
Pretzel: Email encryption and provider-supplied functions are compatible

Trinabh Gupta
∗†

Henrique Fingler
∗

Lorenzo Alvisi
∗‡

Michael Walfish
†

∗
UT Austin

†
NYU

‡
Cornell

ABSTRACT

Emails today are often encrypted, but only between mail servers—

the vast majority of emails are exposed in plaintext to the mail

servers that handle them. While better than no encryption, this

arrangement leaves open the possibility of attacks, privacy viola-

tions, and other disclosures. Publicly, email providers have stated

that default end-to-end encryption would conflict with essential

functions (spam filtering, etc.), because the latter requires analyzing

email text. The goal of this paper is to demonstrate that there is

no conflict. We do so by designing, implementing, and evaluating

Pretzel. Starting from a cryptographic protocol that enables two

parties to jointly perform a classification task without revealing

their inputs to each other, Pretzel refines and adapts this protocol

to the email context. Our experimental evaluation of a prototype

demonstrates that email can be encrypted end-to-end and providers

can compute over it, at tolerable cost: clients must devote some

storage and processing, and provider overhead is roughly 5× versus

the status quo.

CCS CONCEPTS

• Information systems → Email; • Security and privacy →

Cryptography; Privacy-preserving protocols;

KEYWORDS

encrypted email, secure two-party computation, linear classifiers

ACM Reference format:

Trinabh Gupta, Henrique Fingler, Lorenzo Alvisi, and Michael Walfish. 2017.

Pretzel: Email encryption and provider-supplied functions are compatible.

In Proceedings of SIGCOMM ’17, Los Angeles, CA, USA, August 21-25, 2017,
14 pages. https://doi.org/10.1145/3098822.3098835

1 INTRODUCTION

Email is ubiquitous and fundamental. For many, it is the principal

communication medium, even with intimates. For these reasons,

and others that we outline below, our animating ideal in this paper

is that email should be end-to-end private by default.
How far are we from this ideal? On the plus side, hop-by-hop

encryption has brought encouraging progress in protecting email

privacy against a range of network-level attacks. Specifically, many

emails now travel between servers over encrypted channels (TLS [47,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4653-5/17/08. . . $15.00

https://doi.org/10.1145/3098822.3098835

56]). And network connections between the user and the provider

are often encrypted, for example using HTTPS (in the case of web-

mail providers) or VPNs (in the case of enterprise email accounts).

However, emails are not by default encrypted end-to-end be-

tween the two clients: intermediate hops, such as the sender’s and

receiver’s provider, handle emails in plaintext. Since these providers

are typically well-run services with a reputation to protect, many

users are willing to just trust them. This trust however, appears to

stem more from shifting social norms than from the fundamental

technical safety of the arrangement, which instead seems to call

for greater caution.

Reputable organizations have been known to unwittingly harbor

rogue employees bent on gaining access to user email accounts and

other private user information [27, 103, 140]. If you were developing

your latest startup idea over email, would you be willing to bet its

viability on the assumption that each employee within the provider

acts properly? And well-run organizations are not immune from

hacks [127, 128]—nor from the law. Just in the first half of 2013,

Google [64], Microsoft [97] and Yahoo! [131] collectively received

over 29,000 requests for email data from law enforcement, and in

the vast majority of cases responded with some customer data [96].

End-to-end email encryption can shield email contents from

prying eyes and reduce privacy loss when email providers are

hacked; and, while authorities would still be able to acquire private

email by serving subpoenas to account owners, they would not gain

unfettered access to someone’s private correspondence without that

party’s knowledge.

Why then are emails not encrypted end-to-end by default? After

all, there has long been software that implements this function-

ality, notably PGP [144]; moreover, the large webmail providers

offer it as an option [63, 130] (see also [23, 113, 115, 126]). A crucial

reason—at least the one that is often cited [41, 42, 55, 65, 112]—

is that encryption appears to be incompatible with value-added

functions (such as spam filtering, email search, and predictive per-

sonal assistance [28, 39, 49, 102]) and with the functions by which

“free” webmail providers monetize user data (for example, topic

extraction) [67]. These functions are proprietary; for example, the

provider might have invested in training a spam filtering model,

and does not want to publicize it (even if a dedicated party can infer

it [117]). So it follows that the functions must execute on providers’

servers with access to plaintext emails.

But does that truly follow? Our objective in this paper is to

refute these claims of incompatibility, and thus move a step closer

to the animating ideal that we stated at the outset, by building an

alternative, called Pretzel.

In Pretzel, senders encrypt email using an end-to-end encryp-

tion scheme, and the intended recipients decrypt and obtain email

contents. Then, the email provider and each recipient engage in a se-
cure two-party computation (2PC); the term refers to cryptographic

https://doi.org/10.1145/3098822.3098835
https://doi.org/10.1145/3098822.3098835


SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA T. Gupta et al.

protocols that enable one or both parties to learn the output of an

agreed-upon function, without revealing the inputs to each other.

For example, a provider supplies its spam filter, a user supplies

an email, and both parties learn whether the email is spam while

protecting the details of the filter and the content of the email.

The challenge in Pretzel comes from the 2PC component. There

is a tension between expressive power (the best 2PC schemes can

handle any function and even hide it from one of the two parties)

and cost (those schemes remain exorbitant, despite progress in low-

ering the costs; §3.2). Therefore, in designing Pretzel, we decided

to make certain compromises to gain even the possibility of plau-

sible performance: baking in specific algorithms, requiring both

the algorithms’ logic and the model features to be exposed (model

parameters are hidden), and incurring per-function design work.

The paper’s central example is classification, which Pretzel ap-

plies to both spam filtering and topic extraction (Pretzel also imple-

ments elementary keyword search). Pretzel’s first step is to compose

(a) a relatively efficient 2PC protocol (§3.2) geared to computations

that consist mostly of linear operations [19, 30, 75, 100, 106], (b) lin-

ear classifiers from machine learning (Naive Bayes, SVMs, logistic

regression), which fit this form and have good accuracy (§3.1),

and (c) mechanisms that protect against adversarial parties. Al-

though the precise protocol (§3.3) has not appeared before, we

don’t claim it as a contribution, as its elements are well-understood.

This combination is simply the jumping-off point for Pretzel.

The work of Pretzel is adapting and incorporating this baseline

into a system for end-to-end encrypted email. In this context, the

costs of the baseline would be, if not quite outlandish, nevertheless

too high. Pretzel responds, first, with lower-level protocol refine-

ments: revisiting the cryptosystem (§4.1) and conserving calls into

it by applying a packing technique [59] (§4.2). Second, for topic

extraction, Pretzel rearranges the setup, by decomposing classifica-

tion into a non-private step, performed by the client, which prunes

the set of topics; and a private step that further refines this can-

didate set to a single topic. Making this work requires a modified

protocol that, roughly speaking, selects a candidate maximum from

a particular subset, while hiding that subset (§4.3). Third, Pretzel

applies well-known ideas (feature selection to reduce costs, various

mechanisms to guard against misuses of the protocol); here, the

work is demonstrating that these are suitable in the present context.

We freely admit that not all elements of Pretzel are individually

remarkable. However, taken together, they produce the first (to our

knowledge) demonstration that classification can be done privately,

at tolerable cost, in the email setting.

Indeed, evaluation (§6) of our implementation (§5) indicates

that Pretzel’s cost, versus a legacy non-private implementation, is

estimated to be up to 5.4×, with additional client-side requirements

of several hundred megabytes of storage and per-email cpu cost

of several hundred milliseconds. These costs represent reductions

versus the starting point (§3.3) of between 1.8× and 100× (§6).

Our work here has clear limitations (§7). Reflecting its proto-

type status, our implementation handles only the three functions

mentioned (ideally, it would handle predictive personal assistance,

virus scanning, and more); also, Pretzel does not hide metadata,

and it focuses on applying classifiers, not training or retraining

them. More fundamentally, Pretzel compromises on functionality;

by its design, both user and provider have to agree on the algorithm,

with only the inputs being private. Most fundamentally, Pretzel

cannot achieve the ideal of perfect privacy; it seems inherent in

the problem setup that one party gains information that would

ideally be hidden. However, these leaks are generally bounded, and

concerned users can opt out, possibly at some dollar cost (§4.4, §7).

The biggest limitation, though, is that Pretzel cannot change the

world on its own. As we discuss later (§7), there are other obstacles

en route to the ultimate goal: general deployment difficulties, key

management, usability, and even politics. However, we hope that

the exercise of working through the technical details to produce

an existence proof (and a rough cost estimate) will at least shape

discourse about the viability of default end-to-end email encryption.

2 ARCHITECTURE AND OVERVIEW

2.1 Design ethos: (non)requirements

Pretzel would ideally (a) enable rich computation over email, (b) hide

the inputs and implementations of those computations, and (c) im-

pose little overhead. But these three ideals are in tension. Below

we describe the compromises that form Pretzel’s design ethos.

• Functionality. We will not insist that Pretzel replicate exactly the

computations that providers such as Google perform over email;

in fact, we don’t actually know in detail what they do. Rather, we

aim to approximate the value-added functions that they provide.

• Provider privacy. Related to the prior point, Pretzel will not sup-

port proprietary algorithms; instead, Pretzel will protect the in-
puts to the algorithms. For example, all users of Pretzel will know

the spam filtering model (both its structure and its features), but

the parameters to the model will be proprietary.

• User privacy. Pretzel will not try to enshroud users’ email in

complete secrecy; indeed, it seems unavoidable that computing

over emails would reveal some information about them. How-

ever, Pretzel will be designed to reveal only the outputs of the

computation, and these outputs will be short (in bits).

• Threat model and maliciousness. Pretzel will not build in protec-

tion against actions that subvert the protocol’s semantics (for
example, a providerwho follows the protocol to the letter butwho

designs the topic extraction model to recover a precise email); we

will deal with this issue by relying on context, a point we elabo-

rate on later (§4.4, §7). Pretzel will, however, build in defenses

against adversaries that deviate from the protocol’s mechanics;
these defenses will not assume particular misbehaviors, only that

adversaries are subject to normal cryptographic hardness.

• Performance and price. Whereas the status quo imposes little

overhead on email clients, Pretzel will incur network, storage,

and computation overhead at clients. However, Pretzel will aim to

limit the network overhead to small multiples of the overhead in

the status quo, the storage cost to several hundredmegabytes, and

the cpu cost to a few hundred milliseconds of time per processed

email. For the provider, Pretzel’s aim is to limit overheads to

small multiples of the costs in the status quo.

• Deployability and usability.Certain computations, such as encryp-

tion, will have to run on the client. However, web applications



Pretzel: Email encryption and provider-supplied functions are compatible SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

recipient's 
email client

e2e module a function 
module

email e mailbox e2e modulee' e'

sender's email 
client

recipient's 
email provider

1
2

3 e

4  e
5

Figure 1: Pretzel’s architecture. e denotes plaintext email; e′ denotes
encrypted email. The sender’s provider is not depicted.

are permitted to consume client-side resources, including stor-

age [40]. Furthermore, Pretzel will aim to be configuration-free.

Also, Pretzel must be backwards compatible with existing email

delivery infrastructure (SMTP, IMAP, etc.).

2.2 Architecture

Figure 1 shows Pretzel’s architecture. Pretzel comprises an e2e mod-
ule and functionmodules. The e2emodule implements an end-to-end

encryption scheme; a function module implements a computation

over the email content (spam filtering, etc.). The e2e module is

client-side only, while a function module has a component at the

client and another at the provider.

