1(x, x′)σ(w1(x′))+

· · ·+ σ(wr(x))kr(x, x
′)σ(wr(x

′))
(9)

This assumption does not limit the expressiveness of
Eq. 8 since each Gaussian process may be defined
with different mean and covariance functions. In-
deed, where the data exhibits latent functional change
we expect that the latent functions will have corre-
spondingly different hyperparameters even if the ker-
nel forms are identical.

σ(w1(x)) . . . σ(wr(x)) induce nonstationarity since
they are dependent on the input x. Thus, even if we
use stationary kernels for all ki, our model results in a
flexible, nonstationary kernel.

Each σ(wi(x)) defines how the coverage of fi(x) varies
over the input domain. Where σ(wi(x)) ≈ 1, fi(x)
dominates and primarily describes the relationship be-
tween x and y, and in cases where there is no i such
that σ(wi(x)) ≈ 1, a number of functions are dom-
inant in defining the relationship between x and y.
Since σ(z) pushes values towards 1 or 0, the regions
with multiple dominant functions are transitory and
thus considered change regions. Therefore, we can in-
terpret how the change surface develops and where
different regimes dominate by evaluating σ(w(x)) over
the input domain.

3.1 Design choices for w(x)

The functional form of w(x) determines how changes
can occur in the data, and how many can occur. For
example, a linear parametric weighting function,

w(x) = β0 + β>1 x , (10)

only permits a single linear change surface in the data.
Yet even this simple model is more expressive than
discrete changepoints since it permits flexibility in the
rate of change and extends to change regions in RD.

In order to develop a general framework we do not re-
quire any prior knowledge about the functional form
of w(x) and instead assume a Gaussian process prior
on w(x). While in principle we could sample from
the full Gaussian process prior, this would lead to a
non-conjugate model which would thus be less com-
putationally attractive and significantly constrain the
“plug and play” nature of choices for σ(z), w(x), and
K. Instead, we approximate the Gaussian process with
Random Kitchen Sink (RKS) features and analytically
derive inference procedures using the log marginal like-
lihood (Lázaro-Gredilla et al., 2010).

Rahimi and Recht (2007) demonstrate that if we con-
sider the vector of RKS features, φ(x) : RD → Rm
with ωi ∈ RD,

φ(x)> =

√
2

m
[cos(ω>i x+ bi)]

m
i=1 (11)

then we can approximate any stationary kernel by tak-
ing the Fourier transform of k(x− x′) = k(δ),

p(ω) =
1

2π

∫
exp(−jωδ)k(δ)dδ (12)

and putting priors over the parameters of the RKS
feature mapping,

ωi ∼ p(ω) (13)

bi ∼ Uniform(0, 2π) (14)

For an RBF kernel where Λ = diag(l21, . . . , l
2
D) is a

diagonal matrix of length-scales, we sample,

ωi ∼ N (0,
1

4π2
Λ−1) (15)
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Therefore, if we want to place a Gaussian process prior
over our weighting functions, w(x) ∼ GP (0,K), we
can use RKS features to create a compact representa-
tion of the kernel (Lázaro-Gredilla et al., 2010). For
any finite input x we know that,

g(x) ∼ N (0,K) (16)

Equivalently, we can define parameters a such that,

a ∼ N (0,
σ0
m
I) (17)

w(x) = φ(x)>a (18)

which we can write in the explicit RKS feature space
representation,

w(xi) =
v∑

i=1

ai cos(ω>i x+ bi) (19)

allowing us to sample from w(x) with a finite sum of
RKS features. Initialization of the hyperparameters
σ0 and Λ is discussed in the supplementary material.

Experts with domain knowledge can specify a para-
metric form for w(x) other than RKS features. Such
specification can be advantageous, requiring relatively
few, highly interpretable parameters to optimize.

