TreeHouse: JavaScript sandboxes to help Web developers help themselves

Lonni Ingram*' and Michael Walfish*

*The University of Texas at Austin

Abstract

Many Web applications (meaning sites that employ
JavaScript) incorporate third-party code and, for reasons
rooted in today’s Web ecosystem, are vulnerable to bugs
or malice in that code. Our goal is to give Web devel-
opers a mechanism that (a) contains included code, lim-
iting (or eliminating) its influence as appropriate; and
(b) is deployable today, or very shortly. While the goal
of containment is far from new, the requirement of de-
ployability leads us to a new design point, one that ap-
plies the OS ideas of sandboxing and virtualization to
the JavaScript context. Our approach, called TreeHouse,
sandboxes JavaScript code by repurposing a feature of
current browsers (namely Web Workers). TreeHouse vir-
tualizes the browser’s API to the sandboxed code (al-
lowing the code to run with few or no modifications)
and gives the application author fine-grained control over
that code. Our implementation and evaluation of Tree-
House show that its overhead is modest enough to handle
performance-sensitive applications and that sandboxing
existing code is not difficult.

1 Introduction

This paper is about TreeHouse, a system that allows Web
applications to safely include—in the code delivered to
the browser—third-party modules that are unaudited, un-
trusted, and unmodified. By Web application, we mean
any Web site that includes JavaScript.

Many of today’s Web applications are closely inte-
grated with third-party code and in fact depend on the
correctness of that code. For example, frameworks are
now in wide use; these are JavaScript libraries that serve
as application platforms by abstracting messy aspects of
the browser’s interface [13, 19, 30, 45, 63, 67]. As an-
other example, sites selling advertising space today in-
clude scripts supplied by ad networks; these scripts are
only supposed to display content from the ad networks,
but they can hinder or harm the enclosing page (even
if running in a frame, as we explain below and in Sec-
tion 2.3). A third example is widgets: code supplied by
an off-site service to invoke that very service (for exam-
ple, [7, 56]). To perform its function, the widget needs
read and write access to the enclosing page.

Adding to the helplessness of applications, the third-
party code can change unilaterally. Applications often
include frameworks by hyperlinking elsewhere: for low
latency, some frameworks’ code is hosted by Content

TWaterfall Mobile

Distribution Networks (CDNs).! Similarly, applications
include ad scripts and widget scripts by hyperlinking to
the ad network or widget implementer. All of these cases
are analogous to a desktop application that dynamically
links to a module running on someone else’s computer!

Web applications, then, are taking the risk of adding
large, opaque, third-party code to their trusted comput-
ing base [12]. Whether from malice or bugs, this code
can compromise the privacy of data [8], the integrity of
the enclosing page [26, 57], and the availability of the ap-
plication [8, 52] (for instance, the script can make many
HTTP requests, slowing the page’s load time).

Given this situation, our high-level goal is a mecha-
nism by which Web developers can contain and control
included code, whether written by a third-party or the
Web developers themselves. The question that we must
answer is: what interface should this mechanism expose,
and how should we implement it?

Of course, this question is not new (not even in the
Web context); our point of departure is in adopting the
following two requirements:

* Make it work today (or failing today, shortly). Pre-
vious projects are more tasteful than ours; indeed
their principles have inspired this paper. But realizing
those principles has required deployability compro-
mises that we hope to avoid. Specifically, we wish to
minimize (a) browser modification [10, 14, 29, 33, 37,
38, 43,59, 62] or redesign [5, 9, 16, 24, 39,47, 53, 60],
as these require changes in the entire Web ecosystem;
(b) development-time code changes [11, 20, 35,41], as
these often impose a performance cost and always re-
quire framework authors to rewrite their code; (¢) run-
time code changes [44, 46], as these either sacrifice
the performance benefit of hosting framework code in
a CDN, or else incur a large performance cost in the
browser (Section 7 explains further); and (d) server
configuration, such as domain names for each trust do-
main [28, 31, 32, 64], as this impairs deployability.

e Allow controlled, configurable influence. The mecha-
nism should allow only the access and grant only the
resources needed for the contained script to do its job:
frameworks should be given access to all elements in
the enclosing page, widgets should be given access
only to the portions of the page they are concerned
with, and ads should have no influence on the enclos-

! Unfortunately, application code cannot even compare the hyperlink’s
target to a known content hash, owing to the same-origin policy (§2.1).

ing page. We note that browsers’ iframe mechanism
fails this requirement since code in a frame can still
leak data or consume scarce browser resources owned
by the application (see Section 2.3 for more detail).

TreeHouse’s high-level approach is to provide a sand-
box in which a Web application can run guest JavaScript
code. Sandboxing (or jailing) on hosts [21, 22, 36, 49,
51, 58] and in browsers [15, 61] is an elegant way to
run legacy code inside a given context while giving that
code little (or configurably limited) influence on that con-
text. These works restrict the machine code and system
calls that the sandboxed code executes. Our scenario,
however, calls for configurable control over code that
has been programmed to the browser’s JavaScript inter-
face. Thus, we borrow the top-level idea of sandboxing
but need an interposition mechanism that understands
JavaScript and the browser’s APL

Unlike other work that provides such interposition [10,
14, 33, 37, 38, 43], TreeHouse requires no browser
changes: it is implemented in JavaScript using browsers’
current functionality. Specifically, it repurposes Web
Workers (a feature in recent browsers in which a page
can run a script in a separate thread) as containers to run
guest code. It avoids modification in that code by virtu-
alizing the principal interface to the browser (known as
the Document Object Model or DOM; see Section 2.1).2
TreeHouse exerts configurable control over guest code
using an approach analogous to trap-and-emulate in the
virtual machines context [4]: it interposes on privileged
operations, permitting them as appropriate.

We have implemented and evaluated a prototype of
TreeHouse. We ported a benchmark suite [1], a Tetris
clone [50], and two frameworks [45, 67] to TreeHouse.
Using existing code with TreeHouse requires modest ef-
fort. TreeHouse’s relative overhead for DOM operations
is high, but its absolute costs are tolerable (to human
users). With a small amount of engineering work, our
prototype could be made ready for actual production use.

TreeHouse has a number of limitations. First, its
trusted computing base (TCB) includes the browser and
thus is not small (though the TCB exposes a minimal in-
terface, namely a virtualized interface to Web Workers;
see Section 3). Second, despite our best efforts, the guest
code sometimes needs minor restructuring; however, the
required code changes are few and easy to make (see Sec-
tion 6). Third, while Web Workers are available in recent
browsers and expected to become ubiquitous, we are cur-
rently in a transition period (see Section 2.4).

There is a lot of related work, and we cover it in detail
in Section 7. For now, we just note that no other work that
we are aware of virtualizes the browser in a backward

2Qthers have virtualized this interface, in the browser [14, 20, 32, 40,
41] and on the server [3, 17], but with goals different from ours (§7).

compatible way, requires no server or domain configu-
ration, and protects against resource exhaustion attacks.
The contributions of this work, then, are as follows:

* Applying the operating systems ideas of sandboxing,
virtualizing, and resource management to JavaScript.

* The design of TreeHouse, which instantiates these OS
ideas without browser modification.

* The implementation and evaluation of TreeHouse.

2 Background

This section explains the aspects of the Web browser
ecosystem that are relevant to TreeHouse.

2.1 Some details of modern Web browsers

A Web page is a document composed of HTML markup,
CSS styles, and JavaScript (JS) code. HTML describes
the structure and content of the document, CSS describes
its visual presentation, and JavaScript [18] adds dynamic
behavior. Browsers provide an API through JavaScript,
called the Document Object Model (DOM), which rep-
resents the page as a tree of nodes with methods and
properties. Scripts within a Web page use the DOM to
examine and change the page.