At a high level, Pretzel works as follows. An email sender uses

its e2e module to encrypt and sign an email for an email recipient

(step ➀). The recipient uses its e2e module to authenticate and

decrypt the email (step ➁). The e2e module can implement any

end-to-end encryption scheme; Pretzel’s current prototype uses

OpenPGP [1, 37]. Next, the recipient passes the decrypted email

contents to the client-side components of the function modules

(step ➂), which then participate in a protocol with their counter-

parts at the provider (step ➃). At the end of the protocol, either

the client or the provider learns the output of the computation (for

example, a bit encoding whether the email is spam or not). Finally,

the client processes the decrypted email according to the output (for

example, labels it as spam), and delivers it to the recipient (step ➄).

Pretzel’s e2e module requires cryptographic keys for encrypting,

decrypting, signing, and verifying. Thus, Pretzel requires a solution

to key management [2, 31, 93, 126]. However, this is a separate

effort, deserving of its own paper or product and (as noted in the

introduction) is one of the obstacles that Pretzel does not address.

Later (§7), we discuss why we are optimistic that it will ultimately

be overcome.

The main work for Pretzel surrounds the function modules; the

challenge is to balance privacy, functionality, and performance (§2.1).

Our focus will be on two modules: spam filtering and topic extrac-

tion (§3, §4). We will also report on an elementary keyword search

module (§5). But before delving into details, we walk through some

necessary background on the class of computations run by these

modules and the cryptographic protocols that they build on.

3 BACKGROUND, BASELINE, RELATEDWORK

3.1 Classification

Spam filtering and topic extraction are classification problems and,

as such, require classifier algorithms. Pretzel is geared to linear classi-
fiers. So far, we have implemented Naive Bayes (NB) [68, 92, 95, 104]

classifiers, specifically a variant of Graham-Robinson’s NB [68, 104]

for spam filtering (we call this variant GR-NB),
1
and multinomial

NB [92] for topic extraction; Logistic Regression (LR) classifiers [57,

62, 86, 98], specifically binary LR [86] and multinomial LR [57] for

spam filtering and topic extraction respectively; and linear Sup-

port Vector Machine (SVM) classifiers [32, 45, 78, 109], specifically

two-class and one-versus-all SVM [32] for spam filtering and topic

extraction respectively. These algorithms, or variants of them, yield

high accuracy [44, 62, 68, 71, 78, 141] (see also §6.1, §6.2), and are

used in popular open-source software packages for spam filtering,

classification, and general machine learning [3–7, 57].

The three types of classifiers differ in their underlying assump-

tions and how they learn parameters from training data. However,

when applying a trained model, they all perform analogous linear

operations. We will use Naive Bayes as a running example, because

it is the simplest to explain.

Naive Bayes classifiers. These algorithms assume that a docu-

ment (an email, in our context) can belong to one of several cate-
gories (for example, spam or non-spam). The algorithms output a

prediction of a document’s category.

Documents are represented by feature vectors x⃗ = (x1, . . . , xN ),
where N is the total number of features. A feature can be a word,

a group of words, or any other efficiently computable aspect of

the document; the algorithms do not assume a particular mapping

between documents and feature vectors, only that some mapping

exists. In the GR-NB spam classifier [68, 104], xi is Boolean, and
indicates the presence or absence of feature i in the document; in

the multinomial NB text classifier, xi is the frequency of feature i.
The algorithms take as input a feature vector and a model that

describes the categories. A model is a set of vectors {(v⃗j , p(Cj ))}
(1 ≤ j ≤ B), where Cj is a category (for example, spam or non-

spam), and B is the number of categories (two for spam; 2208 for

topics, based on Google’s public list of topics [8]). p(Cj ) denotes
the assumed a priori category distribution. The ith entry of v⃗j is
denoted p(ti | Cj ) and is, roughly speaking, the probability that

feature i, call it ti , appears in documents whose category is Cj .2

The GR-NB spam classification algorithm labels an email, as

represented by feature vector x⃗, as spam if p(spam | x⃗) is greater
than some fixed threshold. To do so, the algorithm computes α =
1/p(spam | x⃗) − 1 in log space. One can show [70, Appx A.1] that

logα is equivalent to:

*.
,

i=N∑
i=1

xi · log p(ti | C2)
+/
-
+ 1 · log p(C2)

−
*.
,

i=N∑
i=1

xi · log p(ti | C1)
+/
-
+ 1 · log p(C1), (1)

where C1 represents spam and C2 represents non-spam.

1
The original Graham-Robinson NB protects against spam emails that hide a short

message within a large non-spam text [69]. We do not implement that piece; the

resulting change in classification accuracy is small (§6.1).

2
In more detail, the GR-NB spam classifier assumes that the {xi } are realizations

of independent Bernoulli random variables (RVs), with the probabilities of each RV,

p(ti | Cj ), depending on the hypothesized category. The multinomial NB text classifier

assumes that the {xi } follow a multinomial distribution, with N bins and

∑
i xi trials,

where the bin probabilities are p(ti | Cj ) and depend on the hypothesized category.



SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA T. Gupta et al.

Yao+gllm

• The protocol has two parties. Party X begins with a matrix; Party Y begins with a vector. The protocol computes a vector-matrix product and

then performs an arbitrary computation, ϕ, on the resulting vector; neither party’s input is revealed to the other.

• The protocol assumes an additively homomorphic encryption (AHE) scheme (Gen, Enc,Dec), meaning that Enc(pk,m1) · Enc(pk,m2) =
Enc(pk,m1 + m2), where m1,m2 are plaintext messages, + represents addition of two plaintext messages, and · is an operation on the

ciphertexts. This also implies that given a constant z and Enc(pk,m1), one can compute Enc(pk, z ·m1).

Setup phase

(1) Party X forms a matrix with columns v⃗1, . . . , v⃗B; each vector has N components. It does the following:

(a) Generates public and secret keys (pk, sk) ← Gen(1k ), where k is a security parameter.

(b) Encrypts each column component-wise, so Enc(pk, v⃗j ) = (Enc(pk, v1,j ), . . . , Enc(pk, vN ,j )).

(c) Sends the encrypted matrix columns and pk to Party Y.

Computation phase

(2) Party Y begins with an N -component vector x⃗ = (x1, . . . , xN ). It does the following:

(a) (dot products) Computes encrypted dot product for each matrix column: Enc(pk, dj ) = Enc(pk,
∑N
i=1 xi · vi,j ), this abuses notation,

since the encryption function is not deterministic. The computation relies on the homomorphic property.

(b) (blinding) Blinds dj by adding random noise nj ∈R {0, 1}b+δ . That is, computes Enc(pk, dj + nj ) = Enc(pk, dj ) · Enc(pk, nj ). Here b is
the bit-length of dj and δ ≥ 1 is a security parameter.

(c) Sends (Enc(pk, d1 + n1), . . . , Enc(pk, dB + nB)) to Party X.

(3) Party X applies Dec component-wise, to get (d1 + n1, . . . , dB + nB)
(4) Party X and Party Y participate in Yao’s 2PC protocol; they use a function f that subtracts the noise nj from dj + nj and applies the

function ϕ to the dj . One of the two parties (which one depends on the arrangement) obtains the output ϕ (d1, . . . , dB).

Figure 2: Yao+gllm. This protocol [19, 30, 75, 100, 106] combines GLLM’s secure dot products [60] with Yao’s general-purpose 2PC [133].

Pretzel’s design and implementation apply this protocol to the linear classifiers described in §3.1. The provider is Party X, and the client is

Party Y. Pretzel’s instantiation of this protocol incorporates several additional elements (§3.3): a variant of Yao [77, 81] that defends against

actively adversarial parties; amortization of the expense of this variant via precomputation in the setup phase; a technique to defend against

adversarial key generation (for example, not invoking Gen correctly); and a packing technique (§4.2) in steps 1b and 2a.

For the multinomial NB text classifier, selection works by choos-

ing the categoryCj∗ thatmaximizes likelihood: j∗=argmaxj p(Cj | x⃗).
One can show [70, Appx A.2] that it suffices to select the Cj for
which the following is maximal:

*.
,

i=N∑
i=1

xi · log p(ti | Cj )
+/
-
+ 1 · log p(Cj ). (2)

For LR and SVM classifiers, the term log p(ti | Cj ) is replaced by

a “weight” term wi,j for feature xi and category Cj , and log p(Cj ) is
replaced by a “bias” term bj for category j.

3.2 Secure two-party computation

To perform the computation described above within a functionmod-

ule (§2.2) securely, that is, in a way that the client does not learn the

model parameters and the provider does not learn the feature vec-

tor, Pretzel uses secure two-party computation (2PC): cryptographic

protocols that enable two parties to compute a function without

revealing their inputs to each other [61, 133]. Pretzel builds on a

relatively efficient 2PC protocol [19, 30, 75, 100, 106] that we name

Yao+gllm; we present this below, informally and bottom up (for

details and rigorous descriptions, see [60, 72, 88, 107]).

Yao’s 2PC. A building block of Yao+gllm is the classic scheme

of Yao [133]. Let f be a function, represented as a Boolean circuit

(meaning a network of Boolean gates: AND, OR, etc.), with n-bit

input, and let there be two parties P1 and P2 that supply separate

pieces of this input, denoted x1 and x2, respectively. Then Yao (as

the protocol is sometimes known), when run between P1 and P2,
takes as inputs f and x1 from P1, x2 from P2, and outputs f (x1, x2)
to P2, such that P1 does not learn anything about x2, and P2 does not
learn anything about x1 except what can be inferred from f (x1, x2).

At a very high level, Yao works by having one party generate

encrypted truth tables, called garbled Boolean gates, for gates in the

original circuit, and having the other party decrypt and thereby

evaluate the garbled gates.

In principle, Yao handles arbitrary functions. In practice, how-

ever, the costs are high. A big problem is the computational model.

For example, 32-bit multiplication, when represented as a Boolean

circuit, requires on the order of 2,000 gates, and each of those gates

induces cryptographic operations (encryption, etc.). Recent activity

has improved the costs (see [66, 73, 81, 83, 87, 114, 138, 139] and

references therein), but the bottom line is still too expensive to

handle arbitrary computations. Indeed, Pretzel’s prototype uses

Yao very selectively—just to compute several comparisons of 32-bit

numbers—and even then it turns out to be a bottleneck (§6.1, §6.2),

despite using a recent and optimized implementation [137, 138].

Secure dot products. Another building block of Yao+gllm is a

secure dot product protocol, specifically GLLM [60]. Many such

protocols (also called secure scalar product (SSP) protocols) have



Pretzel: Email encryption and provider-supplied functions are compatible SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

been proposed [21, 25, 51–54, 60, 76, 111, 118, 120, 129, 143]. They

fall into two categories: those that are provably secure [51, 60, 129]

and those that either have no security proof or require trusting a

third party [21, 25, 52–54, 76, 111, 118, 120, 143]. Several protocols in

the latter category have been attacked [38, 60, 74, 80, 84]. GLLM [60]

is in the first category, is state of the art, and is widely used.

Hybrid: Yao+gllm. Pretzel’s starting point is Yao+gllm, a hybrid

of Yao and GLLM. It is depicted in Figure 2. One party starts with

a matrix, and encrypts the entries. The other party starts with a

vector and leverages additive (not fully) homomorphic encryption

(AHE) to (a) compute the vector-matrix product in cipherspace, and

(b) blind the resulting vector. The first party then decrypts to obtain

the blinded vector. The vector then feeds into Yao: the two parties

remove the blinding and perform some computation ϕ.
Yao+gllm has been applied to spam filtering using LR [100], face

recognition using SVM [19], and face and biometric identification

using Euclidean distance [30, 75, 106].