3.2 Design choices for K

Each latent function is specified by a kernel with
unique hyperparameters. By design, each ki may be
of a different form. For example, one function may
have a Matérn kernel, another a periodic kernel, and a
third an exponential kernel. Such specification is use-
ful when domain knowledge provides insight into the
covariance structure of the various regimes.

In order to maintain maximal generality and expres-
sivity, we develop the model using spectral mixture
kernels (Wilson and Adams, 2013) where kSM (x̃, x̃′) =

Q∑

q=1

ωqcos(2π(x̃−x̃′)>mq)
P∏

p=1

exp(−2π2(x̃p−x̃′p)2v(p)q ) ,

where x̃ ∈ RP and Σq = diag(v
(1)
q , . . . , v

(P )
q ) is a di-

agonal covariance matrix for multidimensional inputs.
With a sufficiently large Q, spectral mixture kernels
can approximate any stationary kernel, providing the
flexibility to capture complex patterns over multiple
dimensions. These kernels have been used in pat-
tern prediction, outperforming complex combinations
of standard stationary kernels (Wilson et al., 2014).

Using spectral mixture kernels extends previous work
on Gaussian processes changepoint modeling which
has been restricted in practice to RBF (Saatçi et al.,

2010; Garnett et al., 2009) or exponential kernels (Ma-
jumdar et al., 2005). Expressive covariance functions
are particularly important with multidimensional and
spatio-temporal data where the dynamics are complex
and unknown a priori. While most Gaussian process
models provide the theoretical flexibility to choose any
kernel, the practical mechanics of initializing and fit-
ting more expressive kernels is a challenging problem.
We describe an initialization procedure in Section 5
which we hope can enable other models to exploit ex-
pressive kernels as well.

4 Scalable inference

Analytic optimization and inference requires computa-
tion of the log marginal likelihood (Eq. 5). Yet calcu-
lating the inverse and log determinant of n×n covari-
ance matrices requires O(n3) computations and O(n2)
memory (Rasmussen and Williams, 2006), which is im-
practical for large datasets. Recent advances in scal-
able Gaussian processes have reduced this computa-
tional burden by exploiting Kronecker structure under
two assumptions. One, the inputs lie on a grid formed
by a Cartesian product, x ∈ X = X(1) × ... × X(D).
Two, the kernel is multiplicative across each dimen-
sion. The assumption of separable, multiplicative ker-
nels is commonly employed in spatio-temporal Gaus-
sian process modeling (Martin, 1990; Majumdar et al.,
2005; Flaxman et al., 2015). Under these assumptions,
the n×n covariance matrix K = K1⊗· · ·⊗KD, where
each Kd is nd × nd such that

∏D
1 nd = n.

Using efficient Kronecker algebra, Saatçi (2012) calcu-
lates the inverse and log determinant calculations in

O(Dn
D+1
D ) operations using O(Dn

2
D ) memory. Fur-

thermore, Wilson et al. (2014) extends the Kronecker
methods for incomplete grids.

Yet for an additive kernel such as that needed for
change surface modeling (Eq. 9), calculating the in-
verse and log determinant is no longer feasible using
Kronecker algebra as in Saatçi (2012) because the sum
of the matrix Kronecker products does not decompose
as a single Kronecker product. Instead, calculations
involving the inverse can be efficiently carried out us-
ing finite difference methods to compute linear con-
jugate gradients as in Flaxman et al. (2015) because
the key subroutine is matrix-vector multiplication and
the sum of Kronecker products can be efficiently mul-
tiplied by a vector.

However, there is no exact method for efficient com-
putation of the log determinant of the sum of Kro-
necker products. Instead, Flaxman et al. (2015) upper
bound the log determinant using the Fiedler bound
(Fiedler, 1971) which says that for n × n Hermitian
matrices A and B with sorted eigenvalues α1, . . . , αn
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and β1, . . . , βn respectively,

log(|A+B|) ≤
n∑

i=1

log(αi + βn−i+1) (20)

While this yields fast, O(n) computation, the Fiedler
bound does not generalize for more than two matrices.