The browser also exposes an API through JavaScript
that provides network access, multimedia capabilities,
file access, asynchronous interrupts, and local storage.
A notable class in this API is XMLHttpRequest (XHR),
which allows a script to make an HTTP request. The
browser restricts such requests, allowing them only to the
document’s origin, a tuple of (scheme, domain, port).3

This restriction is part of the Same Origin Policy
(SOP), whose purpose is to contain information leaks.
Consider a user with the authority to get data from a re-
stricted site. If such a user visits a site with malicious
scripts that issue XHRs as the user to the restricted site,
then, in the absence of the SOP, the browser would per-
mit the XHRs; the scripts could thus wrongly extract data
and send it to the malicious site. The SOP prevents such
leaks by regarding each origin as a separate security prin-
cipal and then preventing the browser from becoming a
channel that leaks information among principals.

Because of this model, scripts in documents from the
same origin may access the DOMs of each other’s doc-
uments but not the DOMs of documents from any other
origin. Perhaps confusingly, the SOP includes exceptions
to this rule for some types of content. For example, a doc-
ument is permitted to include and execute scripts from
other origins. However, the origin that the cross-origin
script is assigned by the browser is the origin of the in-
cluding document, not the origin from which the script

3This tuple is drawn from the document’s URL; for example, the ori-
gin corresponding to https://www.example.com:1234/foo/bar.html is
(https, www.example.com, 1234).

was downloaded. For example, if a page from foo.com
includes a script from bar.com, the browser allows the
script to access content from foo.com but not bar.com.

2.2 JavaScript

The following properties of JavaScript help TreeHouse in
its goal of isolating scripts. First, a script cannot create a
reference to an arbitrary memory location: a script can
access only objects that it creates itself and objects that
the browser hands to it. Second, JavaScript as a language
provides no facilities for I/O, meaning that, with the ex-
ception of covert channels, scripts can communicate out-
side their environment only by using the browser’s API.
Finally, as of version 5.1 of JavaScript, scripts can freeze
properties of objects. Once a property is frozen, further
attempts to assign or delete its value have no effect.

2.3 Frames

Browsers ship with a mechanism called iframes that are
intended to create a logically separate entity within an
enclosing page. However, iframes do not provide the
isolation that one might want. First, iframes run in the
same thread as their enclosing page. If code blocks in an
iframe, the whole page blocks. Second, iframes can con-
sume resource budgets that the browser imposes on the
entire page. For example, browsers limit the number of
in-flight XHRs (to any origin and in total), and misbehav-
ing code can exhaust this limit (as has been observed [8]).

2.4 Web Workers

JavaScript is single-threaded and does not support pre-
emption. Absent further mechanism, then, a script must
break up compute-bound tasks, periodically returning
control to the browser’s event loop, or else the page be-
comes unresponsive. This limitation has motivated Web
Workers, a recent* browser feature that lets documents
run scripts in a “separate parallel execution environ-
ment” [2]. In all cases that we are aware of (desktops,
smart phones, etc.), these separate environments are pre-
emptively scheduled processes or threads, as provided by
the underlying operating system. For computations that
admit parallelism, then, Web Workers allow application
developers to write code in a threaded style.

Web pages can create an arbitrary number of workers;
each gets its own JavaScript environment. The origin as-
signed by the browser to those workers is the origin of
the document that created the worker, called the parent
document. A worker and its parent communicate using
an asynchronous message-passing facility provided by

4Web Workers are part of the HTMLS5 specification [2] and are sup-
ported by the latest versions of all major browsers. Internet Explorer
(IE) is a special case. As of this paper’s publication, IE 10.0, which
supports Web Workers, is in beta and expected to ship in 2012; when
it does, IE’s dominance is such that Web Workers will quickly be on a
large majority of desktops.

the browser (called postMessage). Scripts are otherwise
isolated: a script in a worker cannot import a reference to
an object outside the worker or export a reference to an
object inside the worker. Workers also do not have access
to the DOM or most other browser resources. However,
they can import scripts by URL, create child workers,
and issue XHRs.

The goal of Web Workers was concurrency, but Tree-
House repurposes them, as described in the next section.

3 Design of TreeHouse
3.1 Threat model and requirements

Threat model. Our threat model assumes that an honest
user interacts with a Web application using an uncom-
promised and correct browser. The application is written
by an honest author. We will assume that the following
content is correct and served from uncompromised Web
servers that are part of the author’s trust domain: a dis-
tinguished HTML page (called the host page), a distin-
guished set of JavaScript, and any CSS and JavaScript
directly included in the host page. The adversary can
control the contents of any JavaScript, HTML or CSS
that is downloaded from a server not under the author’s
control (for example, the adversary can supply the ad or
framework code); this content is untrusted by the author,
meaning that neither the author nor TreeHouse can de-
pend on the correctness of this content. For prudence, an
author aware of his imperfections (Dr. Jekyll) may wish
to regard code that he himself wrote as being supplied by
the adversary (Mr. Hyde), trusting only a minimal host
page and the distinguished JavaScript.

Requirements. The design of TreeHouse is driven by
the following requirements.

e Isolate untrusted content. Before anything else, Tree-
House needs a mechanism for isolating content. (We
make this notion more precise below.) Such content
would ideally have no impact on the execution of Tree-
House or on the rest of the application, and limited
impact on their performance.

e Interpose on untrusted content. It is not sufficient
for TreeHouse simply to isolate content. To perform
useful work, content needs to communicate with the
application, to affect the browser, and to consume
browser resources. That is, the untrusted content may
need to interact with the document’s DOM, to gain ac-
cess to cookies or files, to create Web Workers, and to
consume outbound network requests and local storage.
However, this impact needs to be controlled. Thus,
TreeHouse must interpose on attempts by untrusted
content to do useful work, to decide which attempts
are permissible. This will allow TreeHouse to pro-
tect integrity (for example, by forbidding unauthorized

Web App“cation Web Worker Web Worker

Guest Guest
Scripts Scripts

[vitvaioom | [vitvaiom |

| Virtual Worker API | | Virtual Worker API |
| TreeHouse Monitor | Broker Broker

| Native DOM | | Native Worker API |

Browser

Figure 1—Architecture of TreeHouse. Shaded portions are un-
trusted by the application.

modifications to the DOM), availability (for example,
by disallowing scripts from over-consuming required
local storage), and privacy (for example, by disallow-
ing a script from consuming an outbound network re-
quest to another origin, since it could use such a re-
quest to leak data).

* Manage resources at fine grain. TreeHouse must pro-
vide a way for application authors to express what
access is permissible by guests, and what resources
guests may consume. Consistent with the principle
of least privilege [48], the granularity of permissions
should be as fine as possible.

3.2 Overview of TreeHouse

Figure 1 depicts TreeHouse. For isolation, TreeHouse
runs untrusted code in Web Workers (§2.4); once the
code is running under TreeHouse in the Web Worker,
we call it guest code or sandboxed code. For interpo-
sition, TreeHouse installs a broker in each worker that
virtualizes the browser’s resources. For example, the bro-
ker exports to the worker a Virtual DOM (VDOM) that
looks to guests like the browser’s API. Interposition also
requires a monitor that runs in the JavaScript environ-
ment of the window or tab in which the user loaded the
application. The monitor applies guests’ VDOM modi-
fications to the real DOM, and delivers DOM events to
guests—if permitted. What is permitted (regarding the
DOM and access to other browser resources) is decided
by the application author, and the definition of this policy
is the only application customization; the monitor is the
same across Web applications. Communication between
the guest script and the monitor is handled by the broker,
using message passing (§2.4). For example, the broker
translates VDOM changes into messages to the monitor.