Other related work. There are many works on private classifica-

tion that do not build on Yao+gllm. They rely on alternate building

blocks or hybrids: additively homomorphic encryption [33, 89],

fully homomorphic encryption [82] (FHE), or a different Yao hy-

brid [36]. For us, Yao+gllm appeared to be a more promising start-

ing point. For example, in contrast to the protocol of Khedr et

al. [82], Yao+gllm reveals only the final output of the computation

rather than intermediate dot products. As another example, the

resource consumption in Yao+gllm is considerably lower than in

Bost et al. [33].
3

Another related line of research focuses on privacy and linear

classifiers—but in the training phase. Multiple parties can train a

global model without revealing their private inputs [121, 123, 132,

134–136], or a party can release a trained “noisy” model that hides

its training data [79, 122, 142]. These works are complementary to

Pretzel’s focus on applying trained models.

3.3 Baseline protocol

Pretzel begins by applying the Yao+gllm protocol (Figure 2, §3.2) to

the algorithms described in Section 3.1. This works because expres-

sions (1) and (2) are dot products of the necessary form. Specifically,

the provider is party X and supplies (v⃗j , p(Cj )); the client is party Y
and supplies (x⃗, 1), which it obtains from an email using a feature

extraction algorithm supplied by the provider (§2.1); and the proto-

col computes their dot product. Then, the threshold comparison (for

spam filtering) or the maximal selection (for topic extraction) hap-

pens inside an instance of Yao. For spam filtering, the client receives

the classification output; for topic extraction, the provider does.

Note that storing the encrypted model at the client is justified by an

assumption that model vectors change infrequently [43, 108, 109].

In defining this baseline, we include mechanisms to defend

against adversarial parties (§2.1). Specifically, whereas under the

classical Yao protocol an actively adversarial party can obtain the

3
For the data point at N = 70, B = 24 (these variables are defined in Figure 2), Bost et

al. report network transfers and computation times (for the two parties) of 1911 KB,

1664 ms, and 1652 ms [33], whereas these overheads are 156.1 KB, 757.9 ms, and 8.6 ms

for our implementation of Yao+gllm (§5) on comparable hardware. These differences

in overheads are due to a packing optimization in Yao+gllm and improvements (see

the pointers to recent activity above) that reduce the overheads of Yao.

other’s private inputs [77], Pretzel incorporates a variant [77, 81]

that solves this problem. This variant brings some additional ex-

pense, but that expense can be incurred during the setup phase

and amortized. Also, Yao+gllm assumes that the AHE’s key gener-

ation is done honestly, whereas we would prefer not to make that

assumption; Pretzel incorporates the standard response.
4

While the overall baseline is literally new (Yao+gllm was pre-

viously used in weaker threat models, etc.), its elements are well-

known, so we do not claim novelty.

4 PRETZEL’S PROTOCOL REFINEMENTS

The baseline just described is a promising foundation for private

classification. But adapting it to an end-to-end system for encrypted

email requires work. The main issue is costs. As examples, for

a spam classification model with N = 5M features, the protocol

consumes over 1 GB of client-side storage space; for topic extraction

with B = 2048 categories, it consumes over 150 ms of provider-side

cpu time and 8 MB in network transfers (§6). Another thing to

consider is the robustness of the guarantees.

This section describes Pretzel’s refinements, adjustments, and

modifications. The nature of the work varies from low-level cryp-

tographic optimizations, to architectural rearrangement, to applica-

tions of known ideas (in which case the work is demonstrating that

they are suitable here). We begin with refinements that are aimed

at reducing costs (§4.1–§4.3), the effects of which are summarized

in Figure 3; then we describe Pretzel’s robustness to misbehaving

parties (§4.4).

4.1 Replacing the cryptosystem

Both Pretzel and the baseline require additively homomorphic en-

cryption (Figure 2). The traditional choice for AHE—it is used in

prior works [19, 75, 100, 106]—is Paillier [99], which is based on

a longstanding number-theoretic presumed hardness assumption.

However, Paillier’s Dec takes hundreds of microseconds on a mod-

ern CPU, which contributes substantially to provider-side cpu time.

Instead, Pretzel turns to a cryptosystem based on the Ring-LWE
assumption [90], a relatively young assumption (which is usually

a disadvantage in cryptography) but one that has nonetheless re-

ceived a lot of recent attention [18, 34, 46, 91, 101, 105]. Specifically,

Pretzel incorporates the additively homomorphic cryptosystem of

Brakerski and Vaikuntanathan [34], as implemented and optimized

by Melchor et al. [20] in the XPIR system; we call this xpir-bv.

This change brings the cost of each invocation of Dec down by

over an order of magnitude, to scores of microseconds (§6), and

similarly with Enc. The gain is reflected in the cost model (Figure 3),

in replacing d
pail

with dxpir (likewise with e
pail

and expir, etc.)
However, the changemakes ciphertexts 64× larger: from 256 bytes

to 16 KB. Yet, this is not the disaster that it seems. Network costs

do increase (in Figure 2, step 2c), but by far less than 64×. Because

the domain of the encryption function (that is, the size of the plain-

text space) grows, one can tame what would otherwise be a large

increase in network and storage, and also gain further cpu savings.

We describe this next.

4
In more detail, the AHE has public parameters which, if chosen adversely (non-

randomly) would undermine the expected usage. To get around this, Pretzel deter-

mines these parameters with Diffie-Hellman key exchange so that both parties inject

randomness into these parameters [48, 50, 94, 110].



SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA T. Gupta et al.

Non-private Baseline (§3.3) Pretzel (§4.1–§4.3)

Setup

Provider cpu time N/A N ·β
pail
·e
pail
+Kcpu N ′ ·β ′

xpir
·expir+Kcpu

Client cpu time N/A Kcpu Kcpu

Network transfers N/A N ·β
pail
·c
pail
+Knet N ′ ·β ′

xpir
·cxpir+Knet

Client storage N/A N ·β
pail
·c
pail

N ′ ·β ′
xpir
·cxpir

Per-email

Provider cpu L ·h+L ·B ·g β
pail
·d

pail
+B ·yper-in β ′′

xpir
·dxpir+B′ ·yper-in

Client cpu N/A L ·β
pail
·a

pail
+β

pail
·e
pail
+B ·yper-in L ·βxpir ·axpir+ (L+B′) ·s+β ′′

xpir
·expir+B′ ·yper-in

Network sz
email

sz
email

+ β
pail
·c
pail
+B ·szper-in sz

email
+ β ′′

xpir
·cxpir+B′ ·szper-in

L = number of features in an email (§3.3) h = cpu time to extract a feature and lookup its conditional probabilities

B = number of categories in the model (§3.3) g = cpu time to add two probabilities

sz
email

= size of an email N = number of features in the model (§3.3)

β
pail

:= ⌈B/p
pail
⌉, βxpir := ⌈B/pxpir ⌉ p = # of b-bit probabilities packed in a ciphertext (§4.2)

e = encryption cpu time in an AHE scheme Kcpu,Knet = constants for cpu and network costs (§3.3)

d = decryption cpu time in an AHE scheme c = ciphertext size in an AHE scheme

a = homomorphic addition cpu time in an AHE scheme (Fig. 2) yper-in, szper-in = Yao cpu time and network transfers per b-bit input (§3.2)
b = log L+bin+fin (§4.2) bin = # of bits to encode a model parameter (§4.2)

fin = # of bits for the frequency of a feature in an email (§4.2) N ′ = # of features selected after aggressive feature selection (§4.3) (N ′=N if spam)

β ′
xpir

:= ⌊B/pxpir ⌋+1/ ⌊pxpir/k⌋ where k= (B mod pxpir) B′ = # of candidate topics (≪B) (§4.3) (B′=B if spam)

β ′′
xpir

:=βxpir (if spam) or B′ (if topics) s = “left-shift” cpu time in xpir-bv (§4.2)

Figure 3: Cost estimates for classification. Non-private refers to a system in which a provider locally classifies plaintext email. The baseline

is described in Section 3.3. Microbenchmarks are given in §6.

4.2 Packing in Pretzel

The basic idea is to represent multiple plaintext elements (for ex-

ample, model parameters) in a single ciphertext; this opportunity

exists because the domain of Enc is much larger than any single

element that needs to be encrypted. Using packing, one can reduce

the number of invocations of Enc and Dec in Figure 2, specifically

in step 1b, step 2b, and step 3. The consequence is a significant

reduction in resource consumption, specifically client storage for

spam filtering, and provider cpu time for topic extraction.

A common packing technique—it is used in GLLM [60], Pret-

zel’s baseline (§3.3), and the works that build on GLLM [19, 75]—

traverses each row in the matrix from left to right and encrypts

together sets of elements, while restricting the packing to be within

the given rows. Although better than no packing, this technique

does not always fully utilize the space in a ciphertext. For example,

when the number of elements in a matrix row is two (as in the

spam filtering application) and the number of elements that can be

packed together is 1024 (as in the xpir-bv ciphertexts), then 1022

“slots” remain unutilized.

Recent packing techniques, proposed in the context of aggre-

gation queries on encrypted databases [119] and homomorphic

evaluation of AES-128 encryption [59], address the limitation de-

scribed above, by packing across both columns and rows. These

techniques traverse the matrix in row-major order without restrict-

ing the packing to be within a row (see the rightmost matrix in

Figure 4), thereby utilizing the “empty slots” in a ciphertext.

Pretzel incorporates both types of techniques described above.

Below, we describe the relevant details on how and where these

techniques are incorporated.

Details. Let p be the number of elements that can be packed to-

gether in a ciphertext, and let b be the number of semantically

useful bits in a dot product output. Then, in step 1b in Figure 2,

Pretzel splits (not depicted in the figure) the matrix {(v⃗j , p(Cj ))}
into zero or more sets of p column vectors plus up to one set with

fewer than p vectors as depicted in Figure 4. For the sets with p
vectors, it packs together all p elements of a row [60]. For the last

set, it packs elements in row-major order under one constraint: ele-

ments in the same row of the matrix must not be put into different

ciphertexts [59, 119].

Then, to compute dot products (in step 2a in Figure 2) for all

columns except those in the rightmost matrix (Figure 4), Pretzel uses

the fact that that the elements that need to be added are aligned [60].

For example, if the elements in the first row (v1,1, . . . , v1,p) are
to be added to those in the second row (v2,1, . . . , v2,p), then the

ciphertext space operation applied to c1 = Enc(pk, v1,1∥ . . . ∥v1,p )
and c2 = Enc(pk, v2,1∥ . . . ∥v2,p ) yields c3 = c1 · c2 = Enc(pk, v1,1 +
v2,1∥ . . . ∥v1,p + v2,p ). For this to work, the individual sums (for

example, v1,p + v2,p) cannot overflow b bits.
For the columns that are in the rightmost matrix (Figure 4), Pret-

zel performs dot products by exploiting the homomorphism to

cyclically rotate the packed elements in a ciphertext [59]. For exam-

ple, assume c = Enc(pk, v1,1∥ . . . ∥v1,k ∥v2,1∥ . . . ∥v2,k ) is a packed
ciphertext, where v1,1, . . . , v1,k are elements from the first row, and

v2,1, . . . , v2,k are from the second row. To add each v1,i with v2,i
for i ∈ {1, . . . , k}, one can left-shift elements in c by k positions

to get c′ = Enc(pk, v2,1∥ . . . ∥v2,k ∥ . . .); this is done by applying

the “constant multiplication” operation (Figure 2, bullet 2), with

z = 2
k ·b

. At this point, the rows are lined up, and one can operate

on c and c′ to add the plaintext elements.

We haven’t yet said how the values of p and b are determined.

Let G denote the number of bits in the domain of the encryption

algorithm Enc, bin denote the number of bits required to represent

an element that would be encrypted (a model parameter in our case),



Pretzel: Email encryption and provider-supplied functions are compatible SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

p

v
1

v
2

v
p

p < p

v
(B-1)

v
B

Figure 4: Packing in Pretzel. Light gray rectangles represent matrix

columns (⃗v1, . . . , v⃗B); dark gray represent ciphertexts. The arrange-

ment in matrices with p columns follows GLLM [60]; the matrix

with < p columns follows Gentry et al. [59].

and fin denote the number of bits for the multiplier of an encrypted

element (frequency of a feature extracted from an email in our

case). Then, the output of a dot product computation—assuming a

sum of L products, each formed from a bin-bit element and a fin-bit
element—has b = log L + bin + fin bits (in our context, L would be

the number of features extracted from an email). This means that

there is “room” to pack p = ⌊G/b⌋ elements into a single ciphertext.

