Fast Graph Scan for Scalable Detection of Arbitrary Connected Clusters

Skyler Speakman & Daniel B. Neill
Carnegie Mellon University, Heinz College
ISDS Annual Conference

This work was partially supported by NSF grants IIS-0916345, IIS-0911032, and IIS-0325581
Daily health data from thousands of hospitals and pharmacies nationwide

Time series of counts c_i^t for each zip code s_i

Use this data to detect anomalous patterns

Detect any emerging events (i.e. outbreaks of disease)
Pinpoint the affected areas

Biosurveillance
Expectation-based Scan Statistics

(Kulldorff, 1997; Neill and Moore, 2005)

Scan over multiple regions to detect where counts are higher than expected.

Aggregate the individual counts from each location within a region.

Circles

Choose a center location \(s_c \) and its \(k \) nearest neighbors.

Find the circle that maximizes a given score function of the aggregated counts and baselines.

Expectation-based Scan Statistics
Expectation-based Scan Statistics

(Kulldorff, 1997; Neill and Moore, 2005)

Scan over multiple regions to detect where counts are higher than expected.

Aggregate the individual counts from each location within a region.

Rectangles

Find the rectangle that maximizes a given score function of the aggregated counts and baselines.

Expectation-based Scan Statistics
Expectation-based Scan Statistics

(Kulldorff, 1997; Neill and Moore, 2005)

Power to Detect

Circles are useful for detecting tightly clustered outbreaks

However, they lose power to detect abnormally shaped clusters

- Affected locations
- Un-affected locations contributing to region score

Expectation-based Scan Statistics
Expectation-based Scan Statistics

(Kulldorff, 1997; Neill and Moore, 2005)

Power to Detect

There are similar issues with rectangles for some outbreaks

- Affected locations
- Un-affected locations contributing to region score

Expectation-based Scan Statistics
An alternative to scanning over shapes of regions is to find the *subset of locations* for a given region that has the highest score.

Affected locations

Un-affected locations contributing to region score

Pattern Detection through Subset Scanning

(Neill, 2008)
<table>
<thead>
<tr>
<th>PROBLEM:</th>
<th>The number of subsets grows exponentially with the size of the region (2^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This makes it computationally infeasible for regions with more than (~30) locations</td>
</tr>
<tr>
<td>SOLUTION:</td>
<td>Exploit a property of scoring functions to rule out subsets that cannot obtain the highest score</td>
</tr>
<tr>
<td></td>
<td>This reduction in the search space allows for exact and efficient calculation of the highest scoring subset</td>
</tr>
</tbody>
</table>

(Neill, 2008)
We wish to maximize a scoring function

\[F \subseteq F \left(\sum_{s_i \in S} c_i, \sum_{s_i \in S} b_i \right) \]

over all possible subsets, \(S \)

We sort the locations according to a relevance criteria

For example,

\[G(s_i) = \frac{c_i}{b_i} \]

works for Kulldorff’s Statistic and Expectation-based Poisson
Linear Time Subset Scanning

We wish to maximize a scoring function

$$F \subseteq F \left(\sum_{s_i \in S} c_i, \sum_{s_i \in S} b_i \right)$$

over all possible subsets, S

We sort the locations according to a relevance criteria

For example,

$$G(s_i) = \frac{c_i}{b_i}$$

works for Kulldorff’s Statistic and Expectation-based Poisson

This location has the highest count-to-baseline ratio

This location has the lowest count-to-baseline ratio

This ranking allows LTSS to take advantage of properties of a large number of scoring functions

(Neill, 2008)
The highest scoring subset is guaranteed to be one of the following subsets:

Decreases the search space from 2^N to N
Use adjacency of locations to form a *flexible* scan statistic (Tango & Takahashi, 2005)

Create an adjacency graph of the locations and score *every connected subset*

Increase power to detect non-circular clusters

Number of connected subsets is exponential in size of region. Infeasible for regions of >30 locations

Connectivity Constraints
Use property of LTSS to reduce the search space and rule out a large number of connected subsets.

Rank the locations according to relevance criteria.

Only scan connected subsets that have potential for highest score.

Graphscan:
If location s_i is contained in the optimal subset S^* and if a neighbor of s_i with higher relevance does not disconnect the subgraph, then s_i can also be contained in S^*.
The Graphscan algorithm would end up evaluating the sets:

1 2 3

Why not the sets 3 or 1 3 or 2 3 ?

Because these sets could include a higher ranked neighbor that would increase the set’s score.

Brief Example
The GraphScan method was evaluated using Emergency Department data from 91 Allegheny County zip codes.

Runtimes

We can use LTSS to quickly determine the unconstrained bound of a given subset.

If the subset’s bound is less than the current high score, we do not have to include it.

...for a single day of data.
We compared the detection power and accuracy of GraphScan to the original Kulldorff scan statistic (circular regions) on multiple semi-synthetic outbreaks injected into the data.

<table>
<thead>
<tr>
<th>Average over all types of injects</th>
<th>% of Injects Detected</th>
<th>Days to detect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circles</td>
<td>83.6%</td>
<td>8.6</td>
</tr>
<tr>
<td>GraphScan K=25</td>
<td>88.2%</td>
<td>8.2</td>
</tr>
<tr>
<td>GraphScan K=50</td>
<td>89.4%</td>
<td>8.1</td>
</tr>
<tr>
<td>GraphScan Single Region</td>
<td>88.6%</td>
<td>8.1</td>
</tr>
</tbody>
</table>
We compared the detection power and accuracy of GraphScan to the original Kulldorff scan statistic (circular regions) on multiple semi-synthetic outbreaks injected into the data.

<table>
<thead>
<tr>
<th>Compact Cluster</th>
<th>% Detected</th>
<th>Days to Detect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circles</td>
<td>68%</td>
<td>10.4</td>
</tr>
<tr>
<td>Graphscan K=25</td>
<td>84%</td>
<td>9.3</td>
</tr>
<tr>
<td>Graphscan K=50</td>
<td>88%</td>
<td>8.3</td>
</tr>
<tr>
<td>Graphscan Single Region</td>
<td>88%</td>
<td>8.6</td>
</tr>
</tbody>
</table>
We compared the detection power and accuracy of GraphScan to the original Kulldorff scan statistic (circular regions) on multiple semi-synthetic outbreaks injected into the data.

<table>
<thead>
<tr>
<th>Elongated Cluster</th>
<th>% Detected</th>
<th>Days to Detect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circles</td>
<td>66%</td>
<td>10.4</td>
</tr>
<tr>
<td>Graphscan K=25</td>
<td>87%</td>
<td>8.5</td>
</tr>
<tr>
<td>Graphscan K=50</td>
<td>92%</td>
<td>8.0</td>
</tr>
<tr>
<td>Graphscan Single Region</td>
<td>92%</td>
<td>8.2</td>
</tr>
</tbody>
</table>
We compared the detection power and accuracy of GraphScan to the original Kulldorff scan statistic (circular regions) on multiple semi-synthetic outbreaks injected into the data.

<table>
<thead>
<tr>
<th>Irregular Cluster</th>
<th>% Detected</th>
<th>Days to Detect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circles</td>
<td>90%</td>
<td>8.7</td>
</tr>
<tr>
<td>Graphscan K=25</td>
<td>97%</td>
<td>7.6</td>
</tr>
<tr>
<td>Graphscan K=50</td>
<td>98%</td>
<td>7.5</td>
</tr>
<tr>
<td>Graphscan Single Region</td>
<td>96%</td>
<td>7.4</td>
</tr>
</tbody>
</table>
Thanks!