A Pre-Syndromic Surveillance Approach for Early Detection of Novel and Rare Disease Outbreaks

Daniel B. Neill1,2,* and Mallory Nobles1

1Carnegie Mellon University
2New York University
*E-mail: neill@cs.cmu.edu

This work was partially supported by NSF grant IIS-0953330. Data was provided by the NC DHHS/DPH NC DETECT system and the NYC Department of Health and Mental Hygiene. The NC DETECT Data Oversight Committee and NYC DOHMH do not take responsibility for the scientific validity or accuracy of methodology, results, statistical analyses, or conclusions presented.
Early outbreak detection (syndromic)

Spatial time series data from spatial locations s_i (e.g. zip codes)

Outbreak detection
- $d_1 = \text{respiratory ED}$
- $d_2 = \text{constitutional ED}$
- $d_3 = \text{OTC cough/cold}$
- $d_4 = \text{OTC anti-fever}$

Three main goals of syndromic surveillance

Detect any emerging events

Pinpoint the affected subset of locations and time duration

Characterize the event by identifying the affected subpopulation
Early outbreak detection (syndromic)

Spatial time series data from spatial locations s_i (e.g. zip codes) for each zip code s_i for each data stream d_m.

Recent **spatial and subset scanning** approaches can accurately and efficiently find the most anomalous clusters of disease, by maximizing a likelihood ratio statistic over subsets.

$$F(D,S,P,W) = \frac{\Pr(\text{Data} | H_1(D,S,P,W))}{\Pr(\text{Data} | H_0)}$$

Outbreak detection
- $d_1 =$ respiratory ED
- $d_2 =$ constitutional ED
- $d_3 =$ OTC cough/cold
- $d_4 =$ OTC anti-fever

Compare hypotheses:

- $H_1(D, S, P, W)$
 - $D =$ subset of streams
 - $S =$ subset of locations
 - $P =$ subpopulation
 - $W =$ time duration

vs. H_0: no events occurring
 Syndromic surveillance example

Spike in sales of pediatric electrolytes near Columbus, Ohio
Pre-syndromic surveillance

<table>
<thead>
<tr>
<th>Date/time</th>
<th>Hosp.</th>
<th>Age</th>
<th>Complaint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 1 08:00</td>
<td>A</td>
<td>19-24</td>
<td>runny nose</td>
</tr>
<tr>
<td>Jan 1 08:15</td>
<td>B</td>
<td>10-14</td>
<td>fever, chills</td>
</tr>
<tr>
<td>Jan 1 08:16</td>
<td>A</td>
<td>0-1</td>
<td>broken arm</td>
</tr>
<tr>
<td>Jan 2 08:20</td>
<td>C</td>
<td>65+</td>
<td>vomited 3x</td>
</tr>
<tr>
<td>Jan 2 08:22</td>
<td>A</td>
<td>45-64</td>
<td>high temp</td>
</tr>
</tbody>
</table>

Key challenge: A syndrome cannot be created to identify every possible cluster of potential public health significance.

Thus a method is needed to identify relevant clusters of disease cases that do not correspond to existing syndromes.

Use case proposed by NC DOH and NYC DOHMH, solution requirements developed through a public health consultancy at the International Society for Disease Surveillance.
Where do existing methods fail?

The typical syndromic surveillance approach can effectively detect emerging outbreaks with commonly seen, general patterns of symptoms (e.g. ILI).

What happens when something new and scary comes along?
- **More specific symptoms** (“coughing up blood”)
- **Previously unseen symptoms** (“nose falls off”)

If we were monitoring these particular symptoms, it would only take a few such cases to realize that an outbreak is occurring!

Mapping specific chief complaints to a broader symptom category can dilute the outbreak signal, delaying or preventing detection.
Where do existing methods fail? The typical syndromic surveillance approach can effectively detect emerging outbreaks with commonly seen, general patterns of symptoms (e.g. ILI).

Where do existing methods fail? Mapping specific chief complaints to a broader symptom category can dilute the outbreak signal, delaying or preventing detection. What happens when something new and scary comes along? More specific symptoms (“coughing up blood”), previously unseen symptoms (“nose falls off”).

If we were monitoring these particular symptoms, it would only take a few such cases to realize that an outbreak is occurring! Our solution is to combine text-based (topic modeling) and event detection (multidimensional scan) approaches, to detect emerging patterns of keywords.
The semantic scan statistic

<table>
<thead>
<tr>
<th>Date/time</th>
<th>Hosp.</th>
<th>Age</th>
<th>Complaint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 1 08:00</td>
<td>A</td>
<td>19-24</td>
<td>runny nose</td>
</tr>
<tr>
<td>Jan 1 08:15</td>
<td>B</td>
<td>10-14</td>
<td>fever, chills</td>
</tr>
<tr>
<td>Jan 1 08:16</td>
<td>A</td>
<td>0-1</td>
<td>broken arm</td>
</tr>
<tr>
<td>Jan 2 08:20</td>
<td>C</td>
<td>65+</td>
<td>vomited 3x</td>
</tr>
<tr>
<td>Jan 2 08:22</td>
<td>A</td>
<td>45-64</td>
<td>high temp</td>
</tr>
</tbody>
</table>

Classify cases to topics

Time series of hourly counts for each combination of hospital and age group, for each topic φ_j.