Cost savings. Here we give rough estimates of the effect of the re-

finements in this subsection and the previous; a more detailed eval-

uation is in Section 6. For the spam filtering module, the provider’s

cpu drops by 5× and the client-side storage drops by 7×, relative to

the baseline (§3.3). However, cpu at the client increases by 10× (ow-

ing to the cyclic shifts), and the network overhead increases by 5.4×;

despite these increases, both costs are not exorbitant in absolute

terms, and we view them as tolerable (§6.1, §6.2). The provider-side

costs for spam filtering are comparable to an arrangement where

the provider classifies plaintext emails non-privately.

For the topic extraction module, the cost improvements relative

to the baseline (§3.3) are smaller: provider cpu drops by 1.37×,

client cpu drops by 3.25×, storage goes up by a factor of 2, and

the network cost goes up slightly. Beyond that, the non-private
version of this function is vastly cheaper than for spam, to the point

that the private version is (depending on the resource) up to two

orders of magnitude worse than the non-private version. The next

subsection addresses this.

4.3 Pruning in topic extraction

Decomposed classification. So far, many of the costs are propor-

tional to B: cpu and network cost of Yao (Figure 2, step 4), and

storage (Figure 2, “setup phase”). For spam filtering, this is not a

problem (B = 2) but for topic extraction, B can be in the thousands.

Pretzel’s response is a technique that we call decomposed classifi-
cation. To explain the idea, we regard topic extraction as abstractly

mapping an email, together with a set S of cardinality B (all possible

topics), down to a set S∗ of cardinality 1 (the chosen topic), using a

model with proprietary parameters. Pretzel decomposes this map

into two:

(i) Map the email, together with the set S, to a set S′ of cardinality
B′ (for example, B′ = 20); S′ comprises candidate topics. The
client does this by itself.

(ii) Map the email, together with S′, down to a set S′′ of cardinality
1; ideally S′′ is the same as S∗ (otherwise, accuracy is sacrificed).

This step relies on a proprietarymodel and is done using secure

two-party machinery. Thus, the costs of the expensive part

of the protocol are now proportional to B′ rather than to B
(the gain is reflected in Figure 3, the last two columns of the

“per-email” rows).

For this arrangement to make sense, several requirements must

be met. First, the client needs to be able to perform the map in

step (i) locally. Here, Pretzel exploits an observation: topic lists (the

set S) are public today [8]. They have to be, so that advertisers can

target and users can set interests. Thus, a client can in principle

use some non-proprietary classifier for step (i). Pretzel is agnostic

about the source of this classifier; it could be supplied by the client,

the provider, or a third party.

Second, the arrangement needs to be accurate, which it is when

S′ contains S∗. Pretzel observes that although the classifier used

in step (i) would not be honed, it doesn’t need to be, because

it is performing a far coarser task than choosing a single topic.

Thus, in principle, the step (i) map might reliably produce accu-

rate outputs—meaning that the true topic, S∗, is among the B′

candidates—without much training, expertise, or other proprietary

input. Our experiments confirm that indeed the loss of end-to-end

accuracy is small (§6.2).

Finally, step (ii) must not reveal S′ to the provider, since that

would be more information than a single extracted topic. This rules

out instantiating step (ii) by naively applying the existing proto-

col (§3.3–§4.2), with S′ in place of S. Pretzel’s response is depicted
in Figure 5. There are some low-level details to handle because of

the interaction with packing (§4.2), but at a high level, this proto-

col works as follows. The provider supplies the entire proprietary

model (with all B topics); the client obtains B dot products, in en-

crypted form, via the inexpensive component of Yao+gllm (secure

dot product). The client then extracts and blinds the B′ dot products
that correspond to the candidate topics. The parties finish by using

Yao to privately identify the topic that produced the maximum.

Feature selection. Protocol storage is proportional to N (Figure 2,

“setup phase”). Pretzel’s response is the standard technique of fea-
ture selection [116]: incorporating into the model the features most

helpful for discrimination. This takes place in the “setup phase” of

the protocol (the number of rows in the provider’s matrix reduces

from N to N ′; for the resulting cost reductions, see the last two

columns of the “setup” rows in Figure 3). Of course, one presumes

that providers already prune their models; the proposal here is to

do so more aggressively. Section 6.2 shows that in return for large

drops in the number of considered features, the accuracy drops

only modestly. In fact, reductions of 75% in the number of features

is a plausible operating point.

Cost savings. Feature selection reduces client-storage costs by

a factor of N/N ′. For B = 2048,B′ = 20, and L = 692 (average

number of features per email in the authors’ emails), relative to the

protocol in §4.2, the provider cpu drops by 45×, client cpu drops

by 8.4×, and the network transfers drop by 20.4× (§6.2). Thus, the

aforementioned two orders of magnitude (above the non-private

version) becomes roughly 5×.



SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA T. Gupta et al.

Pretzel’s protocol for proprietary topic extraction, based on candidate topics

• The protocol has two parties. Party X begins with a matrix v⃗1, . . . , v⃗B. Party Y begins with a vector x⃗ = (x1, . . . , xN ) and a list S′ of B′ < B
column indexes, where each index is between 1 and B; S′ indicates a subset of the columns of matrix v⃗. The protocol constructs a vector
from the product of x⃗ and the submatrix of v⃗ given by S′, and outputs the column index (in v⃗) that corresponds to the maximum element in

the vector-submatrix product; neither party’s input is revealed to the other.

• The protocol has two phases: setup and computation. The setup phase is as described in Figure 2 but with the addition of packing from §4.2.

Computation phase

(3) Party Y does the following:

(a) (compute dot products) As described in Figure 2, step 2a, and §4.2. At the end of the dot product computations, it gets a vector

of packed ciphertexts ⃗pcts = (Enc(pk, d1∥ . . . ∥dp ), . . . , Enc(pk, . . . ∥dB∥ . . .)), where di is the dot product of x⃗ and the i-th matrix

column v⃗i , and p is the number of b-bit positions in a packed ciphertext (§4.2).

(b) (separate out dot products for the columns in S′ from the rest) For each entry in S′, i.e., S′[j], makes a copy of the packed ciphertext

containing dS′[j], and shifts dS′[j] to the left-most b-bit position in that ciphertext. Because each ciphertext holds p elements,

the separation works by using the quotient and remainder of S′[j], when divided by p, to identify, respectively, the relevant

packed ciphertext and position within it. That is, for 1 ≤ j ≤ B′, computes ciphertext Enc(pk, dS′[j]∥ . . .) = ⃗pcts[Qj] · 2
b ·Rj

, where

Qj = ⌈S′[j]/p⌉ − 1, and Rj = (S′[j]− 1) mod p. The shifting relies on the multiply-by-constant homomorphic operation (see Figure 2

and §4.2).

(c) (blinding) Blinds dS′[j] using the technique described in Figure 2, step 2b, but extended to packed ciphertexts. Sends the B′ ciphertexts
(Enc(pk, dS′[1] + n1∥ . . .), . . . , Enc(pk, dS′[B′] + nB′ ∥ . . .)) to Party X. Here, nj is the added noise.

(4) Party X applies Dec on the B′ ciphertexts, followed by bitwise right shift on the resulting plaintexts, to get dS′[1] + n1, . . . , dS′[B′] + nB′ .
(5) The two parties engage in Yao’s 2PC. Party Y supplies S′ and {nj } for 1 ≤ j ≤ B′; Party X supplies {(dS′[j] + nj )} for 1 ≤ j ≤ B′; and, the

parties use a function f that subtracts nj from dS′[j] + nj , and computes and returns S′[argmaxj dS′[j]] to Party X.

Figure 5: Protocol for proprietary topic extraction, based on candidate topics (this instantiates step (ii) in Section 4.3). The provider is Party

X; the client is Party Y. This protocol builds on the protocol presented in §3.3–§4.2.

4.4 Robustness to misbehaving parties

Pretzel aims to provide the following guarantees, even when parties

deviate from the protocol:

(1) The client and provider cannot (directly) observe each other’s

inputs nor any intermediate state in the computation.

(2) The client learns at most 1 bit of output each time spam classifi-

cation is invoked.

(3) The provider learns at most logB bits of output per email. This

comes from topic extraction.

Guarantee (1) follows from the baseline protocol, which includes

mechanisms that thwart the attempted subversion of the proto-

col (§3.3). Guarantee (2) follows from Guarantee (1) and the fact

that the client is the party who gets the spam classification output.

Guarantee (3) follows similarly, provided that the client feeds each

email into the protocol at most once; we discuss this requirement

shortly.

Before continuing, we note that the two applications are asym-

metric. In spam classification, the client, who gets the output, could

conceivably try to learn the provider’s model; however, the provider

does not directly learn anything about the client’s email. With topic

extraction, the roles are reversed. Because the output is obtained by

the provider, what is potentially at risk is the privacy of the email

of the client, who instead has no access to the provider’s model.

Leakage. Despite its guarantees about the number of output bits,

Pretzel has nothing to say about the meaning of those bits. For ex-

ample, in topic extraction, an adversarial provider could construct

a tailored “model” to attack an email (or the emails of a particular

user), in which case the logB bits could yield important informa-

tion about the email. A client who is concerned about this issue

has several options, including opting out of topic extraction (and

presumably compensating the provider for service, since a key pur-

pose of topic extraction is ad display, which generates revenue). We

describe a more mischievous response below (in “Integrity”).

In the spam application, an adversarial client could construct

emails to try to infer model parameters, and then leak the model.

Such leakage would not only undermine the proprietary nature

of the model but also make it easier for spammers to bypass the

spam filter [29, 125]. A possible defense would be for the provider

to periodically revise the model (and maintain different versions).

Repetition and replay. An adversarial provider could conceiv-

ably replay a given email to a client k different times, each time

with a unique topic model. The provider would then get k logB
bits from the email, rather than log B. Our defense is simply for the

client to regard email transmission from each sender’s device as a

separate asynchronous—and lossy and duplicating—transmission

channel. Solutions to detecting duplicates over such channels are

well-understood: counters, windows, etc. Something to note is that,

for this defense to work, emails have to be signed, otherwise an

adversary can deny service by pretending to be a sender and spuri-

ously exhausting counters.

Integrity. Pretzel does not offer any guarantees about which func-

tion Yao actually computes. For topic extraction, the client could,



Pretzel: Email encryption and provider-supplied functions are compatible SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

rather than garbling argmax (§3.2), instead garble an arbitrary func-

tion. Similarly, a client could input bogus candidate topics in step

(ii) of decomposed classification (§4.3). In such cases, the afore-

mentioned guarantees continue to hold (no inputs are disclosed,

etc.), though of course this misbehavior interferes with the ultimate

functionality. Pretzel does not defend against this case, and in fact,

it could be considered a feature—it gives the client a passive way to

“opt out”, with plausible deniability (for example, the client could

garble a function that produces an arbitrary choice of index).

The analogous attack, for spam, is for the provider to garble a

function other than threshold comparison. This would undermine

the spam/nospam classification and would presumably be disincen-

tivized by the same forces incentivizing providers to supply spam

filtering as a service in the first place.

5 IMPLEMENTATION

Our prototype fully implements the design described in Section 4. In

addition, it includes an elementary keyword searchmodule inwhich

the client maintains and queries a client-side search index. The mod-

ules, written in 5,300 lines of C++ and 160 lines of Python, glue the

code we borrow from existing libraries: GPGME [9] for OpenPGP

encryption, Obliv-C [137] for Yao’s 2PC protocol,
5
XPIR [20] for

the xpir-bv AHE scheme, liblinear [24, 57] to train LR and SVM

classifiers, and SQLite FTS4 [10] for the search index.

