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Abstract

When a deployer of a web application puts that application
on a server (on-prem or cloud), how can they be sure that the
application is executing as intended? This paper studies how
the deployer can efficiently check that the execution is faith-
ful. We seek mechanisms that: (i) work with web applications
that are built with modern event-driven web frameworks,
(ii) impose tolerable computation and communication over-
heads on the web server, and (iii) are complete and sound.
We exhibit such a mechanism, based on a new record-replay
algorithm. We have implemented our algorithm in Karousos,
a system that audits Node.js web applications.

CCS Concepts « Security and privacy — Web applica-
tion security; - Computer systems organization — Re-
liability.
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1 Introduction

Consider a developer, Cam, who writes or trusts source code
for a web application (for example, written in Node.js). On
Cam’s machine, the code runs a certain way; call this ver-
sion of the application the “golden master”. This does not
mean that the application has no bugs, only that it’s the
version Cam wishes to execute. Cam now deploys that code
on-premise (on-prem) or on a remote cloud, and wants to
be sure that the code executes the same way as the golden
master would. Unfortunately, Cam cannot simply assume
such faithful execution. The issues include differences in any

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys "24, April 22-25, 2024, Athens, Greece

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0437-6/24/04...$15.00
https://doi.org/10.1145/3627703.3650089

TGoogle

*ETH Zurich

layer of the stack below the application: language run-time,
operating system, hypervisor, and hardware. Such differ-
ences could result from different versions. Differences could
also result from bugs [47], misconfiguration, operational
error, or—in the case of a remote server—insider [54] and
co-tenant attacks [75]. So how can Cam get assurance that
the application is executing as the golden master would?

The general topic here is execution integrity: giving some
principal (such as Cam) confidence that running a given pro-
gram (such as Cam’s application) on given inputs (in Cam’s
case, requests to a web server) truly produces the alleged
outputs (in Cam’s case, responses from the web server). Note
that this is complementary to program verification, which
is about ensuring that source code meets a specification;
here, we take the code as a given, and want to make sure
that it is actually executed. Solutions to execution integrity
include Byzantine fault-tolerant replication [25], AVMs [48],
and probabilistic proofs [88, Ch.19] (zero-knowledge proofs
and so on). However, these works are not geared to Cam’s
question: they make assumptions about the server’s failure
modes, don’t scale to legacy web applications, or require the
principal to do too much work (see §2.2 and §7).

Attestation using TPMs [26, 49, 62, 63, 73, 76, 79, 84] and
enclaves [13, 16, 20, 52, 77, 81, 83] guarantees that a precise
software stack was running at a given instant. However, as
we argue in the next section (§2.2), placing an entire stack
in an enclave does not solve Cam’s problem. Cam may wish
to use Platform as a Service (PaaS) or serverless deployment
models, in which case not only is the remote stack different
from Cam’s but also Cam has no visibility into the remote
stack. Moreover, the state of a running remote stack can be
corrupted over time, even if initially attested-to.

One work, Orochi [87], proposed a different approach
based on validating outputs, given observed inputs. In Orochi,
a verifier (a machine under Cam’s control) performs a com-
prehensive audit. Orochi requires a collector, situated logi-
cally in front of the server, that captures a ground-truth trace
of exactly the inputs to, and outputs from, the server. One
option is to run the collector on-prem and proxy all traffic
through it; another is to use attestation. Section 2.2 further
discusses the requirement of a collector.

Given this setup, the verifier re-executes from the inputs
in the (trusted) trace, checking that the re-executed outputs
match the outputs in the trace. Crucial to this process is
(untrusted) advice that the verifier receives from the server,
which enables the verifier to accelerate re-execution versus
naive replay, by re-executing requests in batches. The advice


https://doi.org/10.1145/3627703.3650089
https://doi.org/10.1145/3627703.3650089

EuroSys ’24, April 22-25, 2024, Athens, Greece

also helps the verifier make sense of concurrent executions.
This is a harder problem than standard record-replay [29,
30, 33] (§7), in part because the advice can be adversarial.
In fact, approaches to advice validation that seem right can
be misled into wrongly accepting a bogus execution at the
server (see §4.3 and [87, §3.4-3.5] for examples).

Our work is inspired by Orochi. However, Orochi has a
restricted execution model, which limits applicability to a
small subset of web applications. First, each client request
in Orochi must be handled within a single execution con-
text, as in PHP. This rules out web applications that use
event-driven frameworks such as Tornado [4], Node.js [5],
and Phoenix [6]. Without taking a position in the eternal
events-versus-threads debate, we note that most modern web
application frameworks are written in the event-driven style.
Second, Orochi assumes that little state is shared between
execution contexts; if more state were shared, Orochi’s proto-
cols would require the server to send an impractically large
quantity of advice to the verifier. Third, external state in
Orochi, such as a transactional key-value store, is assumed
to meet the strong condition of strict serializability [72]; yet,
many external data stores default to weaker isolation levels
and may not even offer strict serializability [18].