Bayesian inference using LDA model

Now we can do a multidimensional scan, using the learned topics instead of pre-specified syndromes!
Multidimensional scanning

For each hour of data:
 For each combination S of:
 • Hospital
 • Time duration
 • Age range
 • Topic

Count: $C(S) = \# \text{ of cases in that time interval matching on hospital, age range, topic.}$

Baseline: $B(S) = \text{expected count (28-day moving average).}$

Score: $F(S) = C \log \left(\frac{C}{B} \right) + B - C, \text{ if } C > B, \text{ and } 0 \text{ otherwise (using the expectation-based Poisson likelihood ratio statistic)}$

We return cases corresponding to each top-scoring subset S.
Simulation results

Semantic scan detected simulated novel outbreaks more than twice as quickly as the standard syndrome-based method: 5.3 days vs. 10.9 days to detect at 1 false positive per month.

Simulated novel outbreak: “green nose”

Top words from detected topic:
- green
- nose
- possible
- color
- greenish
- nasal
 ...
NC DOH evaluation results

We compared the top 500 clusters found by semantic scan and a keyword-based scan on data provided by the NC DOH in a blinded evaluation, with DOH labeling each cluster as “relevant” or “not relevant”.

Semantic scan: for 10 true clusters, had to report 12; for 30 true clusters, had to report 54.

Keyword scan: for 10 true clusters, had to report 21; for 30 true clusters, had to report 83.
NYC DOHMH dataset

• New York City’s Department of Health and Mental Hygiene provided us with 5 years of data (2010-2014) consisting of ~20M chief complaint cases from 50 hospitals in NYC.
• For each case, we have data on the patient’s chief complaint (free text), date and time of arrival, age group, gender, and discharge ICD-9 code.
• Substantial pre-processing of the chief complaint field was necessary because of size and messiness of data (typos, abbreviations, etc.).
 • Standardized using the Emergency Medical Text Processor (EMTP) developed by Debbie Travers and colleagues at UNC.
 • Spell checker for typo correction.
 • If ICD-9 code in chief complaint field, convert to corresponding text.
The progression of detected clusters after Hurricane Sandy impacted NYC highlights the variety of strains placed on hospital emergency departments following a natural disaster:

- **Acute cases:** falls, SOB, leg injuries
- **Mental health disturbances:** depression, anxiety
- **Burden on medical infrastructure:** methadone, dialysis

Many other events of public health interest were identified:

- **Accidents**
 - Motor vehicle
 - Ferry
 - School bus
 - Elevator

- **Contagious Diseases**
 - Meningitis
 - Scabies
 - Ringworm

- **Other**
 - Drug overdoses
 - Smoke inhalation
 - Carbon monoxide poisoning
 - Crime related, e.g., pepper spray attacks
Example of a detected cluster

<table>
<thead>
<tr>
<th>Arrival Date</th>
<th>Arrival Time</th>
<th>Hospital ID</th>
<th>Chief Complaint</th>
<th>Patient Sex</th>
<th>Patient Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/28/2014</td>
<td>7:52:00</td>
<td>HOSP5</td>
<td>EVALUATION, DRANK COFFEE WITH CRUS</td>
<td>M</td>
<td>45-49</td>
</tr>
<tr>
<td>11/28/2014</td>
<td>7:53:00</td>
<td>HOSP5</td>
<td>DRANK TAINTED COFFEE</td>
<td>M</td>
<td>65-69</td>
</tr>
<tr>
<td>11/28/2014</td>
<td>7:57:00</td>
<td>HOSP5</td>
<td>DRANK TAINTED COFFEE</td>
<td>F</td>
<td>20-24</td>
</tr>
<tr>
<td>11/28/2014</td>
<td>7:59:00</td>
<td>HOSP5</td>
<td>INGESTED TAINTED COFFEE</td>
<td>M</td>
<td>35-39</td>
</tr>
<tr>
<td>11/28/2014</td>
<td>8:01:00</td>
<td>HOSP5</td>
<td>DRANK TAINTED COFFEE</td>
<td>M</td>
<td>45-49</td>
</tr>
<tr>
<td>11/28/2014</td>
<td>8:03:00</td>
<td>HOSP5</td>
<td>DRANK TAINTED COFFEE</td>
<td>M</td>
<td>40-44</td>
</tr>
<tr>
<td>11/28/2014</td>
<td>8:04:00</td>
<td>HOSP5</td>
<td>DRANK TAINTED COFFEE</td>
<td>M</td>
<td>30-34</td>
</tr>
<tr>
<td>11/28/2014</td>
<td>8:06:00</td>
<td>HOSP5</td>
<td>DRANK TAINTED COFFEE</td>
<td>M</td>
<td>35-39</td>
</tr>
<tr>
<td>11/28/2014</td>
<td>8:09:00</td>
<td>HOSP5</td>
<td>INGESTED TAINTED COFFEE</td>
<td>M</td>
<td>25-29</td>
</tr>
</tbody>
</table>

This detected cluster represents 9 patients complaining of ingesting tainted coffee, and demonstrates Semantic Scan’s ability to detect rare and novel events.
Conclusions

Pre-syndromic surveillance is a *safety net* that can supplement existing ED syndromic surveillance systems by alerting public health to unusual or newly emerging threats.

Our recently proposed *semantic scan* can accurately and automatically discover pre-syndromic case clusters corresponding to novel outbreaks and other patterns of interest.
Thanks for listening!

More details on our web site: http://epdlab.heinz.cmu.edu

Or e-mail me at: neill@cs.cmu.edu