6 EVALUATION

Our evaluation answers the following questions:

(1) What are the provider- and client-side overheads of Pretzel?

For what configurations (model size, email size, etc.) are they

low?

(2) How much do Pretzel’s optimizations (§4) help in reducing

the overheads?

(3) How accurate are Pretzel’s functions: how accurately can they

filter spam emails or extract topics of emails?

A summary of evaluation results is as follows:

• Pretzel’s provider-side cpu consumption for spam filtering and

topic extraction is, respectively, 0.65 and 1.03–1.78× of a non-

private arrangement, and, respectively, 0.17× and 0.01–0.02× of

its baseline (§3.3). (One of the reasons that provider-side cpu

consumption is low—and sometimes lower than in a non-private

arrangement—is that the protocols shift work to the client.)

• Network transfers in Pretzel are 2.7–5.4× of a non-private ar-

rangement, and 0.024–0.048× of its baseline (§3.3).

• Pretzel’s client-side cpu consumption is less than 1s per email,

and storage space use is a few hundred MBs. These are a few

factors lower than in the baseline (§3.3).

• For topic extraction, the potential coarsening effects of Pretzel’s

classifiers (§4.3) are a drop in accuracy of between 1–3%.

Method and setup. We consider spam filtering, topic extraction,

and keyword search separately.

5
Another choice would have been TinyGarble [114]. We found the performance of

Obliv-C and TinyGarble to be comparable for the functions we compute inside Yao in

Pretzel; we choose the former because it is easier to integrate with Pretzel’s C++ code.

For spam filtering and topic extraction, we compare Pretzel to its

starting baseline, which we call Baseline (this baseline is described

in detail in Section 3.3 and Figure 2), and NoPriv, which models

the status quo, in which the provider locally runs classification

on plaintext email contents. For the keyword search function, we

consider only the basic client-side search index based scheme (§5).

We vary the following parameters: number of features (N ) and

categories (B) in the classification models, number of features in

an email (L), and the number of candidate topics (B′) in topic ex-

traction. For the classification models, we use synthetic datasets

for measuring resource overheads, and real-world datasets for mea-

suring accuracies. To generate synthetic emails, we use random

words (between 4 to 12 letters each), and consider each word as one

feature. For real-world data, we use the Ling-spam [22] (481 spam

and 2,411 non-spam emails), Enron [11] (17,148 spam and 16,555

non-spam emails of about 150 Enron employees), and Gmail (355

spam and 600 non-spam emails received by one of the authors over

a period of one month) datasets for spam filtering evaluation, and

the 20 Newsgroup [12] (18,846 Usenet posts on 20 topics), Reuters-

21578 [13] (12,603 newswire stories on 90 topics), and RCV1 [85]

(806,778 newswire stories from 296 regions) datasets for topic ex-

traction evaluation. To extract features from the documents in

real-world datasets, we use the feature extraction algorithms from

SpamBayes [4] and scikit-learn [6].

We measure resource overheads in terms of provider- and client-

side cpu times to process an email, network transfers between

provider and client, and the storage space used at a client. The

resource overheads are independent of the classification algorithm

(NB, LR, SVM), so we present them once; the accuracies depend

on the classification algorithm, so we present them for each algo-

rithm. To measure accuracies for spam classification, we use 10-fold

cross validation experiments [35]; for topic extraction, we train a

model on the training part of the datasets, and then apply it to the

documents in the testing part.

Our testbed is Amazon EC2.We use one m3.2xlargemachine for

the provider and one machine of the same type for a client. At the

provider, we use an independent cpu for each functionmodule (§2.2).

Similarly, the client uses a single cpu.

Microbenchmarks. Figure 6 shows the cpu and network costs

for the common operations (Figure 3) in Pretzel and the baselines.

We will use these microbenchmarks to explain the performance

evaluation in the next subsections.

6.1 Spam filtering

This subsection reports the resource overheads (provider- and client-

side cpu time, network transfers, and client-side storage space use)

and accuracy of spam filtering in Pretzel.

We set three different values for the number of features in the

spam classification model: N = {200K, 1M, 5M}. These values corre-

spond to the typical number of features in various deployments of

Bayesian spam filtering software [15–17]. We also vary the number

of features in an email (L = {200, 1000, 5000}); these values are

chosen based on the Ling-spam dataset (average of 377 and a max-

imum of 3638 features per email) and the Gmail dataset (average

of 692 and a maximum of 5215 features per email). The number of

categories B is two: spam and non-spam.



SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA T. Gupta et al.

encryption decryption addition left shift and add

GPG 1.7ms 1.3ms N/A N/A

Paillier 2.5ms 0.7ms 7 µs N/A

xpir-bv 103 µs 31 µs 3 µs 70 µs

Yao cost cpu network transfers

ϕ = integer comparison 71 µs 2501 B

ϕ = argmax 70 µs 3959 B

map lookup float addition

NoPriv operations 0.17 µs 0.001 µs

Figure 6:Microbenchmarks for operations shared by Pretzel and the

baselines (Figure 3). Both cpu and network costs are averaged over

1,000 runs; standard deviations (not shown) are within 5% of the av-

erages. OpenPGP encryption and decryption times depend on the

length of the email; we use an email size of 75 KB, which is in line

with average email size [14]. Similarly, Yao costs for ϕ = argmax

depend linearly on the number of input values; we show costs per

input value.

 0

 300

 600

 900

 1200

 1500

 1800

 2100

 2400

N = 200K N = 1M N = 5M

C
P

U
 t

im
e 

p
er

 e
m

ai
l 

(µ
s)

 
 (

lo
w

er
 i

s 
b
et

te
r)

Number of features in model

NoPriv (L=200)

NoPriv (L=1K)

NoPriv (L=5K)

Baseline

Pretzel

Figure 7: Provider-side cpu time per email in microseconds for the

spam filtering module while varying the number of features (N ) in

the spam classification model, and the number of features (L) in an

email. cpu time for NoPriv varies only slightly with N (not visible),

while (provider-side) cpu times for Baseline and Pretzel are inde-

pendent of both L and N (Figure 3).

Provider-side cpu time. Figure 7 shows the per-email cpu time

consumed by the provider.

For emails with fewer features (L = 200), the cpu time of Pretzel is

2.7× NoPriv’s and 0.17× Baseline’s. Pretzel’s is more than NoPriv’s

because in NoPriv the provider does L feature extractions, map

lookups, and float additions, which are fast operations (Figure 6),

whereas in Pretzel, the provider does relatively expensive opera-

tions: one additively homomorphic decryption of a xpir-bv cipher-

text plus one comparison inside Yao (Figure 3 and §4.1). Pretzel’s

cpu time is lower than Baseline’s because in Pretzel, the provider

decrypts a xpir-bv ciphertext whereas in Baseline the provider

decrypts a Paillier ciphertext (Figure 6).

As the number of features in an email increases (L = {1000, 5000}),
the provider’s cpu time in both Pretzel and Baseline does not change,

as it is independent of L (unlike the client’s) while NoPriv’s in-

creases since it is linear in L (see Figure 3). A particular point of

interest is L = 692 (the average number of features per email in the

Gmail dataset), for which the cpu time of Pretzel is 0.65× NoPriv’s

(as noted at the beginning of this section, the number is lower than

Size

N = 200K N = 1M N = 5M

Non-encrypted 4.3 MB 21.5 MB 107.3 MB

Baseline 51.6 MB 258.0 MB 1.3 GB

Pretzel-withGLLMPacking 3.1 GB 15.3 GB 76.3 GB

Pretzel 7.4 MB 36.7 MB 183.5 MB

Figure 8: Size of encrypted and plaintext spam classification

models. N is the number of features in the model. Pretzel-

withGLLMPacking is Pretzel, but with the packing in Pretzel re-

placed with the packing in GLLM (§4.2).

Ling-spam Enron Gmail

Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.

GR-NB 99.4 98.1 98.1 98.8 99.2 98.4 98.1 99.7 95.2

LR 99.4 99.4 97.1 98.9 98.4 99.5 98.5 98.9 97.2

SVM 99.4 99.2 97.5 98.7 98.5 99.0 98.5 98.9 97.2

GR 99.3 98.1 97.9 98.8 99.2 98.4 98.1 99.7 95.2

Figure 9: Accuracy (Acc.), precision (Prec.), and recall (Rec.) for

spam filtering in Pretzel. Sets of columns correspond to the differ-

ent spam datasets, and the rows correspond to the classification al-

gorithms Pretzel supports: GR-NB, binary LR, and two-class SVM

(§3.1). Also shown is accuracy for the original Graham-Robinson

Naive Bayes algorithm (GR).

in the status quo in part because Pretzel shifts computational work

to the client).

Client-side overheads. Figure 8 shows the size of the spammodel

for the various systems. We notice that the model in Pretzel is ap-

proximately 7× smaller than the model in Baseline. This is due

to the difference in packing in the two systems: “across rows and

columns” (in Pretzel) versus “across columns” (in GLLM [60], imple-

mented in Baseline (§4.2). We also notice that, given the refinement

of replacing the cryptosystem (§4.1), packing across both rows and

columns is essential in Pretzel, to prevent a manifold increase in

the model size (the Pretzel-withGLLMPacking row in the figure).

In terms of client-side cpu time, Pretzel takes ≈ 358 ms to pro-

cess an email with many features (L = 5000) against a large model

(N = 5M). This time is dominated by the L left shift and add opera-

tions in the secure dot product computation (§4.2). Our microbench-

marks (Figure 6) explain this number: 5000 of the left shift and add

operation takes 5000 × 70µs = 350ms. A large L is an unfavor-

able scenario for Pretzel: client-side processing is proportional to L
(Figure 3).

Network transfers. Both Pretzel and Baseline add network over-

head relative to NoPriv. It is, respectively, 19.6 KB and 3.6 KB per

email (or 26.1% and 4.8% of NoPriv, when considering average email

size as reported by [14]). These overheads are due to transfer of

a ciphertext and a comparison inside Yao’s framework (Figure 2).

Pretzel’s overheads are higher than Baseline’s because the xpir-bv

ciphertext in Pretzel is much larger than the Paillier ciphertext.

Accuracy. Figure 9 shows Pretzel’s spam classification accuracy

for the different classification algorithms it supports. (The figure

also shows precision and recall. Higher precision means lower



Pretzel: Email encryption and provider-supplied functions are compatible SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

10
-1

10
0

10
1

10
2

10
3

10
4

B = 128 B = 512 B = 2048

C
P

U
 t

im
e 

p
er

 e
m

ai
l 

(m
s)

 
 (

lo
w

er
 i

s 
b

et
te

r)

number of categories in topic extraction model

NoPriv

Baseline

Pretzel (B’ = B)

Pretzel (B’ = 20)

Pretzel (B’ = 10)

Figure 10: Provider-side cpu time per email inmilliseconds for topic

extraction, varying the number of categories (B) in the model and

the number of candidate topics (B′). The case B = B′measures Pretzel

without the decomposed classification technique (§4.3). The y-axis

is log-scaled. N and L are set to 100K and 692 (average number of

features per email in the authors’ Gmail dataset). The cpu times do

not depend onN or L for Pretzel and Baseline; they increase linearly

with L and vary slightly with N for NoPriv.

network transfers

B = 128 B = 512 B = 2048

Baseline 501.5 KB 2.0 MB 8.0 MB

Pretzel (B′ = B) 516.6 KB 2.0 MB 8.0 MB

Pretzel (B′ = 20) 402.0 KB 402.0 KB 401.9 KB

Pretzel (B′ = 10) 201.0 KB 201.0 KB 201.2 KB

Figure 11: Network transfers per email for topic extraction in Pret-

zel andBaseline. B′ is the number of candidate topics in decomposed

classification (§4.3). Network transfers are independent of the num-

ber of features in the model (N ) and email (L) (Figure 3).

false positives, or non-spam falsely classified as spam; higher recall

means lower false negatives, or spam falsely classified as non-spam.)