The rest of this section details the isolation mecha-
nism (§3.3), interposition and virtualization (§3.4), and
how application authors express policy (§3.5).

3.3 Isolation

We say that script B is isolated from script A if (1) B can-
not prevent A from running; and (2) B cannot access A’s
JavaScript environment. TreeHouse applies this notion to
isolate untrusted scripts from the monitor and other ap-
plication code. In the rest of this section, we describe
how TreeHouse enforces (1) and (2). In short, TreeHouse
uses Web Workers, which is perhaps surprising, since
they were introduced for a different purpose.

For condition (1), each Web Worker runs in its own
preemptively scheduled thread (§2.4), so the ability of a
script inside a worker to affect the liveness of code out-
side it is restricted by the scheduling policy of the operat-
ing system. For example, if code in the worker enters an
infinite loop, the performance of the system degrades but
not to the point of preventing application code outside
the worker from making progress.

For condition (2), we note that in a browser that cor-
rectly implements Web Workers (as assumed by our
threat model), each worker has its own JavaScript envi-
ronment. Moreover, JavaScript code cannot construct a
reference to an object outside its environment (§2.2), and
the only communication mechanism available to Web
Workers, postMessage (§2.4), does not pass references.

Thus, to isolate a script, it is sufficient to run that script
in a worker; this isolates the script from the monitor and
from scripts in other workers.

3.4 Interposition and virtualization

We now motivate and describe TreeHouse’s interposition
mechanism. Interposition is needed for two reasons.

The first reason is that isolating code in the sense
above does not prevent it from doing harm. Consider
a Web application that allows users to upload and re-
trieve photos, and to send and receive private messages.
Assume for illustration that these two functions are im-
plemented by two logical services at the application’s
origin. If a script in the application is “supposed” to
invoke only the photos API, then, by the principle of
least privilege, that script should in fact be limited to
the photos APIL. However, a malicious script—even if
isolated—can still invoke the messages API and thus
forge messages from the user. The script can also leak
messages, as follows. Any origin can import scripts from
any other (as discussed in Section 2.1 in the context of
the SOP). If the malicious script has gained access to the
user’s private messages by invoking the messages API,
the script can then exfiltrate a message by “importing”
a script from http://evil.com/script.js?private-message,
thereby leaking the private-message to evil.com.

To prevent attacks like the ones above and others,
TreeHouse requires some logic between the isolated code
and the outside world. This interposing logic must pro-
tect not only privacy but also integrity (by disallowing

unauthorized changes to the page seen by the user) and
availability (by limiting the consumption of resources).

This brings us to the second reason that interposition
is needed: some of the third-party actions need access
to actual browser resources (the DOM, XHRs, etc.) to
get work done. Thus, the interposing logic must not only
intercept various actions but also decide which of them
are permissible.

Questions of interface and mechanism. There are now
three interrelated questions that TreeHouse must answer:

(1) Through what interface should guest code request

resources from TreeHouse’s interposing logic?
The challenge here is that scripts’ resource requests need
to be clear to TreeHouse (so it can decide whether to
grant the request), yet the goal of deployability (§1)
means that the script should not be altered to make re-
quests through a new interface. TreeHouse’s response
to this challenge is reminiscent of trap-and-emulate [4]
in the virtual machines context: TreeHouse virtualizes
the browser’s API and arranges to be invoked whenever
a script requests access to a browser resource, whether
that resource is one in the main application or in a Web
Worker. But we now have a second question:

(2) What mechanism(s) should TreeHouse use to inter-
pose and virtualize?
The challenge here is that JavaScript has a wide interface
to the browser. This interface is narrower in Web Work-
ers but still not so very narrow. Web Workers can ac-
cess information about the application (such as its URL),
import scripts, make network requests, and create child
‘Web Workers. In some browsers, workers can use local
storage as well as any files that the user has permitted
the application to access. Meanwhile, TreeHouse needs
to interpose on all of these actions. This brings us to the
third question:
(3) How should application authors express policy so
that TreeHouse can decide whether to grant or deny
a given resource request?

The challenge here is ensuring a natural map between
the language in which application authors express per-
missions and the implicit requests made by scripts. Tree-
House’s approach here is to require application authors
to express permissions in terms of the browser’s API:
the application author expresses which methods (and the
arguments to those methods) guest code can use. Sec-
tion 3.5 provides the details of policy expression. The
rest of this section takes such a policy as a given and de-
tails TreeHouse’s response to question (2).

Virtualizing the browser’s API. Recall that Tree-
House’s approach is reminiscent of trap-and-emulate. We
first describe how TreeHouse arranges for traps and then
how it performs the “emulate”.

When TreeHouse creates a worker, it loads into the
worker a script, called a broker, which is part of Tree-
House’s trusted computing base (see Figure 1). The bro-
ker must (a) interpose on calls to the browser’s API
that are available in workers (issuing XHRs, etc.) and
(b) create a virtual DOM and interpose on interactions
with it (the DOM itself is not available in workers;
see Section 2.4). For (a), before the guest code loads,
the broker modifies the worker’s environment to wrap
each function in the browser’s API with a new im-
plementation that interposes the broker when the func-
tion is called. Specifically, the broker uses JavaScript’s
Object.defineProperty API to associate the func-
tion name with a new function, and to freeze (§2.2)
the association between the name and the new func-
tion, which prevents guest code from undoing this en-
vironment manipulation. For (b), the broker constructs a
VDOM (§3.2), which contains subtrees of the real DOM
(the application decides which subtrees). The VDOM
implementation that TreeHouse uses (§5) raises events
when the guest modifies the VDOM, and the broker reg-
isters a handler for such events.

For the “emulate” piece, there are two flows to con-
sider: guest invocations of the browser API and event de-
livery from the main browser to the guest. When guest
code invokes the browser’s API or modifies the VDOM,
the broker, being interposed, first applies the applica-
tion’s access control policy, to decide whether the guest
action is permitted. If it is not permitted, the broker ter-
minates the guest. If it is permitted, then, with the excep-
tion of DOM changes and asynchronous API methods for
which a native implementation is not available in a Web
Worker, the broker completes the call itself. We note that
completing the call may involve further interposition—
on the return value. For example, if the return value is
an object with methods, then the broker replaces those
methods with functions that interpose the broker.

In the case of DOM changes and asynchronous API
methods, the broker delegates the request to the original
browser API; to do so, the broker serializes the request
and passes it to the monitor using postMessage. The
monitor then makes the DOM modification or completes
the API call. (We describe below how TreeHouse handles
the mismatch between the synchronous interface to the
VDOM and asynchronous postMessages.)

Event delivery is similar. If guest code wishes to reg-
ister to be notified of a DOM event, then the broker re-
ceives the registration request and notifies the monitor.
The monitor then registers its own generic handler in the
application’s DOM; when the event fires, the monitor no-
tifies the broker, which re-raises the event in the VDOM
on the handler registered by the guest.

As a final detail concerning virtualization, we note that
the broker, when interposed, must sometimes do more

than check permissions. As an example, we briefly con-
sider the API to create Web Workers. If the guest (itself
in a Web Worker) attempts (and is permitted) to construct
a Web Worker, the broker invokes the browser’s API to
construct a new Web Worker, and returns an object that
wraps that new worker. To maintain interposition in the
new worker, the broker, which is now a parent broker,
runs a child broker in the new worker. The child broker is
identical in function to the parent except that, by default,
it virtualizes only the interface that browsers expose in
a Web Worker (no VDOM, etc.), as this is what a script
that is intended to be run in a Web Worker would expect.
The parent broker relays messages between the child bro-
ker and the monitor. TreeHouse virtualizes outbound net-
work requests, file access, and local storage similarly.