Addressing these restrictions introduces new technical
problems. Defining and solving them is the work of this
paper, which we do in the context of a system called Karousos.
Karousos borrows the Orochi setting (collector, untrusted
server, verifier). Karousos makes the following contributions:

A new record-replay technique for event-driven systems,
which balances re-execution throughput and server logging.
The more the verifier can batch requests and deduplicate
instructions, the higher the throughput of re-execution. But
the more batching is permitted, the more the re-execution
can be reordered versus the original execution. And the more
reordering, the more the server has to log and transmit to
the verifier (in the advice) to facilitate re-execution.

Karousos shifts the tradeoff curve and identifies a point
on the shifted curve, with several interlocking ideas. First,
Karousos’s verifier batches together requests that induce the
same trees of events (§4.1), regardless of the original order
of the corresponding handlers. Second, Karousos introduces
a notion of R-ordered (§4.2): two dependent operations dur-
ing execution (for example, a write of a program variable
followed by a read of that variable) are R-ordered if they are
guaranteed to be re-executed in that same order. The server
then logs only operations that are not R-ordered. Third, for
unlogged operations, the verifier consults a version history
that it constructs while re-executing (§4.2).

Ensuring that re-executions are sensible. Without further
mechanism, a misbehaving server could make the verifier ac-
cept executions (as embodied in traces) that are inconsistent
with executions of the original code (§4.3, §4.4). Karousos
handles server misbehavior by requiring that requests are
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served, program variables are accessed, and transactions are
executed, all in an order consistent with each other—and with
the program. Note that this is much more easily said than
done, because the verifier must check consistency across
three sources of ordering, only one of which (the trace) is
trusted; the others must be validated with specific kinds of
crosschecks or through the course of re-execution.

Karousos’s techniques include, for program variables, re-
constructing an alleged partial order of variable accesses
while executing (§4.3). For transactional state stores (§4.4),
the principal correctness conditions surround isolation levels
(serializability, read-committed, and so on). But the verifier
cannot simply use existing algorithms for testing isolation,
such as Adya’s [7], because there is no trustworthy source
of internal transaction history. Instead, the Karousos verifier
runs Adya’s algorithms against an alleged history, thereby
contingently justifying that history, and then ensures that
the contingent history is consistent with the rest of the exe-
cution.

Although one might think that existing frameworks [29,
30, 33, 68-70] could substitute for the techniques of Karousos,
our experience has been that first-cut “solutions” subtly fail:
an adversarial server can mislead the verifier or the verifier
cannot validate even an honest server’s execution. Regard-
less, because of the context—arbitrary server behavior while
the verifier is computationally weaker than the server—any
proposal in this context carries the burden of proof. Specifi-
cally, any proposal requires a rigorous proof of both Com-
pleteness (the verifier accepts executions that are faithful
to the original code) and Soundness (the verifier rejects un-
faithful ones, regardless of server misbehavior).

Proof of correctness. We supply such proofs for Karousos
(Appendix C).

Implementation. Our implementation of Karousos supports
web applications that are written in Node.js and use MySQL
as a transactional key-value store. As we explain later (§5),
developers wanting to use our implementation need to an-
notate portions of their code. Our implementation supports
a core of JavaScript, disallowing certain other constructs.

We have evaluated Karousos on a popular wiki applica-
tion [2] and two model web applications (§6). For the wiki
application, Karousos’s server has processing overhead of
1.2-2.8% that of an unmodified server; we believe this is a
reasonable price to pay for execution integrity. By contrast,
probabilistic proofs (succinct arguments, zero-knowledge
proofs, and so on) [17, 37, 38, 43, 44, 53, 64] are, as of this
writing, the only other approach to execution integrity that
does not trust server hardware or assume a fault-free fraction
of replicas; but probabilistic proofs impose server overhead
on the order of 10°x, despite recent progress (and marketing);
see [88, Ch.19] for a survey of implementations.

For the wiki application, the Karousos verifier is between
19%—-34% faster than an implementation of Orochi for Node.js,
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Figure 1. The problem: efficiently auditing an untrusted server.

and between 1.8X-16.6X faster than an alternative that se-
quentially re-executes. Also, the advice produced by the
Karousos for the wiki application are of reasonable size (24
to 146 MB for 600 requests), and Karousos’s logs are no
larger, and sometimes 50% smaller than, those in our Orochi
implementation.