Instead, we bound the log determinant of the sum of
multiple covariance matrices using Weyl’s inequality
(Weyl, 1912) which states that for n×n Hermitian ma-
trices, M = A+B, with sorted eigenvalues µ1, . . . , µn,
α1, . . . , αn, and β1, . . . , βn, respectively,

µi+j−1 ≤ αi + βj (21)

Since log(|A + B|) = log(|M |) =
∑n
i=1 log(µi) we can

bound the log determinant by
∑n
i+j−1=1 log(αi + βj).

Furthermore, we can use the Weyl bound iteratively
over pairs of matrices to bound the sum of r covariance
matrices K1, . . . ,Kr.

As the bound indicates, there is flexibility in the choice
of which eigenvalue pair {αi, βj} to sum in order to
bound µi+j−1. One might be tempted to minimize
over all possible pairs for each of the n eigenvalues of
M in order to obtain the tightest bound on the log de-
terminant. Unfortunately, this requires O(n2) compu-
tations. Instead we explore two possible alternatives:

1. For each µi+j−1 we choose the “middle” pair such
that i = j when possible, and i = j+ 1 otherwise.
This heuristic requires O(n) computations.

2. We employ a greedy search by using the previous
i′ and j′ to choose the minimum of 2s pairs of

eigenvalues {αi, βj}i=i
′+s

i=i′−s. When s = 0 this cor-
responds to the middle heuristic. When s = n

2
this corresponds to the exact Weyl bound. The
greedy search requires O(2sn) computations.

In addition to bounding the sum of kernels, we must
also deal with the scaling functions, σ(wi(x)). We can
rewrite Eq. 9 in matrix notation,

K = S1K1S
′
1 + · · ·+ SrKrS

′
r (22)

where Si = diag(σ(wi(x))) and S′i = diag(σ(wi(x
′))).

Employing the bound on eigenvalues of matrix prod-
ucts (Bhatia, 2013),

sort(eig(A ∗B)) ≤ sort(eig(A)) ∗ sort(eig(B)) (23)

we can bound the log determinant of K in Eq. 22 with
a Weyl approximation over [{si,l ∗ ki,l ∗ s′i,l}nl=1]ri=1

where si,l is the lth largest eigenvalue of Si and ki,l
is the lth largest eigenvalue of Ki

We empirically evaluate the exact Weyl bound, mid-
dle heuristic, and greedy search with s = 40 for our
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Figure 1: Left shows the approximation ratio to the
log determinant of 2 additive kernels. Right shows the
time to compute each approximation and the truth.
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Figure 2: Left shows the approximation ratio to the
log determinant of 3 additive kernels. Right shows the
time to compute each approximation and the truth.

model using synthetic data (generated according to
the procedure in Section 6.1). We compare these re-
sults against the Fiedler bound (in the case of two ker-
nels), and a recently proposed method for estimating
the log determinant using Chebyshev polynomials cou-
pled with stochastic Hutchinson trace approximation
(Han et al., 2015). Figures 1 and 2 depict the ratio of
each approximation to the true log determinant, and
the time to compute each approximation over increas-
ing number of observations for 2 and 3 kernels. We
note that all Weyl and Fiedler approximations con-
verge to ≈ 0.8 of the true log determinant, which was
negative in the experiments. While the exact Weyl
bound scales poorly, as expected, both approximate
Weyl bounds scale well. In practice, we use the mid-
dle heuristic since it provides the fastest results.

5 Initialization

Since our model uses expressive spectral mixture ker-
nels and flexible RKS features, the parameter space
is highly multimodal. Therefore, it is essential to ini-
tialize the model hyperparameters appropriately. The
supplementary material includes an initialization algo-
rithm for the w(x) RKS hyperparameters.