A sync-vs-async mismatch, and some limitations.
TreeHouse’s approach to virtualizing the browser’s API
sometimes requires that the broker present a blocking
interface; meanwhile, completing such a function or
method call may require that the broker send an asyn-
chronous postMessage to the monitor—and that the
broker then return to the event loop so that it can receive
the reply event (§2.4). The mismatch here is between a
synchronous interface and an event-driven implementa-
tion, and there are two broad cases.

First, if the guest call can be “faked” by the bro-
ker, then the broker can present a synchronous interface
and carry out the request asynchronously. For example,
the broker presents a blocking interface to the VDOM
and propagates changes to the application’s DOM asyn-
chronously. However, now TreeHouse must handle the
equivalent of concurrent threads (the workers) sharing
memory (the main DOM), where the threads have caches
of that memory (the VDOMs in each thread). For sim-
plicity, TreeHouse’s response is to prevent sharing alto-
gether: the monitor guarantees that a DOM node exists
in at most one VDOM at once.> We do not believe that
this limitation will be onerous for application authors.

The second case is when the guest call cannot be faked
by the broker. As an example, consider window.alert,
which creates a dialog box that blocks the calling script.
No alert method is available in Web Workers, so for the
broker to display an alert, it would have to send a request
to the monitor and then return to the browser’s event loop
to await the reply—which conflicts with the guest’s ex-
pectation of a blocking call. TreeHouse does not handle
this case; if guest code calls such a method, it fails with
a runtime error. Fortunately, there are few such methods,
and they are rarely used by third-party code.

5 An alternative approach would be to allow resources such as DOM
nodes or cookies to appear in workers with either exclusive read-write
access, or shared read-only access.

1 Ylapi’: {

2 >XMLHttpRequest’: {

3 ’linvoke’: true,

4 ’lresult’: {

5 // permit only asynchronous XHRs
6 open: function (verb, url, async) {
7 return async === true;

8 1,

9

10 ’x7: true // default rule

11 }

12 }

13}

Figure 2—The portion of TreeHouse’s base access control pol-
icy that governs XHRs. The policy forbids synchronous XHRs.

3.5 Resource control policy

The application author manages the guest’s access to re-
sources by (a) deciding which DOM elements to place in
the guest’s VDOM and (b) expressing policies that gov-
ern the guest’s interaction with the browser’s API (in-
cluding the VDOM). This section details the second as-
pect; the next section gives examples of both aspects.

At a high level, the application author expresses ac-
cess control policy in terms of the browser’s API: what
calls are permitted, and what arguments to those calls are
permitted. In more detail, the author creates a per-guest
JavaScript policy object and hands this object to Tree-
House (see Section 5 for the details of this hand-off).
To simplify slightly, the policy object implements a key-
value map from browser API elements to permissions:
the keys name browser API elements,® and the values
are rules. A rule can be a Boolean value, a function, or a
regular expression. If the rule is the Boolean value True,
then the guest is permitted to invoke the given method
or set the given property. If the rule is a function, the
broker, at permission check time, executes the function
(which should evaluate to a Boolean) to decide whether
the action is permitted. If the rule is a regular expression,
then it refers to a property; in this case, the guest is per-
mitted to set the given property to a value v if v matches
the regular expression.

TreeHouse has a base policy that authors are not sup-
posed to override. This policy is there for their protection
(and TreeHouse’s). For example, as depicted in Figure 2,
the base policy specifies that guests must open XHRs
(§2.1) asynchronously; otherwise, a guest could prevent
the broker from running. For a given action by a guest
to take place, it must be permitted by both the per-guest
policy and the base policy.

5The “keys” are structured hierarchically (reflecting the browser API’s
hierarchy), and can include wildcard components. This way, the au-
thor can use one rule to restrict the guest’s use of an entire subtree of
the hierarchy (say multiple API calls or elements).

var xhr = new XMLHttpRequest();

// initialize a request to get a list of the

// first ten photos

xhr.open(’GET’,
’/api/photos?start=0&count=10’, true);

(el Be Y S

// register a callback to be notified when
// the XHR completes
xhr.onreadystatechange = function (e) {
if (xhr.readyState === 4) {
if (xhr.status === 200) {
console.log(xhr.responseText) ;
} else {
console.log("Error fetching photos");
}
}
};

DO et et et et e e ek ek e e
OO X I NN RN~ OO

xhr.send(null); // start the request

Figure 3—Example code to issue an XHR (§2.1) to a Web ser-
vice that delivers photos.

TreeHouse ships with a default or reference policy,
which whitelists unprivileged operations but denies ev-
erything else. For example, the reference policy forbids
opening XHRs. This policy is 355 lines of code, includ-
ing comments (and excluding unnecessary blacklisting
for documentation). Overriding the reference policy need
not be complex; we expect a typical policy to require 10—
100 lines of code and no more than a few hours of work
from the application author (see Section 6).

4 Examples

In this section we give several example uses of Tree-
House. Our first example illustrates how access control
policies interact. We then describe containing advertise-
ments and containing third-party widgets. Finally, we
show how TreeHouse can protect a hypothetical plugin
architecture (for example, by preventing exfiltration).

Limiting network access. Consider an author who—
wishing to employ the principle of least privilege in the
design of her application—breaks it into mutually dis-
trusting components, each running in a TreeHouse sand-
box. One such component is a script that displays a
slideshow widget. The script obtains a list of photos to
display from a Web service exposed on the application’s
origin and then renders the slideshow.

Figure 3 shows the guest’s code for obtaining the list
of photos. Because the default policy forbids construct-
ing an XHR object, the code would fail at line 1. Thus,
the author must override the default policy to give the
guest code limited permission; Figure 4 depicts an ex-
ample. Now when the broker intercepts the XHR con-

—
N = O

—
NN B

Ylapi’: {
>XMLHttpRequest’: {
’linvoke’: true,

’lresult’: {

// permit GET requests to resources on
// the application’s origin whose URLs
// begin with ’/api/photos’
open: function (verb, url, async) {
return verb === ’GET’ &&

url.index0f (’/api/photos’) === 0;

01N N AW =

\©

})

—
W

’x?: true // default rule
}
}
}

Figure 4—Policy that gives limited permission: guest code can
issue XHRs freely but only to particular services.

structor, it sees that !api.XMLHttpRequest. !invoke
is True in both the guest policy and the base policy.
The broker thus permits the construction and returns a
wrapped XHR, as described in Section 3.4.

When the script calls the wrapped XHR’s open
method (lines 5 and 6 of Figure 3), that call succeeds,
since the relevant policies permit the arguments to open.
In more detail, when the script calls xhr . open, the bro-
ker checks the !api.XMLHttpRequest. !result.open
property in the guest’s policy object. The value of that
property is a function (lines 9—12 of Figure 4), and Tree-
House calls it with the arguments provided by the guest
script. The function returns True (because the URL is
policy-appropriate), so TreeHouse then checks the base
policy (lines 6-8 of Figure 2), which also returns True
(because the guest has specified an async XHR).

The guest can also set onreadystatechange and call
send (lines 10 and 20 of Figure 3) because the guest
and base policies allow this through their default rule
of !api.XMLHttpRequest. !result.*. Of course, the
author could exert more fine-grained control by creating
rules for properties and methods individually.