6.2 Topic extraction

This subsection reports the resource overheads (provider- and client-

side cpu time, network transfers, and client-side storage space use)

and accuracy of topic extraction in Pretzel.

We experiment with N = {20K, 100K})6 and B = {128, 512, 2048}.
These parameters are based on the total number of features in the

topic extraction datasets we use and Google’s public list of topics

(2208 topics [8]). For the number of candidate topics for Pretzel

(§4.3), we experiment with B′ = {5, 10, 20, 40}.

Provider-side cpu time. Figure 10 shows the per email cpu time

consumed by the provider.Without decomposed classification (§4.3)—

this is the B′ = B case in the figure—Pretzel’s cpu time is signif-

icantly higher than NoPriv’s but lower than Baseline’s. Pretzel’s

time differs from Baseline’s because packed xpir-bv ciphertexts

have lower decryption cpu time per plaintext element than Paillier

ciphertexts. With decomposed classification, the number of com-

parisons inside Yao’s framework come down and, as expected, the

difference between cpu times in Pretzel and NoPriv drops (§4.3).

For B = 2048,B′ = 20, Pretzel’s cpu time is 1.78× NoPriv’s; for

B = 2048,B′ = 10, it is 1.03× NoPriv’s.

6
The number of features in topic extraction models are usually much lower than in

spam models because of word variations for spam, for example, FREE and FR33, etc.

Size

N = 20K N = 100K

Non-encrypted 144.3 MB 769.4 MB

Baseline 288.4 MB 1.5 GB

Pretzel 720.7 MB 3.8 GB

Figure 12: Size of topic extractionmodels for the various systems. N
is the number of features in the model. B is set to 2048.

Percentage of the total training dataset

1% 2% 5% 10%

B′ = 5 79.6 84.0 90.1 94.0

B′ = 10 89.6 92.1 95.6 97.7

B′ = 20 95.9 97.3 98.5 99.3

B′ = 40 98.7 99.3 99.8 99.9

Figure 13: Impact of decomposed classification (§4.3) on classifica-

tion accuracy for the RCV1 dataset with 296 topics. The columns

(except the first) correspond to the percentage of the total training

dataset used to train the (public) model that extracts candidate top-

ics. The rows correspond to the number of candidate topics (B′). The
cells contain the percentage of test documents for which the “true

category” (according to a classifier trained on the entire training

dataset) is contained in the candidate topics. Higher percentage is

better; 100% is ideal.

Network transfers. Figure 11 shows the network transfers per

email for Baseline and Pretzel. As expected, with decomposed clas-

sification, Pretzel’s network transfers are lower; they are 402 KB per

email (or 5.4× the average email size of 75 KB, as reported in [14])

for B = 2048,B′ = 20, and 201 KB per email (or 2.7× the average

email size) for B = 2048,B′ = 10.

Client-side overheads. Figure 12 shows the model sizes (before

feature selection; §4.3) for the various systems for different values

of N and B = 2048. Pretzel’s model is bigger than Baseline’s for

two reasons. First, its model comprises a public part and an en-

crypted part that comes from the provider. Second, the ciphertext-

to-plaintext size ratio in xpir-bv is twice that of Paillier.

In terms of client-side cpu time, as in spam filtering, Pretzel (with

or without decomposed classification) takes less than half a second

to process an email with many features (L = 5000).

Loss of accuracy. Recall that classification accuracy for topic ex-

traction in Pretzel could be affected by decomposed classification

and feature selection (§4.3). Figure 13 shows the variation in classi-

fication accuracy due to decomposed classification. (The depicted

data are for the RCV1 dataset and NB classifier; the qualitative

results are similar for the other datasets and classifiers.) The data

suggest that an effective non-proprietary classifier can be trained

using a small fraction of training data, for only a small loss in

end-to-end accuracy.

Figure 14 shows classification accuracy for classifiers trained

with and without feature selection, and while varying the degree of

feature selection (using the Chi-square selection technique [116]). It

appears that even after a high degree of feature selection, accuracy

drops only modestly below its peak point. (This would reduce the

client-side storage cost presented in Figure 12.)



SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA T. Gupta et al.

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy
 (

p
er

ce
n

ta
g

e)

Fraction of total # of features (N’/N) 

LR-RCV
SVM-RCV

NB-RCV

LR-REU
SVM-REU

NB-REU

LR-20N
SVM-20N

NB-20N

Figure 14: Classification accuracy of topic extraction classifiers in

Pretzel as a function of N ′/N , where N is the total number of fea-

tures in the training part of the datasets and N ′ is the number of

selected features (§4.3). The plotted accuracies are for the 20News

(20N), Reuters (REU), and RCV1 (RCV) datasets. 20N and REU come

pre-split into training and testing parts: 60%/40% and 75%/25% for

the two respectively, whereas we randomly split RCV into 70%/30%

training/testing portions. Pretzel can operate at a point where num-

ber of features selected N ′ is roughly 25% of N ; this would result in

only a marginal drop in accuracy.

index size query time update time

Ling-spam 5.2 MB 0.32 ms 0.18 ms

Enron 27.2 MB 0.49 ms 0.1 ms

20 Newsgroup 23.9 MB 0.3 ms 0.12 ms

Reuters-21578 6.0 MB 0.28 ms 0.06 ms

Gmail Inbox (40K emails) 50.4 MB 0.13 ms 0.12 ms

Figure 15: Client-side search index sizes, cpu times to query a key-

word in the indexes (that is, retrieve a list of emails that contain a

keyword), and cpu times to index a new email.

6.3 Keyword search and absolute costs

Figure 15 shows the client-side storage and cpu costs of Pretzel’s

keyword search module (§5).

We now consider whether the preceding costs, in absolute terms,

would be acceptable in a deployment. We consider an average user

who receives 150 emails daily [124] of average size (75 KB) [14],

and owns a mobile device with 32 GB of storage.

To spam filter a long email, the client takes 358ms, which would

be less than a minute daily. As for the encrypted model, one with

5M features occupies 183.5 MB or 0.5% of the device’s storage. For

network overheads, each email transfers an extra 19.33 KB, which

is 2.8 MB daily.

For topic extraction, the client uses less than half a second of

cpu per email (or less than 75s daily); a model with 2048 categories

(close to Google’s) and 20K features occupies 720.7MB or 2.2% of the

device’s storage (this can be reduced further using feature selection).

Also, the client transfers an extra 59 MB (5.4 times the size of the

emails) over the network daily, when the number of candidate

topics (B′) is 20.
Overall, these costs are certainly substantial—and we don’t mean

to diminish that issue—but we believe that the magnitudes in ques-

tion are still within tolerance for most users.

7 DISCUSSION, LIMITATIONS, FUTUREWORK

Pretzel is an improvement over its baseline (§3.3) of up to 100×, de-

pending on the resource (§6). Its absolute overheads are substantial

but, as just discussed (§6.3), are within the realm of plausibility.

Pretzel’s prototype has several limitations. It handles only the

functions we presented (spam filtering, topic extraction, and key-

word search) and only using specific algorithms (linear classifiers).

Extending Pretzel to include other functions (predictive personal

assistance, virus scanning, etc.), other algorithms (neural networks,

etc.), or other (potentially cheaper) theoretical machinery [26] is

future work. So is adapting Pretzel to hide metadata.

A fundamental limitation of Pretzel is information leakage (§2.1).

Section 4.4 discussed this issue and potential remedies. To elaborate

slightly, providers can protect their models (in the spam function)

by periodically revising the model parameters and maintaining

different versions for different clients; hiding classifier algorithms,

which is another line of future work, would also help [125]. And

clients who wish to do so can protect their emails (in topic extrac-

tion) by opting out with plausible deniability; also, providers cannot

expose all or even a substantial fraction of clients this way, as that

would forfeit the original purpose of topic extraction. Nevertheless,

defaults being defaults, most clients would probably not opt out,

which means that particular clients could indeed be targeted by a

sufficiently adversarial provider.

If Pretzel were widely deployed, we would need a way to de-

rive and retrain models. This is a separate problem, with existing

research [121, 123, 132, 134–136]; combining Pretzel and this litera-

ture is future work.

There are many other obstacles between the status quo and de-

fault end-to-end encryption. In general, it’s hard to modify a com-

munication medium as entrenched as email [58]. On the other hand,

there is reason for hope: TLS between data centers was deployed

over just several years [56]. Another obstacle is key management

and usability: how do users share keys across devices and find each

other’s keys? This too is difficult, but there is recent research and

commercial attention [2, 31, 93, 126]. Finally, politics: there are

entrenched interests who would prefer email not to be encrypted.

Ultimately, our goal is just to demonstrate an alternative. We

don’t claim that Pretzel is an optimal point in the three-way tradeoff

among functionality, performance, and privacy (§2.1); we don’t yet

know what such an optimum would be. We simply claim that it is

different from the status quo (which combines rich functionality,

superb performance, but no encryption by default) and that it is

potentially plausible.

Acknowledgments

This draft was improved by comments from and conversations

with Varun Chandrasekaran, Eric Crockett, Natacha Crooks, Peter

Druschel, RayMooney, Ashay Rane, ShabsiWalfish, ShaneWilliams,

YuanzhongXu, Samee Zahur, and the anonymousNSDI17 reviewers.

We thank Andrew J. Blumberg for an inspiring conversation about

webmail (non)privacy. This work was supported by an Amazon EC2

student grant; NSF grants 1055057, 1409555, 1423249, and 1514422;

ONR grant N00014-14-1-0469; AFOSR grant FA9550-15-1-0302; and

a Google Research Fellowship.



Pretzel: Email encryption and provider-supplied functions are compatible SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

REFERENCES

[1] http://openpgp.org/.

[2] https://keybase.io.

[3] http://spamprobe.sourceforge.net/.

[4] http://spambayes.sourceforge.net/.

[5] http://spamassassin.apache.org/.

[6] http://scikit-learn.org/stable/.

[7] http://www.cs.waikato.ac.nz/ml/weka/.

[8] https://support.google.com/ads/answer/2842480?hl=en.
[9] https://www.gnupg.org/software/gpgme/index.html.

[10] https://www.sqlite.org/fts3.html.

[11] https://www.cs.cmu.edu/~./enron/.

[12] http://qwone.com/~jason/20Newsgroups/.

[13] http://www.daviddlewis.com/resources/testcollections/reuters21578/.

[14] http://email.about.com/od/emailstatistics/f/What_is_the_Average_Size_of_

an_Email_Message.htm.

[15] http://www.gossamer-threads.com/lists/spamassassin/users/151578.

[16] http://users.spamassassin.apache.narkive.com/d6ppUDfw/large-scale-global-

bayes-tuning.

[17] http://spamassassin.apache.org/full/3.4.x/doc/Mail_SpamAssassin_Conf .html.

[18] A survey on ring-LWE cryptography, Feb. 2016. https://www.microsoft.com/

en-us/research/video/a-survey-on-ring-lwe-cryptography/.

[19] P. Aditya, R. Sen, P. Druschel, S. J. Oh, R. Benenson, M. Fritz, B. Schiele,

B. Bhattacharjee, and T. T. Wu. I-Pic: A platform for privacy-compliant image

capture. In MobiSys, 2016.
[20] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O. Killijian. XPIR: Private

Information Retrieval for Everyone. In PETS, 2016.
[21] A. Amirbekyan and V. Estivill-Castro. A new efficient privacy-preserving

scalar product protocol. In Australasian conference on Data mining and
analytics (AusDM), 2007.