Assuming an initialized w(x) we define the subset {x :
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σ(wi(x)) > 0.5} where each latent function fi from Eq.
8 is dominant. We then take a Fourier transform of
y(x) over each dimension, x(d), of {x : σ(wi(x)) > 0.5}
to obtain the empirical spectrum in that dimension.
Note that we consider each dimension of x individu-
ally since we have a multiplicative Q-component spec-
tral mixture kernel over each dimension. Since spec-
tral mixture kernels model the spectral density with Q
Gaussians on R1, we fit a 1D Gaussian mixture model,

p(x) =

Q∑

q=1

φqN (µq, σq) (24)

to the the empirical spectrum for each dimension. Us-
ing the learned mixture model we initialize the param-
eters of our spectral mixture kernels for fi(x).

Algorithm 1 Initialize spectral mixture kernels

1: for ki : i = 1 : r do
2: for d = 1 : D do
3: Compute x(d) ∈ {x : σ(wi(x)) > 0.5}
4: Sample s ∼ |FFT (sort(y(x(d))))|2
5: Fit Q component 1D GMM to s
6: Initialize ωq = std(y) ∗ φq; mq = µq; vq = σq
7: end for
8: end for

After initializing w(x) and spectral mixture hyperpa-
rameters, we jointly optimize the entire model using
marginal likelihood and standard gradient techniques
(Rasmussen and Nickisch, 2010).

6 Experiments

We test our model with both numerical and real world
data. There do not exist standard datasets for eval-
uating spatio-temporal changepoint models. For ex-
ample, Majumdar et al. (2005) used simulations to
demonstrate the effectiveness of their model. There-
fore, we apply our method on a standard 1D change-
point dataset, synthetic data, and a newly available
spatio-temporal disease dataset.

6.1 Numerical Experiments

We generate a 50×50 grid of synthetic data by drawing
independently from two latent functions. Each func-
tion is characterized by a 2D RBF kernel with differ-
ent length-scales and variances. The synthetic change
surface between the functions is defined by σ(wpoly(x))

where wpoly(x) =
∑3
i=0 β

T
i x

i, βi ∼ N (0, 3ID).

We apply our change surface model with two latent
functions, spectral mixture kernels, and w(x) defined
by 5 RKS features. We do not provide the model prior
information about the change surface or latent func-
tions. Figures 3 and 4 depict typical results using the

Figure 3: Numerical data experiment. The top-left de-
picts the data; the bottom-left shows the true change
surface with the range from blue to red depicting
σ(w1(x)). The top-right depicts the predicted output;
the bottom-right shows the predicted change surface.

Figure 4: Numerical data experiment. The top-left de-
picts the data; the bottom-left shows the true change
surface with the range from blue to red depicting
σ(w1(x)). The top-right depicts the predicted output;
the bottom-right shows the predicted change surface.

initialization procedure followed by analytic optimiza-
tion. The model captures the change surface and pro-
duces an appropriate regression over the data.

Using synthetic data, we create a predictive test by
splitting the data into training and testing sets. We
compare our smooth change surface model to three
other expressive, scalable methods: sparse spectrum
Gaussian process with 500 basis functions (Lázaro-
Gredilla et al., 2010), sparse spectrum Gaussian pro-
cess with fixed spectral points with 500 basis functions
(Lázaro-Gredilla et al., 2010), and a Gaussian process
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Table 1: Comparison of prediction using flexible, scal-
able Gaussian process methods on synthetic multidi-
mensional change-surface data.

Method NMSE

Smooth change surface 0.00078
SSGP 0.01530
SSGP fixed 0.02820
Spectral mixture 0.00200

with multiplicative spectral mixture kernels in each
dimension. For each method we average the results
for 10 random restarts. Table 1 shows the normalized
mean squared error (NMSE) of each method,

NMSE =
‖ytest − ypred‖22
‖ytest − ȳtrain‖22

(25)

where ȳtrain is the mean of the training data.

Our change surface model performed best due to the
expressive nonstationary covariance function that fits
to the different functional regimes in the data. Al-
though the alternate methods can flexibly adapt to the
data, they must account for the change in covariance
structure by setting an effectively shorter length-scale
over the data. Thus their predictive accuracy is re-
duced compared to the change surface model.