Containing advertisements. The provenance of adver-
tisements (ads) is often murky: sites generally display
ads by delegating a piece of their page to an ad net-
work, which may populate the space or redirect to an-
other ad network, and so on. Indeed, ads routinely mis-
behave [8, 57]. For these reasons, the best practice for a
site selling space is to isolate an ad. Unfortunately, to-
day’s mechanism for such isolation, the iframe, does not
eliminate attacks on availability (see Section 2.3). Un-
der TreeHouse, in contrast, the application author can
schedule and limit XHRs. For example, the author can
associate !api.XMLHttpRequest. !result.open with

Ju—

je ol I o N e R

<script src="tetris.js"
type="text/x-treehouse-javascript"
data-treehouse-sandbox-name="worker1"
data-treehouse-sandbox-children="#tetris"
></script>

<script src="tetris-policy.js"
type="text/x-treehouse-javascript"
data-treehouse-sandbox-name="worker1"
data-treehouse-sandbox-policy

></script>

Figure 5—Example script tag. The depicted block specifies
that tetris. js should run in a TreeHouse sandbox and that
tetris-policy. js is the sandbox’s policy.

a function that permits the method call only if the number
of outstanding XHRs from the worker is below a given
threshold. Or, given suitable hooks into the wrapping ma-
chinery, the application author can queue the open calls,
sending them one at a time.

Containing widgets. Consider a set of widgets, each of
which displays a one- to five-star rating next to an en-
try in a product list (e.g., [7]); such widgets are typically
driven by a single script that runs in the application’s
page. For prudence, the application developer would like
to limit the widgets’ influence. (The developer cannot
rely on iframes because, for reasons of layout, each wid-
get would be in a separate iframe. With n products and
thus n widgets, performance would suffer.) Under Tree-
House, the developer sandboxes the widget script and
sets its VDOM to include only the locations in the doc-
ument where the script should display ratings widgets.
This pruned DOM can be constructed programmatically,
using JavaScript functions that manipulate the DOM.

Avoiding exfiltration. Consider a webmail service, Ex-
ampleMail, whose authors want to allow third-party de-
velopers to create plugins. In the status quo, such plugins
would be an unacceptable security risk, as the plugins
would be able to read mail and then exfiltrate it. Under
TreeHouse, ExampleMail’s authors can sandbox a plu-
gin and grant it limited access to the text of emails, while
preventing it from exfiltrating email. Take, for instance,
a plugin that displays the word count of the currently se-
lected message in the user’s inbox. This plugin receives
a VDOM that includes the email that the user is viewing
together with a display element, where the plugin author
will display the word count. The application’s policy pre-
vents network access (by disallowing access to XHRs,
WebSockets, and those attributes of DOM nodes that can
have a URL as their value, such as src) and rejects DOM
changes unless the change is to a node that descends from
the display element. At that point, the plugin has access
to the current message and can display the word count,
but it cannot exfiltrate or alter the message.

method description

start the sandbox
terminate the sandbox

start()
terminate()

addChild(node)
removeChild(node)

add a node to the VDOM
remove a child from the VDOM

handle events from the sandbox
send a message to the sandbox
make RPC call

make RPC call (no return value)

addEventListener(type, function)
postMessage(message)
jsonrpcCall(method, args. ..)
JjsonrpcNotify(method, args. . .)

onPolicyViolation(function)
setPolicy(policy)

handle policy violations
set the access control policy

Figure 6—API for managing TreeHouse sandboxes.

component lines of JavaScript
Monitor 350
Broker 349
Shared by monitor and broker 369
Access control policy 794
jsdom [17] 127,652

Figure 7—Lines of code in TreeHouse.
S Integration and implementation

To integrate TreeHouse into a Web application, the
author includes the TreeHouse monitor as traditional
JavaScript inside the application page. There are two
ways to sandbox a script. First, the author can include a
script tag of type text/x-treehouse-javascript
in the application’s HTML, as illustrated in Figure 5. In
this case, the browser creates a node for the script in the
DOM but does not execute it (because it does not recog-
nize the script type). When the browser loads the page,
the monitor finds all such tags and creates sandboxes as
appropriate. In this case, the author specifies the config-
uration options as attributes of the script tag; these op-
tions include which DOM subtrees the script may access,
which worker to load the script into, and which policy ap-
plies to the script. The author’s other choice is to invoke
an API provided by TreeHouse, allowing the author to
explicitly create a sandbox, set policy, etc. This API is
depicted in Figure 6.

We have run TreeHouse successfully on Chrome, Sa-
fari, Firefox, and IE10. It is implemented in 1862 lines
of JavaScript plus 127,652 for jsdom [17]. Jsdom is a
server-side DOM implementation that we modified (with
several hundred lines of code) to implement the VDOM.
Figure 7 gives the breakdown (according to [42]). Be-
sides jsdom, we use the underscore (v1.1.7) and Re-
quireJS (v0.26.0) libraries for JavaScript utilities. We
have not completed cookie virtualization or VDOM im-
plementations of the new elements and API methods that
the recent HTMLS5 standard introduces; this is future
work.

TreeHouse slowdown (x)

benchmark Chrome Firefox IE Safari
dom-attr 32 39 9 —
dom-modify 15 72 21 120
dom-query 2600 8000 780 —
dom-traverse 7 14 1 12

Figure 8—TreeHouse overhead on Dromaeco DOM bench-
marks reported as the geometric mean, over all benchmarks in a
category, of TreeHouse’s speed as a multiple of the baseline’s.
Empty entries result from browser incompatibilities or bugs.
TreeHouse adds considerable relative overhead for DOM oper-
ations, but the absolute numbers are not high; see text.

6 Evaluation

To evaluate TreeHouse, we answer two questions:
(1) What is the latency overhead from TreeHouse? and
(2) How easy is it to incorporate TreeHouse into an ap-
plication? We answer both questions by experimenting
with various benchmarks and Web applications.

Our experiments run on a MacBook Pro with a
2.66 GHz Intel Core 2 Duo processor and 4 GB of
RAM, running Chrome 18.0.1025.168, Firefox 10.0.2,
IE 10.0.8250.0, and Safari 5.1.5 (7534.55.3). We run In-
ternet Explorer in a Windows 8 Consumer Preview (build
8250) guest on VirtualBox 4.1.12.

Benchmarks. The Dromaeo benchmark suite [1] is
large (188 benchmarks) and diverse. Its benchmarks ei-
ther do not access the DOM (non-DOM benchmarks)
or else hammer it (DOM benchmarks). We expect that
the non-DOM benchmarks would not experience sig-
nificant slowdown under TreeHouse whereas the DOM
benchmarks would run slower (because TreeHouse in-
tercepts only DOM modification). To experiment, we
run the suite with and without TreeHouse (which re-
quires minor changes to Dromaeo, to report results via
postMessage), performing 10 runs for each of the afore-
mentioned browsers. Our expectations about the non-
DOM benchmarks mostly hold: some benchmarks run
slower (2-7x, depending on the benchmark and the
browser) with TreeHouse, and some run faster, though
we are still investigating to understand the slowdown and
the speedup. For the DOM benchmarks, our expectations
also hold; we now delve into those results.

To organize the DOM benchmarks, we divide them
into four categories: dom-attr, which stresses setting at-
tributes on DOM elements; dom-modify, which stresses
inserting and removing DOM elements; dom-query,
which stresses DOM searches; and dom-traverse, which
stresses DOM tree traversals. Figure 8 reports the results,
in terms of the geometric mean of each category’s over-
head. As expected, TreeHouse imposes significant over-
head on DOM operations. The largest overhead (by far)
is in DOM queries, and this overhead is staggering.