[22] I. Androutsopoulos, J. Koutsias, K. Chandrinos, G. Paliouras, and

C. Spyropoulos. An evaluation of Naive Bayesian anti-spam filtering. In

Workshop on Machine Learning in the New Information Age, 2000.
[23] Apple. Our Approach to Privacy.

http://www.apple.com/privacy/approach-to-privacy/.

[24] M. L. G. at National Taiwan University. LIBLINEAR–A library for large linear

classification. https://www.csie.ntu.edu.tw/~cjlin/liblinear/.

[25] M. J. Atallah and W. Du. Secure multi-party computational geometry. In

Workshop on Algorithms and Data Structures (WADS). 2001.
[26] M. Ball, T. Malkin, and M. Rosulek. Garbling gadgets for boolean and

arithmetic circuits. In ACM CCS, 2016.
[27] D. Beeby. Rogue tax workers snooped on ex-spouses, family members. Toronto

Star, June 2010. https://www.thestar.com/news/canada/2010/06/20/rogue_tax_

workers_snooped_on_exspouses_family_members.html.

[28] E. Betters. What is Google Assistant, how does it work, and when can you use

it?, Sept. 2016. http://www.pocket-lint.com/news/137722-what-is-google-

assistant-how-does-it-work-and-when-can-you-use-it.

[29] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto,

and F. Roli. Evasion attacks against machine learning at test time. In

ECML-PKDD, 2013.
[30] M. Blanton and P. Gasti. Secure and efficient protocols for iris and fingerprint

identification. In ESORICS, 2011.
[31] J. Bonneau. EthIKS: Using Ethereum to audit a CONIKS key transparency log.

In FC, 2016.
[32] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal

margin classifiers. In Wkshp on Computational Learning Theory (COLT), 1992.
[33] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning classification

over encrypted data. In NDSS, 2014.
[34] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from

ring-LWE and security for key dependent messages. In CRYPTO, 2011.
[35] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and

regression trees. CRC press, 1984.

[36] J. Bringer, O. El Omri, C. Morel, and H. Chabanne. Boosting GSHADE

capabilities: New applications and security in malicious setting. In Symposium
on Access Control Models and Technologies (SACMAT), 2016.

[37] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP

message format. RFC 4880, IETF, 2007.

[38] Y.-T. Chiang, D.-W. Wang, C.-J. Liau, and T.-s. Hsu. Secrecy of two-party secure

computation. In IFIP DBSec. 2005.
[39] P. Ciano. How to use Google Now, Mar. 2014.

https://paulciano.org/2014/03/getting-google-now/.

[40] M. Cohen. Web storage overview. https://developers.google.com/web/

fundamentals/instant-and-offline/web-storage/.

[41] K. Conger. Google engineer says he’ll push for default end-to-end encryption

in Allo, May 2016. https://techcrunch.com/2016/05/19/google-engineer-says-

hell-push-for-default-end-to-end-encryption-in-allo/.

[42] K. Conger. Google’s Allo won’t include end-to-end encryption by default, May

2016. https://techcrunch.com/2016/05/18/googles-allo-wont-include-end-to-

end-encryption-by-default/.

[43] J. Corbet. The grumpy editor’s guide to bayesian spam filters, 2006.

https://lwn.net/Articles/172491/.

[44] G. V. Cormack. TREC 2007 spam track overview. In TREC, 2007.
[45] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,

20(3):273–297, 1995.

[46] R. De Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede. Efficient software

implementation of ring-LWE encryption. In Design, Automation & Test in
Europe (DATE), 2015.

[47] T. Dierks and E. Rescorla. The transport layer security (TLS) protocol version

1.2. RFC 5246, Network Working Group, 2008.

[48] W. Diffie and M. Hellman. New directions in cryptography. IEEE transactions
on Information Theory, 22(6):644–654, 1976.

[49] J. Dizon. Gmail can now automatically put flight, hotel, ticket, or restaurant

info on Google calendar, Aug. 2015. http://www.techtimes.com/articles/79380/

20150826/gmail-can-now-automatically-put-flight-hotel-ticket-or-

restaurant-info-on-google-calendar.htm.

[50] Y. Dodis, R. Gennaro, J. Håstad, H. Krawczyk, and T. Rabin. Randomness

extraction and key derivation using the CBC, cascade and HMAC modes. In

CRYPTO, 2004.
[51] C. Dong and L. Chen. A fast secure dot product protocol with application to

privacy preserving association rule mining. In PAKDD, 2014.
[52] W. Du and M. J. Atallah. Protocols for secure remote database access with

approximate matching. In E-Commerce Security and Privacy, 2001.
[53] W. Du and Z. Zhan. Building decision tree classifier on private data. In Intl.

Conf. on Data Mining Wkshp on Privacy, Security and Data Mining (PSDM), 2002.
[54] W. Du and Z. Zhan. A practical approach to solve secure multi-party

computation problems. In New security paradigms workshop (NSPW), 2002.
[55] T. Duong. Security and privacy in Google Allo, May 2016. https:

//vnhacker.blogspot.com/2016/05/security-and-privacy-in-google-allo.html.

[56] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein, N. Lidzborski,

K. Thomas, V. Eranti, M. Bailey, and J. A. Halderman. Neither snow nor rain

nor MITM...: An empirical analysis of email delivery security. In IMC, 2015.
[57] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A

library for large linear classification. JMLR, 9(Aug):1871–1874, 2008.
[58] L. Franceschi-Bicchierai. Even the inventor of PGP doesn’t use PGP, 2015. http:

//motherboard.vice.com/read/even-the-inventor-of-pgp-doesnt-use-pgp.

[59] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES

circuit. In CRYPTO. 2012.
[60] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen. On private scalar product

computation for privacy-preserving data mining. In Intl. Conf. on Information
Security and Cryptology (ICISC). 2004.

[61] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In

STOC, 1987.
[62] J. Goodman and W.-t. Yih. Online discriminative spam filter training. In Conf.

on Email and Anti-Spam (CEAS), 2006.
[63] Google. https://github.com/google/end-to-end.

[64] Google. Google transparency report.

https://www.google.com/transparencyreport/userdatarequests/US/.

[65] Google. How Gmail ads work.

https://support.google.com/mail/answer/6603?hl=en.
[66] S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and

Y. Vahlis. Secure two-party computation in sublinear (amortized) time. In ACM
CCS, 2012.

[67] J. Gould. The natural history of Gmail data mining. Gmail isn’t really about

email—it’s a gigantic profiling machine. Medium, June 2014.

https://medium.com/@jeffgould/the-natural-history-of-gmail-data-mining-

be115d196b10.

[68] P. Graham. A plan for spam, 2002. http://www.paulgraham.com/spam.html.

[69] P. Graham. Better Bayesian filtering, 2003.

http://www.paulgraham.com/better.html.

[70] T. Gupta, H. Fingler, L. Alvisi, and M. Walfish. Pretzel: Email encryption and

provider-supplied functions are compatible (extended version). arXiv preprint
arXiv:1612.04265, 2016.

[71] J. Huang, J. Lu, and C. X. Ling. Comparing Naive Bayes, decision trees, and

SVM with AUC and accuracy. In Intl. Conf. on Data Mining (ICDM), 2003.
[72] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation

using garbled circuits. In USENIX Security, 2011.
[73] Y. Huang, J. Katz, and D. Evans. Quid-pro-quo-tocols: Strengthening

semi-honest protocols with dual execution. In IEEE S&P, 2012.
[74] Y. Huang, Z. Lu, et al. Privacy preserving association rule mining with scalar

product. In International Conference on Natural Language Processing and
Knowledge Engineering (NLP-KE), 2005.

[75] Y. Huang, L. Malka, D. Evans, and J. Katz. Efficient privacy-preserving

biometric identification. In NDSS, 2011.

http://openpgp.org/
https://keybase.io
http://spamprobe.sourceforge.net/
http://spambayes.sourceforge.net/
http://spamassassin.apache.org/
http://scikit-learn.org/stable/
http://www.cs.waikato.ac.nz/ml/weka/
https://support.google.com/ads/answer/2842480?hl=en
https://www.gnupg.org/software/gpgme/index.html
https://www.sqlite.org/fts3.html
https://www.cs.cmu.edu/~./enron/
http://qwone.com/~jason/20Newsgroups/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://email.about.com/od/emailstatistics/f/What_is_the_Average_Size_of_an_Email_Message.htm
http://email.about.com/od/emailstatistics/f/What_is_the_Average_Size_of_an_Email_Message.htm
http://www.gossamer-threads.com/lists/spamassassin/users/151578
http://users.spamassassin.apache.narkive.com/d6ppUDfw/large-scale-global-bayes-tuning
http://users.spamassassin.apache.narkive.com/d6ppUDfw/large-scale-global-bayes-tuning
http://spamassassin.apache.org/full/3.4.x/doc/Mail_SpamAssassin_Conf.html
https://www.microsoft.com/en-us/research/video/a-survey-on-ring-lwe-cryptography/
https://www.microsoft.com/en-us/research/video/a-survey-on-ring-lwe-cryptography/
http://www.apple.com/privacy/approach-to-privacy/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.thestar.com/news/canada/2010/06/20/rogue_tax_workers_snooped_on_exspouses_family_members.html
https://www.thestar.com/news/canada/2010/06/20/rogue_tax_workers_snooped_on_exspouses_family_members.html
http://www.pocket-lint.com/news/137722-what-is-google-assistant-how-does-it-work-and-when-can-you-use-it
http://www.pocket-lint.com/news/137722-what-is-google-assistant-how-does-it-work-and-when-can-you-use-it
https://paulciano.org/2014/03/getting-google-now/
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage/
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage/
https://techcrunch.com/2016/05/19/google-engineer-says-hell-push-for-default-end-to-end-encryption-in-allo/
https://techcrunch.com/2016/05/19/google-engineer-says-hell-push-for-default-end-to-end-encryption-in-allo/
https://techcrunch.com/2016/05/18/googles-allo-wont-include-end-to-end-encryption-by-default/
https://techcrunch.com/2016/05/18/googles-allo-wont-include-end-to-end-encryption-by-default/
https://lwn.net/Articles/172491/
http://www.techtimes.com/articles/79380/20150826/gmail-can-now-automatically-put-flight-hotel-ticket-or-restaurant-info-on-google-calendar.htm
http://www.techtimes.com/articles/79380/20150826/gmail-can-now-automatically-put-flight-hotel-ticket-or-restaurant-info-on-google-calendar.htm
http://www.techtimes.com/articles/79380/20150826/gmail-can-now-automatically-put-flight-hotel-ticket-or-restaurant-info-on-google-calendar.htm
https://vnhacker.blogspot.com/2016/05/security-and-privacy-in-google-allo.html
https://vnhacker.blogspot.com/2016/05/security-and-privacy-in-google-allo.html
http://motherboard.vice.com/read/even-the-inventor-of-pgp-doesnt-use-pgp
http://motherboard.vice.com/read/even-the-inventor-of-pgp-doesnt-use-pgp
https://github.com/google/end-to-end
https://www.google.com/transparencyreport/userdatarequests/US/
https://support.google.com/mail/answer/6603?hl=en
https://medium.com/@jeffgould/the-natural-history-of-gmail-data-mining-be115d196b10
https://medium.com/@jeffgould/the-natural-history-of-gmail-data-mining-be115d196b10
http://www.paulgraham.com/spam.html
http://www.paulgraham.com/better.html


SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA T. Gupta et al.

[76] I. Ioannidis, A. Grama, and M. Atallah. A secure protocol for computing

dot-products in clustered and distributed environments. In International
Conference on Parallel Processing (ICPP), 2002.