6.2 British Coal Mining Data

British coal mining accidents from 1861 to 1962 have
been well studied in the point process and change-
point literature (Raftery and Akman, 1986; Adams
and MacKay, 2007). We use yearly counts of accidents
from Carlin et al. (1992). Domain knowledge suggests
that the Coal Mines Regulation Act of 1887 affected
the underlying process of coal mine accidents. This
act limited child labor in mines, detailed inspection
procedures, and regulated construction standards.

We apply our change surface model with two latent
functions, spectral mixture kernels, and w(x) defined
by 5 RKS features. We do not provide the model with
prior information about the 1887 legislation date. Fig-
ure 5 depicts the cumulative data and predicted change
surface. The red line marks the year 1887 and the ma-
genta line marks x : σ(w(x)) = 0.5. Our algorithm
correctly identified the change region and suggests a
gradual change that took 5.6 years to transition from
σ(w1(x)) = 0.25 to σ(w1(x)) = 0.75.

Using the coal mining data we apply a number of well
known univariate changepoint methods using their
standard settings. We compared Pruned Exact Lin-
ear Time (PELT) (Killick et al., 2012) for changes
in mean and variance and a nonparametric method
named “ecp” (James and Matteson, 2013). Addi-

Figure 5: British coal mining accidents from 1851 to
1962. The blue line depicts cumulative annual acci-
dents, the green line plots σ(w(x)), the vertical red
line marks the Coal Mines Regulation Act of 1887, and
the vertical magenta line indicates σ(w1(x)) = 0.5.

Table 2: Comparing methods for estimating the date
of change in coal mining data.
Method Estimated date
Change surface σ(w1(x)) = 0.5 1888.8
PELT mean change 1886.5
PELT variance change 1882.5
ecp 1887
Student-t test 1886.5
Bartlett test 1947.5
Mann-Whitney test 1891.5
Kolmogorov-Smirnov test 1896.5

tionally, we tested the batch changepoint method de-
scribed in Ross (2013) with Student-t and Bartlett
tests for Gaussian data as well as Mann-Whitney and
Kolmogorov-Smirnov tests for nonparametric change-
point estimation. Figure 2 compares the dates of
change identified by these methods to the date where
σ(w1(x)) = 0.5 in our method.

Most of the methods identified a change date between
1886 and 1895 except the Bartlett test. While each
method provides a point estimate of the change date,
only the the change surface model yields a clear anal-
ysis of the development of this change. Indeed the
5.6 years that the change surface transitions between
σ(w1(x)) = 0.25 to σ(w1(x)) = 0.75 well encapsulates
most of the point estimate method results.

6.3 United States Measles Data

Measles was nearly eradicated in the United States
following the introduction of the measles vaccine in
1963. We analyze monthly incidence data for measles
from 1935 to 2003 in each of the continental United
States and the District of Columbia, made publicly
available by Project Tycho (van Panhuis et al., 2013).
We fit the model to≈ 33, 000 data points where x ∈ R3

with two spatial dimensions representing centroids of
each state and one temporal dimension.

We apply our change surface model with two latent
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Figure 6: Measles incidence levels from 3 states, 1935
- 2003. The green line plots σ(w(xstate)), the vertical
red line indicates the vaccine in 1963, and the magenta
line indicates σ(w(xstate)) = 0.5.

1961.5
1967.2

Figure 7: US states colored by the date where
σ(w(xstate)) = 0.5. Red indicates earlier dates, with
California being the earliest. Blue indicates later
dates, with North Dakota being the latest. Grayed
out states were missing in the dataset.

functions, spectral mixture kernels, and w(x) defined
by 5 RKS features. We do not provide prior informa-
tion about the 1963 vaccination date.

Results for three states are shown in Figure 6 along
with the predicted change surface. The red line marks
the vaccine year of 1963, while the magenta line marks
the points where σ(w(xstate)) = 0.5. Our algorithm
correctly identified the time frame when the measles
vaccine was released in the US.