However, the operations that TreeHouse has blown

1 (o) page load latency (ms)

Experiment Chrome Firefox 1IE Safari
DOMTRIS, baseline 24 (8) 12 (1) 6 (3) 5(1)
DOMTRIS, TreeHouse 361 (46) 181 (4) 405 (18) 166 (34)
118KB page, baseline 25 (3) 5(1) 11 (5) 22 (5)

118KB page, TreeHouse 976 (38) 880 (18) 1229 (66) 779 (12)

Sandbox but no VDOM 350 (53) 136 (3) 323 (13) 132 (4)

Figure 9—Page load latency, with and without TreeHouse.
TreeHouse’s setup costs include a fixed cost from sandboxing
and a cost for VDOM population that varies with VDOM size.

up are not expensive in absolute terms or likely
to be executed often. For example, depending on
the browser, TreeHouse imposes overhead of 13,000-
120,000 on getElementsByTagName (which returns all
DOM nodes of a particular type, such as IMG) when
searching for a non-existent type. Yet even after the
blowup, each call to getElementsByTagName takes
slightly less than 1 ms. Moreover, a best practice in
Web application development is to avoid DOM queries
(by caching). We expect applications that follow this
practice not to be significantly slowed under TreeHouse.
Of course, applications that do not follow this practice
would need changes to run efficiently under TreeHouse.

Latency of page load. TreeHouse has two setup costs:
sandbox setup (loading the guest into a worker, in-
terposing the broker, etc.) and VDOM population. To
assess both costs, we measure page load latency for
DOMTRIS [50] (a JavaScript Tetris clone that uses the
DOM to render the game and handle user input; the
choice of application is borrowed from [40]) and a large
Web page, with and without TreeHouse.

To measure the page load latency, we include two
scripts, one in the page’s header and one at the end of its
body, measuring the time elapsed between each. When
we measure under TreeHouse, the second script waits for
a message from the guest, indicating that VDOM popu-
lation is complete. This approach exploits the fact that
the browser guarantees to execute the second script only
after the entire DOM is parsed. We perform 10 runs in
each browser, collecting timing data from JavaScript’s
Date.now(), which reports time in milliseconds.

Figure 9 reports the results with and without Tree-
House. For DOMTRIS, the average overhead of Tree-
House (TreeHouse row minus baseline row) is 161-
399 ms, depending on the browser (here and below, the
range reflects the minimum and maximum over the four
browsers in our experiments). For the large Web page,
the average overhead of TreeHouse is 757-1218 ms. We
hypothesize that the larger overhead in this case derives
from the size of the Web page’s VDOM, which translates
to higher VDOM population costs. To try to separate the
sandboxing and VDOM costs, we run an experiment that

starts a TreeHouse sandbox with no VDOM,; the average
cost is 132-350 ms. TreeHouse’s remaining costs come
from application overhead and populating the VDOM.”

Usability for developers. TreeHouse requires two kinds
of effort from developers: porting to TreeHouse and writ-
ing policies. We briefly assess each.

To port DOMTRIS to TreeHouse, we had to change
only 28 lines of code in DOMTRIS. We are also in the
process of porting several frameworks to TreeHouse; this
effort both enhances TreeHouse’s usability (by letting
developers run existing framework-based applications in
TreeHouse) and gives a sense of the work required to
port a complex application to TreeHouse. So far, with 2
extra lines of code in the Zepto framework [67], all but
three of the Dromaeo benchmarks that target Zepto’s in-
terface (consisting of 28 microbenchmarks) run success-
fully against Zepto-in-TreeHouse in Chrome and Safari.
With changes to 18 lines of code in the Prototype frame-
work [45], all but three of the Dromaeo benchmarks
that target the Prototype interface (consisting of 29 mi-
crobenchmarks) run successfully against Prototype-in-
TreeHouse in Chrome, IE, and Safari.

To evaluate the effort required to write real policies,
we designed a sample policy for the ExampleMail plugin
described in Section 4. The policy contains 41 lines of
code and took approximately 30 minutes to write.

Summary. TreeHouse imposes significant overhead for
“privileged operations”, but, unless the application
spends most of its time in such operations, total overhead
should be far lower. TreeHouse also adds to initial page
load latency, particularly when the VDOM is large. Port-
ing applications to TreeHouse appears to require only
modest effort, as does writing a non-trivial policy.

7 Related work

We survey related work by covering current browsers,
isolation by frames, browser modification and redesign,
language-based approaches, and related mechanisms.

Current browsers. The OP browser [24] creates a new
process for each document. The Chrome browser, based
on the Chromium project [5, 47], and Internet Ex-
plorer [65, 66] implement similar forms of isolation.
These mechanisms, sometimes referred to as process-
per-tab, allow the browser to contain site crashes and
continue running. These mechanisms are orthogonal to
TreeHouse: they isolate Web applications from each
other but do not isolate scripts within a Web application.

7Our experiments do not let us determine the VDOM population costs
precisely. We want to solve for Vin ' = B + S + V, where T is the
TreeHouse results, B is the baseline results, and S is the sandboxing
cost. Unfortunately, we observe T and B but not S. Instead, our ex-
periment observes S 4 E, where E includes costs that B also includes.
Thus one can derive a range for V, by varying E between 0 and B.

10

Frame isolation. Some schemes isolate JavaScript by
using two browser features: the Same Origin Policy
(§2.1) and iframes (§2.3). For example, SMash [31],
Subspace [28], and OMOS [64] isolate scripts and com-
ponents by running them in iframes served from different
origins and then provide a mechanism for the iframes to
communicate. AdJail [32] runs untrusted advertisement
code in an iframe and then replicates changes to that
iframe’s DOM back to the main page.

All of these schemes contrast with TreeHouse as fol-
lows. First, unlike TreeHouse, they require the applica-
tion to have a unique origin per isolated component. Sec-
ond, as mentioned in Section 2.3, scripts in an iframe can
interfere with the application’s liveness, by going into an
infinite loop or consuming resources; TreeHouse, in con-
trast, tolerates these cases (see Section 3.3). Third, these
systems do not prevent the kind of information leaks de-
tailed in Section 3.4 (their iframes can continue to “im-
port” content from arbitrary locations).

Browser modification and redesign. We first summa-
rize work that proposes browser re-architecture or modi-
fication and then explain why we avoided such changes.

The Atlantis browser [39] lets Web sites define their
own layout, rendering, and scripting engines. Atlantis de-
fines a small set of primitives and exposes them to sites.
Applications can use Atlantis’s primitives to achieve
TreeHouse’s goal: sandboxing scripts.

In contrast, other proposals for new browsers protect
Web sites from each other but do not isolate scripts
within a site. As examples, the Tahoma browser [9]
isolates Web applications in virtual machines, the Illi-
nois Browser Operating System (IBOS) [53] proposes
an operating system and browser that map browser
abstractions to hardware abstractions, and the Gazelle
browser [60] treats origins as principals in a multi-
principal operating system, isolating their content in re-
stricted or sandboxed OS processes.

Some browser extensions have goals that overlap
with those of TreeHouse. MashupOS [59] makes the
browser a multi-principal operating system for Web ap-
plications. BEEP [29] lets Web sites restrict the scripts
that run in each of their pages. ConScript [38] enforces
application-specified security policies. OMash [10] re-
stricts communication to public interfaces declared by
each page. BFlow [62] adds information flow tracking
to the browser, allowing untrusted JavaScript to operate
on private data without compromising confidentiality.

The above projects partially inspire TreeHouse. How-
ever, they require browser changes. Meanwhile, if a
browser change requires application changes (and all of
the above proposals do), authors must either wait for all
supported browsers to make the change or maintain two
versions of their application. And an author who supports

an enhancement available in one or two browsers before
it is adopted elsewhere takes the risk that other browser
vendors choose not to add the feature at all. This risk is
not small: browser vendors have historically been reluc-
tant to implement new security features [27].

Language-based approaches. One way to isolate
JavaScript is to constrain it to a subset of the language.
Before this code is sent to the browser, it passes through a
server-side verifier. Various projects apply this high-level
approach, including Caja [41], FBJS [20], ADSafe [11],
Browsershield [46], work by Maffeis et al. [34, 35], and
work by Barth et al. [6]. JSReg [25] uses regular expres-
sions to rewrite untrusted scripts.