[77] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers

efficiently. In CRYPTO, 2003.
[78] T. Joachims. Text categorization with Support Vector Machines: Learning with

many relevant features. In ECML, 1998.
[79] C. Kaleli and H. Polat. Providing Naïve Bayesian classifier-based private

recommendations on partitioned data. In PKDD, 2007.
[80] J.-S. Kang and D. Hong. On fast private scalar product protocols. In Security

Technology (SecTech). 2011.
[81] M. Keller, E. Orsini, and P. Scholl. Actively secure OT extension with optimal

overhead. In CRYPTO, 2015.
[82] A. Khedr, G. Gulak, and V. Vaikuntanathan. SHIELD: Scalable homomorphic

implementation of encrypted data-classifiers. IEEE Transactions on Computers,
65(9):2848–2858, 2014.

[83] B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate secure computation with

malicious adversaries. In USENIX Security, 2012.
[84] S. Laur and H. Lipmaa. On private similarity search protocols. In Nordic

Workshop on Secure IT Systems (NordSec), 2004.
[85] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection

for text categorization research. JMLR, 5(Apr):361–397, 2004.
[86] C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton method for

logistic regression. JMLR, 9(Apr):627–650, 2008.
[87] Y. Lindell. Fast cut-and-choose-based protocols for malicious and covert

adversaries. Journal of Cryptology, 29(2):456–490, 2016.
[88] Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party

computation. Journal of Cryptology, 22(2):161–188, 2009.
[89] X. Liu, R. Lu, J. Ma, L. Chen, and B. Qin. Privacy-preserving patient-centric

clinical decision support system on Naive Bayesian classification. IEEE Journal
of Biomedical and Health Informatics, 20(2):655–668, 2016.

[90] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with

errors over rings. In EUROCRYPT, 2010.
[91] V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE

cryptography. In EUROCRYPT, 2013.
[92] A. McCallum, K. Nigam, et al. A comparison of event models for Naive Bayes

text classification. In AAAI workshop on learning for text categorization, 1998.
[93] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J. Freedman.

CONIKS: Bringing key transparency to end users. In USENIX Security, 2015.
[94] R. C. Merkle. Secure communications over insecure channels. Communications

of the ACM, 21(4):294–299, Apr. 1978.

[95] V. Metsis, I. Androutsopoulos, and G. Paliouras. Spam filtering with Naive

Bayes–which Naive Bayes? In Conf. on Email and Anti-Spam (CEAS), 2006.
[96] T. Meyer. No warrant, no problem: How the government can get your digital

data. ProPublica, June 2014. https://www.propublica.org/special/no-warrant-

no-problem-how-the-government-can-still-get-your-digital-data/.

[97] Microsoft. Law enforcement requests report.

https://www.microsoft.com/about/csr/transparencyhub/lerr/.

[98] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A

comparison of logistic regression and naive Bayes. In NIPS, 2001.
[99] P. Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In EUROCRYPT, 1999.
[100] M. A. Pathak, M. Sharifi, and B. Raj. Privacy preserving spam filtering. arXiv

preprint arXiv:1102.4021, 2011.
[101] C. Peikert. How (not) to instantiate ring-LWE. In Conference on Security and

Cryptography for Networks (SCN), 2016.
[102] S. Perez. Microsoft’s Cortana can now create reminders from your emails, Feb.

2017. https://techcrunch.com/2017/02/09/microsofts-cortana-can-now-create-

reminders-from-your-emails/.

[103] K. Poulsen. Five IRS employees charged with snooping on tax returns. Wired,
May 2008. https://www.wired.com/2008/05/five-irs-employ/.

[104] G. Robinson. A statistical approach to the spam problem. Linux Journal, Mar.

2003. http://www.linuxjournal.com/article/6467.

[105] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede.

Compact ring-LWE cryptoprocessor. In International Workshop on
Cryptographic Hardware and Embedded Systems (CHES), 2014.

[106] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving

face recognition. In Intl. Conf. on Information Security and Cryptology (ICISC),
2009.

[107] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving

face recognition (full version). Cryptology ePrint Archive, Report 507, 2009.

[108] D. Sculley and G. Wachman. Relaxed online SVMs in the TREC spam filtering

track. In TREC, 2007.
[109] D. Sculley and G. M. Wachman. Relaxed online SVMs for spam filtering. In

ACM SIGIR Conference, 2007.
[110] R. Shaltiel. Recent developments in explicit constructions of extractors.

Bulletin of the European Association for Theoretical Computer Science (EATCS),

77(67-95):10, 2002.

[111] M. Shaneck and Y. Kim. Efficient cryptographic primitives for private data

mining. In Hawaii Intl. Conf. on System Sciences (HICSS), 2010.
[112] C. Soghoian. Two honest Google employees: our products don’t protect your

privacy, Nov. 2011.

http://paranoia.dubfire.net/2011/11/two-honest-google-employees-our.html.

[113] S. Somogyi. Making end-to-end encryption easier to use. Google Security Blog,
June 2014. https://security.googleblog.com/2014/06/making-end-to-end-

encryption-easier-to.html.

[114] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and F. Koushanfar.

TinyGarble: Highly compressed and scalable sequential garbled circuits. In

IEEE S&P, 2015.
[115] A. Stamos. User-focused security: End-to-end encryption extension for Yahoo

Mail. Yahoo Tumblr Blog, Mar. 2015. https://yahoo.tumblr.com/post/

113708033335/user-focused-security-end-to-end-encryption.

[116] B. Tang, S. Kay, and H. He. Toward optimal feature selection in Naive Bayes for

text categorization. IEEE Transactions on Knowledge and Data Engineering,
28(9):2508–2521, 2016.

[117] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing machine

learning models via prediction APIs. In USENIX Security, 2016.
[118] D. Trincă and S. Rajasekaran. Fast cryptographic multi-party protocols for

computing boolean scalar products with applications to privacy-preserving

association rule mining in vertically partitioned data. In Data Warehousing and
Knowledge Discovery (DaWaK). 2007.

[119] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. Processing analytical

queries over encrypted data. PVLDB, 6(5):289–300, Mar. 2013.

[120] J. Vaidya and C. Clifton. Privacy preserving association rule mining in

vertically partitioned data. In KDD, 2002.
[121] J. Vaidya, M. Kantarcıoğlu, and C. Clifton. Privacy-preserving Naive Bayes

classification. The VLDB Journal, 17(4):879–898, 2008.
[122] J. Vaidya, B. Shafiq, A. Basu, and Y. Hong. Differentially private Naive Bayes

classification. In IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013.

[123] J. Vaidya, H. Yu, and X. Jiang. Privacy-preserving SVM classification.

Knowledge and Information Systems, 14(2):161–178, 2008.
[124] L. Vanderkam. Stop checking your email, now. Fortune, Oct. 2012.

http://fortune.com/2012/10/08/stop-checking-your-email-now/.

[125] N. Šrndic and P. Laskov. Practical evasion of a learning-based classifier: A case

study. In IEEE S&P, 2014.
[126] WhatsApp. WhatsApp FAQ - End-to-End Encryption.

https://www.whatsapp.com/faq/en/general/28030015.

[127] Wikipedia. 2016 Democratic National Committee email leak, 2014. https:

//en.wikipedia.org/wiki/2016_Democratic_National_Committee_email_leak.

[128] Wikipedia. Sony pictures hack, 2014.

https://en.wikipedia.org/wiki/Sony_Pictures_hack.

[129] R. Wright and Z. Yang. Privacy-preserving Bayesian network structure

computation on distributed heterogeneous data. In KDD, 2004.
[130] Yahoo! https://github.com/yahoo/end-to-end.

[131] Yahoo! Transparency report: Overview. https://transparency.yahoo.com/.

[132] Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving classification of

customer data without loss of accuracy. In SIAM International Conference on
Data Mining (SDM), 2005.

[133] A. C. Yao. Protocols for secure computations. In Symposium on Foundations of
Computer Science (SFCS), 1982.

[134] X. Yi and Y. Zhang. Privacy-preserving Naive Bayes classification on

distributed data via semi-trusted mixers. Info. Systems, 34(3):371–380, 2009.
[135] H. Yu, X. Jiang, and J. Vaidya. Privacy-preserving SVM using nonlinear kernels

on horizontally partitioned data. In ACM Symposium on Applied Computing
(SAC), 2006.

[136] H. Yu, J. Vaidya, and X. Jiang. Privacy-preserving SVM classification on

vertically partitioned data. In PAKDD, 2006.
[137] S. Zahur and D. Evans. Obliv-C: A language for extensible data-oblivious

computation. Cryptology ePrint Archive, Report 1153, 2015.

[138] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole. In EUROCRYPT.
2015.

[139] S. Zahur, X. Wang, M. Raykova, A. Gascón, J. Doerner, D. Evans, and J. Katz.

Revisiting square-root ORAM efficient random access in multi-party

computation. In IEEE S&P, 2016.
[140] K. Zetter. Ex-Googler allegedly spied on user e-mails, chats, Sept. 2010.

https://www.wired.com/2010/09/google-spy/.

[141] H. Zhang. The optimality of Naive Bayes. AA, 1(2):3, 2004.
[142] P. Zhang, Y. Tong, S. Tang, and D. Yang. Privacy preserving Naive Bayes

classification. In Advanced Data Mining and Applications (ADMA). 2005.
[143] Y. Zhu, Z. Wang, B. Hassan, Y. Zhang, J. Wang, and C. Qian. Fast secure scalar

product protocol with (almost) optimal efficiency. In Collaborative Computing:
Networking, Applications, and Worksharing (CollaborateCom). 2015.

[144] P. R. Zimmermann. The official PGP user’s guide. MIT press, 1995.

https://www.propublica.org/special/no-warrant-no-problem-how-the-government-can-still-get-your-digital-data/
https://www.propublica.org/special/no-warrant-no-problem-how-the-government-can-still-get-your-digital-data/
https://www.microsoft.com/about/csr/transparencyhub/lerr/
https://techcrunch.com/2017/02/09/microsofts-cortana-can-now-create-reminders-from-your-emails/
https://techcrunch.com/2017/02/09/microsofts-cortana-can-now-create-reminders-from-your-emails/
https://www.wired.com/2008/05/five-irs-employ/
http://www.linuxjournal.com/article/6467
http://paranoia.dubfire.net/2011/11/two-honest-google-employees-our.html
https://security.googleblog.com/2014/06/making-end-to-end-encryption-easier-to.html
https://security.googleblog.com/2014/06/making-end-to-end-encryption-easier-to.html
https://yahoo.tumblr.com/post/113708033335/user-focused-security-end-to-end-encryption
https://yahoo.tumblr.com/post/113708033335/user-focused-security-end-to-end-encryption
http://fortune.com/2012/10/08/stop-checking-your-email-now/
https://www.whatsapp.com/faq/en/general/28030015
https://en.wikipedia.org/wiki/2016_Democratic_National_Committee_email_leak
https://en.wikipedia.org/wiki/2016_Democratic_National_Committee_email_leak
https://en.wikipedia.org/wiki/Sony_Pictures_hack
https://github.com/yahoo/end-to-end
https://transparency.yahoo.com/
https://www.wired.com/2010/09/google-spy/

	Abstract
	1 Introduction
	2 Architecture and overview
	2.1 Design ethos: (non)requirements
	2.2 Architecture

	3 Background, baseline, related work
	3.1 Classification
	3.2 Secure two-party computation
	3.3 Baseline protocol

	4 Pretzel's protocol refinements
	4.1 Replacing the cryptosystem
	4.2 Packing in Pretzel
	4.3 Pruning in topic extraction
	4.4 Robustness to misbehaving parties

	5 Implementation
	6 Evaluation
	6.1 Spam filtering
	6.2 Topic extraction
	6.3 Keyword search and absolute costs

	7 Discussion, limitations, future work
	References