Additionally, the model suggests that the effect of the
measles vaccine varied both temporally and spatially.
In Figure 7 we depict the midpoint, σ(w(xstate)) = 0.5,
for each state. We discover that there is an approx-
imately 6 year difference in midpoint between states.
In Figure 8 we depict the change surface slope from

0.156
0.297

Figure 8: US states colored by the slope of σ(w(xstate))
from 0.25 to 0.75. Red indicates flatter slopes, with
Arizona being the lowest. Blue indicates steeper
slopes, with Maine being the highest. Grayed out
states were missing in the dataset.

σ(w(xstate)) = 0.25 to σ(w(xstate)) = 0.75 for each
state to estimate the rate of change. Here we find
that some states had approximately twice the rate of
change as others. These variations in the change sur-
face illustrate how the measles vaccine affected states
heterogeneously over space and time. They suggest
that further scientific research is warranted to under-
stand the underlying causes of this heterogeneity in or-
der to provide insight for future vaccination programs.

7 Conclusions

We presented a scalable, multidimensional Gaussian
process model with expressive kernel structure which
can learn a complex change surface from data. Using
the Weyl inequality, we perform efficient inference with
additive kernel structure using Kronecker methods, en-
abling a multidimensional non-separable kernel. Addi-
tionally, we introduce a novel initialization algorithm
for learning the w(x) RKS features and spectral mix-
ture kernels. Finally, we apply our model to numerical
and real world data, illustrating how it can charac-
terize heterogeneous spatio-temporal change surfaces,
yielding scientifically relevant insights.

The work on changepoint modeling is extensive and
the current work cannot address all facets of the liter-
ature. Future work can extend our retrospective analy-
sis to address sequential change surface detection. Ad-
ditionally, the method can be extended to automati-
cally determine the number of latent functions.
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Initialization of w(x) RKS Features

To initialize w(x) defined by RKS features we first sim-
plify our change surface model and assume that each
latent function f1, ..., fr from Eq. 8 is drawn from a
Gaussian process with an RBF kernel. Since RBF ker-
nels have many fewer hyperparameters than spectral
mixture kernels, this enables the initialization to fo-
cus on w(x). Algorithm 2 provides the procedure for
initializing this simplified change surface model. Note
that depending on the application domain, a model
with latent functions defined by RBF kernels may be
sufficient.

Algorithm 2 Initialize RKS w(x) by optimizing a
simplified model with RBF kernels

1: for i = 1 : g do
2: Draw a, ω, b for RKS features in w(x)
3: Draw h random values for RBF kernels. Choose

the best with maximum marginal likelihood
4: Partial optimization of w(x) and RBF kernels
5: end for
6: Choose the best set of hyperparameters with max-

imum marginal likelihood
7: Optimize all hyperparameters until convergence

In the algorithm, we test multiple possible sets of val-
ues for w(x) by drawing the hyperparameters a, ω, and
b from their respective prior distributions g number of
times. To recall the prior distributions from Section
3.1 were,

a ∼ N (0,
σ0
m
I) (1)

ωi ∼ N (0,
1

4π2
Λ−1) (2)

bi ∼ Uniform(0, 2π) (3)

We set reasonable values for hyperparameters in
the prior distributions. Specifically, we let Λ =

( range(x)
2 )2, σ0 = std(y), and σn = mean(|y|)

10 . These
choices are similar to those used in Lázaro-Gredilla
et al. (2010).

For each set of w(x) hyperparameters that we sample,
we sample sets of hyperparameters for the RBF ker-
nels h number of times and select the set that yeilds
the maximum marginal likelihood. Then we run an
abbreviated optimization procedure over each set of
w(x) and RBF hyperparameters and finally select the
joint set that yeilds the maximum marginal likelihood.
Finally, we optimize all the resulting parameters until
convergence.
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