The primary disadvantage of a restricted subset is that
few libraries are written in them. Moreover, these subsets
preclude many popular JavaScript idioms (e.g., the this
keyword), making programming more difficult. While
the designers of these approaches have gone to great
lengths to ease the porting burden, the process of trans-
lating from arbitrary JavaScript to the restricted subset
still requires manual work.

Language-based approaches have several other disad-
vantages. First, the application must serve the verified
code from a server under its control. As a result, appli-
cations cannot gain from the performance advantages of
content distribution networks (CDNs), as mentioned in
the Introduction. Second, many language isolation tech-
niques employ runtime logic that interposes on all object
property accesses, which imposes non-trivial overhead.
TreeHouse, by contrast, can isolate scripts from any ori-
gin and interposes only on privileged operations.

Related mechanisms. Several projects use Web Work-
ers, virtualize the DOM, or create containers for isolated
code. Some of these projects have inspired TreeHouse,
but none shares all of our goals.

JSandbox [23] and Bawks [55] prototype a low-level
IPC mechanism by which application code can load code
into a Web Worker and allow callbacks. They do not pro-
vide virtualization (§3.4) or resource control (§3.5).

TreeHouse borrows DOM virtualization from previous
work with different goals. Jsdom [17] (whose implemen-
tation TreeHouse uses) and dom.js [3] aim to provide a
convenient toolkit for manipulating Web pages; they are
geared to environments such as server-side JavaScript,
where there is no “native” DOM. Mugshot [40] virtu-
alizes part of the client’s DOM but does so to create a
replay system; it does not isolate scripts. AdSentry [14]
is geared to isolation and, like TreeHouse, it interposes
on DOM operations, applies access control policies, and
delegates to the native DOM. Unlike TreeHouse, how-
ever, AdSentry requires browser modification and does
not protect the application’s liveness: if the ad blocks, so
does the application.

11

In concurrent work, js.js [54] takes a different
approach to sandboxing. The authors implement a
JavaScript interpreter in JavaScript; the interpreter runs
untrusted code and exposes no privileged methods or
properties by default. While js.js and TreeHouse share
some goals, the performance characteristics are differ-
ent: DOM changes in js.js run at “native speed”, but ev-
erything else runs two orders of magnitude slower than
native. Under TreeHouse, DOM changes are expensive,
but everything else runs roughly at native speed.

Finally, TreeHouse is inspired by classic approaches to
isolation. Traditional sandboxing [21, 22, 36, 49, 51, 58],
applied to browsers by Native Client [61] and Xax [15],
contains legacy x86 code that expects to interact with the
system call interface or machine resources. TreeHouse,
however, contains legacy JavaScript code that expects to
interact with the browser’s resources.

8 Discussion and conclusion

We briefly consider how future help from browsers could
address TreeHouse’s limitations. First, the blocking-vs-
event-driven mismatch and its consequences (§3.4) could
be addressed if browsers exposed a way for JavaScript
code to receive a message synchronously. Second, Tree-
House relies on the assumption that a worker cannot ac-
cess the application’s DOM; thus, it would be a boon
to TreeHouse if browsers standardized the interface that
is visible within workers. Of course, the standardiza-
tion that would most address TreeHouse’s performance
and compatibility limitations would be incorporating
TreeHouse—or functionality like it—into browsers.
Even if browser standardization does not come to pass,
we believe that TreeHouse is promising: it is a practical,
deployable, and usable way to give Web application au-
thors fine-grained control over untrusted JavaScript code.

Acknowledgments

Insightful comments by John Hammond, Dave Herman, Jon
Howell, Donna Ingram, James Mickens, Emmett Witchel, the
anonymous reviewers, and our shepherd, Sam King, substan-
tially improved this draft. This research was partially sup-
ported by AFOSR grant FA9550-10-1-0073 and by NSF grants
1055057 and 1040083.

TreeHouse is housed at https://github.com/lawnsea/
TreeHouse. The site includes the code that implements Tree-
House, the pages used in our experiments, and demos.

References

[1] Dromaeo: JavaScript performance testing. http://dromaeo.com/.
[2] HTMLS living standard. http:
//wwu .whatwg.org/specs/web-apps/current-work/multipage/.
[3] A.Galetal. dom.js. https://github.com/andreasgal/dom. js.
[4] K. Adams and O. Agesen. A comparison of software and hardware
techniques for x86 virtualization. In ASPLOS, 2006.

https://github.com/lawnsea/TreeHouse
https://github.com/lawnsea/TreeHouse
http://dromaeo.com/
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.whatwg.org/specs/web-apps/current-work/multipage/
https://github.com/andreasgal/dom.js

(51

[91

[10]
(1]
[12]
(13]
[14]
[15]
[16]
(17]
(18]

[19]
[20]

(21]
(22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

(30]

(311

(32]

(33]

[34]

(35]

(36]

A. Barth, C. Jackson, C. Reis, and the Google Chrome Team. The
security architecture of the Chromium browser.
http://seclab.stanford.edu/websec/chromium/
chromium-security-architecture.pdf, 2008.

A. Barth, J. Weinberger, and D. Song. Cross-origin JavaScript
capability leaks: Detection, exploitation, and defense. In USENIX
Security, 2009.

http://www.bazaarvoice.com/.

J. Bixby. Fourth-party calls: What you don’t know can hurt your
site. .. and your visitors, July 2011.
http://www.webperformancetoday.com/2011/07/14/
fourth-party-calls-third-party-content/.

R. S. Cox, S. D. Gribble, H. M. Levy, and J. G. Hansen. A
safety-oriented platform for web applications. In IEEE Symp. on
Security & Privacy, 2006.

S. Crites, F. Hsu, and H. Chen. OMash: Enabling secure web mashups
via object abstractions. In ACM CCS, 2008.

D. Crockford. ADsafe: Making JavaScript safe for advertising.
http://www.adsafe.org.

Department of Defense. Trusted computer system evaluation criteria
(orange book), 1985. DoD 5200.28-STD.

Dojo Team. Dojo toolkit. http://dojotoolkit.org/.

X. Dong, M. Tran, Z. Liang, and X. Jiang. AdSentry: comprehensive
and flexible confinement of JavaScript-based advertisements. In
Annual Computer Security Applications Conference (ACSAC), 2011.
J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leveraging legacy
code to deploy desktop applications on the web. In OSDI, 2008.

J. R. Douceur, J. Howell, B. Parno, M. Walfish, and X. Xiong. The
Web interface should be radically refactored. In ACM Workshop on
Hot Topics in Networks (HotNets), 2011.

E. Insua et al. jsdom. https://github.com/tmpvar/jsdom.
ECMA. ECMA-262: ECMAScript Language Specification, 5.1 edition,
June 2011.

Ext JS Team. Ext JS. http://www.sencha.com/products/extjs.
Facebook Team. FBJS.
http://developers.facebook.com/docs/fbjs/.

B. Ford and R. Cox. Vx32: Lightweight user-level sandboxing on the
x86. In USENIX Annual Technical Conference, 2008.

T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A delegating
architecture for secure system call interposition. In NDSS, 2003.

E. Grey. JSandbox. https://github.com/eligrey/jsandbox.

C. Grier, S. Tang, and S. T. King. Secure web browsing with the OP
web browser. In IEEE Symp. on Security & Privacy, 2008.

G. Heyes. JSReg: JavaScript regular expression based sandbox.
http://code.google.com/p/jsreg/.

W. Huang. “HDD Plus” malware spread through major ad networks,
using malvertising and drive-by download, Dec. 2010.
http://blog.armorize.com/2010/12/
hdd-plus-malware-spread-through.html.

C. Jackson. Crossing the chasm: Pitching security research to
mainstream browser vendors. http:
//www.usenix.org/events/secll/stream/jackson/index.html.
C. Jackson and H. J. Wang. Subspace: Secure cross-domain
communication for web mashups. In WWW, 2007.

T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks
with browser-enforced embedded policies. In WWW, 2007.

jQuery Team. jQuery. http://jquery.com/.

F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshihama.
SMash: Secure component model for cross-domain mashups on
unmodified browsers. In WWW, 2008.

M. T. Louw, K. T. Ganesh, and V. N. Venkatakrishnan. AdJail:
Practical enforcement of confidentiality and integrity policies on web
advertisements. In USENIX Security, 2010.

T. Luo and W. Du. Contego: Capability-based access control for web
browsers. In International Conference on Trust and Trustworthy
Computing, 2011.

S. Maffeis, J. Mitchell, and A. Taly. Object capabilities and isolation of
untrusted web applications. In IEEE Symp. on Security & Privacy,
2010.

S. Maffeis, J. C. Mitchell, and A. Taly. Isolating JavaScript with filters,
rewriting, and wrappers. In European Conference on Research in
Computer Security, 2009.

S. McCamant and G. Morrisett. Evaluating SFI for a CISC

12

[37]

[38]

[39]
[40]

[41]

[42]
[43]

[44]

[45]
[46]
[47]
[48]
[49]
[50]
[51]

[52]

[53]
[54]
[55]
[56]
[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

architecture. In USENIX Security, 2006.

L. A. Meyerovich, A. P. Felt, and M. S. Miller. Object views:
Fine-grained sharing in browsers. In WWW, 2010.

L. A. Meyerovich and B. Livshits. ConScript: Specifying and
enforcing fine-grained security policies for JavaScript in the browser.
In IEEE Symp. on Security & Privacy, 2010.

J. Mickens and M. Dhawan. Atlantis: Robust, extensible execution
environments for web applications. In SOSP, 2011.

J. Mickens, J. Elson, and J. Howell. Mugshot: Deterministic capture
and replay for JavaScript applications. In NSDI, 2010.

M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe
active content in sanitized JavaScript, Jan. 2008.
http://google-caja.googlecode.com/files/
caja-spec-2008-01-15.pdf.

CLOC: Count Lines of Code. http://cloc.sourceforge.net/.
K. Patil, X. Dong, X. Li, Z. Liang, and X. Jiang. Towards fine-grained
access control in JavaScript contexts. In Intl. Conference on
Distributed Computing Systems (ICDCS), 2011.

J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi.
ADsafety: Type-based verification of JavaScript sandboxing. In
USENIX Security, 2011.

Prototype Team. Prototype. http://www.prototypejs.org/.

C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir.
BrowserShield: Vulnerability-driven filtering of dynamic HTML. In
OSDI, 2006.

C. Reis and S. D. Gribble. Isolating web programs in modern browser
architectures. In EuroSys, 2009.

J. H. Saltzer and M. D. Schroeder. The protection of information in
computer systems. Proc. IEEE, 63(9):1278-1308, Sept. 1975.

M. Seaborn. Plash: tools for practical least privilege.
http://plash.beasts.org/index.html.

J. Seidelin. DOMTRIS: A DHTML Tetris clone.
http://www.nihilogic.dk/labs/tetris/.

C. Small and M. Seltzer. MiSFIT: Constructing safe extensible
systems. IEEE Concurrency, 6(3):34-41, 1998.

S. Souders. Performance of 3rd party content, Feb. 2010.
http://wuw.stevesouders.com/blog/2010/02/17/
performance-of-3rd-party-content/.

S. Tang, H. Mai, and S. T. King. Trust and protection in the Illinois
browser operating system. In OSDI, 2010.

J. Terrace, S. R. Beard, and N. P. K. Katta. JavaScript in JavaScript
(js.js): Sandboxing third-party scripts. In USENIX WebApps, 2012.
P. Theriault. Bawks JavaScript sandbox.
http://bawks.creativemisuse.com/.
https://twitter.com/about/resources/widgets.

A. Vance. Times web ads show security breach. The New York Times,
page B5, Sept. 2009. http://www.nytimes.com/2009/09/15/
technology/internet/15adco.html.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In SOSP, 1993.

H.J. Wang, X. Fan, J. Howell, and C. Jackson. Protection and
communication abstractions for Web browsers in MashupOS. In
SOSP, 2007.

H.J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and
H. Venter. The multi-principal OS construction of the Gazelle Web
browser. In USENIX Security, 2009.

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,

S. Okasaka, N. Narula, and N. Fullagar. Native Client: A sandbox for
portable, untrusted x86 native code. In IEEE Symp. on Security &
Privacy, 2009.

A. Yip, N. Narula, M. Krohn, and R. Morris. Privacy-preserving
browser-side scripting with BFlow. In EuroSys, 2009.

YUI Team. YUL http://yuilibrary.com/.

S. Zarandioon, D. D. Yao, and V. Ganapathy. OMOS: A framework for
secure communication in mashup applications. In Annual Computer
Security Applications Conference (ACSAC), 2008.

A. Zeigler. IE8 and loosely-coupled IE (LCIE), 2008.
http://blogs.msdn.com/b/ie/archive/2008/03/11/
ie8-and-loosely-coupled-ie-lcie.aspx.

A. Zeigler. Tab isolation, 2010. http://blogs.msdn.com/b/ie/
archive/2010/03/04/tab-isolation.aspx.

Zepto.js Team. Zepto.js. http://zeptojs.com/.

http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://www.bazaarvoice.com/
http://www.webperformancetoday.com/2011/07/14/fourth-party-calls-third-party-content/
http://www.webperformancetoday.com/2011/07/14/fourth-party-calls-third-party-content/
http://www.adsafe.org
http://dojotoolkit.org/
https://github.com/tmpvar/jsdom
http://www.sencha.com/products/extjs
http://developers.facebook.com/docs/fbjs/
https://github.com/eligrey/jsandbox
http://code.google.com/p/jsreg/
http://blog.armorize.com/2010/12/hdd-plus-malware-spread-through.html
http://blog.armorize.com/2010/12/hdd-plus-malware-spread-through.html
http://www.usenix.org/events/sec11/stream/jackson/index.html
http://www.usenix.org/events/sec11/stream/jackson/index.html
http://jquery.com/
http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf
http://cloc.sourceforge.net/
http://www.prototypejs.org/
http://plash.beasts.org/index.html
http://www.nihilogic.dk/labs/tetris/
http://www.stevesouders.com/blog/2010/02/17/performance-of-3rd-party-content/
http://www.stevesouders.com/blog/2010/02/17/performance-of-3rd-party-content/
http://bawks.creativemisuse.com/
https://twitter.com/about/resources/widgets
http://www.nytimes.com/2009/09/15/technology/internet/15adco.html
http://www.nytimes.com/2009/09/15/technology/internet/15adco.html
http://yuilibrary.com/
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx
http://blogs.msdn.com/b/ie/archive/2010/03/04/tab-isolation.aspx
http://blogs.msdn.com/b/ie/archive/2010/03/04/tab-isolation.aspx
http://zeptojs.com/

	1 Introduction
	2 Background
	2.1 Some details of modern Web browsers
	2.2 JavaScript
	2.3 Frames
	2.4 Web Workers

	3 Design of TreeHouse
	3.1 Threat model and requirements
	3.2 Overview of TreeHouse
	3.3 Isolation
	3.4 Interposition and virtualization
	3.5 Resource control policy

	4 Examples
	5 Integration and implementation
	6 Evaluation
	7 Related work
	8 Discussion and conclusion