These results are encouraging, but Karousos has clear
limitations. First, the implemented system requires develop-
ers to manually annotate the program (§5) and update the
annotations with new code releases; this burden could be
lifted by fully automating annotation using a static analyzer,
for example, one built on escape analysis [51, 94]. Second,
JavaScript workers are disallowed; this is not fundamental.
More fundamentally, timers are disallowed, range queries
on transactional state are not supported, and snapshot isola-
tion is not supported. Addressing these restrictions would
require extending our algorithms and proofs; we leave this
to future work. Finally, at the level of architecture, Karousos
verifies only a single web application, not multiple interact-
ing server-side applications.

The bottom line, however, is that Karousos takes a big step
forward: it shows how to get assurance about the execution
of event-driven web applications.

2 Setup and background
2.1 Problem: comprehensive server audit

Here, we define our problem abstractly, to showcase the chal-
lenge while avoiding distracting details. Later (§5), we will
translate it to event-driven web applications. Our presenta-
tion is inspired by, and has some textual debts to, Orochi [87,
§2].

Figure 1 depicts the problem. Some principal (like Cam)
deploys a program P on an untrusted server (for example,
running on a cloud platform).! Clients make requests to the
server. Requests can be concurrent with each other, and P
can be a concurrent program. A response is allegedly the
result of invoking P against the corresponding request.

The principal has access to a trace of the actual requests
and (possibly unfaithful) responses. The trace is provided by
a collector that is assumed to work correctly (we delve into

1We are leaving unspecified whether P’s deployment includes a specific
stack chosen by the principal; the problem statement is relevant either way.
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collection in the next section). We can think of the trace as
the ground truth record of what enters and leaves the server.

The server is supposed to follow a defined reporting pro-
cedure during execution, which produces advice. However,
the server is untrusted and could either decline to produce
advice, or generate adversarial advice designed to deceive
the system.

Using the (ground truth) trace and the (untrusted) advice,
a verifier that the principal controls conducts an audit pe-
riodically, to determine whether the responses in the trace
could have been produced by executing P on the requests in
the trace. A constraint is that the (local) verifier has much
less computational capacity than the (remote) server. Like-
wise, the verifier and server are connected by a network with
limited capacity. The verifier and the advice should satisfy
these properties:

e Completeness. If the server behaved properly during the
time period of the trace (which includes collecting advice
honestly), then the verifier must accept the given trace.

e Soundness. The verifier must reject if the server misbe-
haved. Specifically, the verifier accepts only if there is
some schedule S of (possibly concurrent) executions, such
that: (a) executing the given program against the inputs
in the trace, while following S, reproduces exactly the re-
spective outputs in the trace, and (b) S is consistent with
the ordering in the trace. (Appendix C.2 states Soundness
precisely.) This property means that the server can pass
the audit only by behaving in a way that is, to external
observations, indistinguishable from actually executing
the program on the received requests.

e Efficiency. This means several things in our context. (a) The
verifier, being computationally weaker than the server,
needs to perform less computation than the server; in
particular, the work of the verifier should be computation-
ally less costly than naively re-executing each request in
the trace one-by-one. (b) The advice sent from the server
to the verifier needs to be kept small. (c) Advice collec-
tion should not significantly impact the server’s response
latency. We are willing to tolerate some computational
overhead at the server, as we expect auditability to cost
something.

2.2 Execution integrity

Though it is a crucial property, execution integrity can be
counter-intuitive; for example, it is sometimes confused with
the orthogonal concern of program correctness. So in this
section we aim to clarify some aspects of the model, and
answer natural questions. Before continuing, we want to
be clear: the audit setup does not presume a bug-free appli-
cation. Instead, given that the program in question, when
run on a known stack, behaves a certain way (which might
be buggy), we want to guarantee that: either the untrusted
server ran that same way or else the verifier complains.
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Enclaves and attestation. Although we aren’t taking a
stand against enclaves [13, 16, 20, 31, 40, 45, 52, 77, 81, 83]
in general—indeed, we suggest a limited use of them below—
our view is that putting the entire stack in an enclave is
insufficient to provide a strong notion of execution integrity.

First, the stack in question might not be defined. Cam (as
the verifier) might have one stack while the cloud provider
has another. Indeed, in PaaS and serverless models, the cloud
provider can and does optimize their platform to their hard-
ware infrastructure, and doesn’t release the stack. (AWS,
for example, patches both the operating system executing
Lambda functions [10] and the Node.JS runtime executing
within [11], but neither are available for download.)

Second, stacks are messy. Attestation ensures that the
initial state of the stack is approved. But the attested-to stack
is not formally validated; it has vulnerabilities and thus attack
surface. In particular, it is exposed to all of the traffic directed
to all layers of the stack (IP, TCP, etc.), as well as co-located
applications. For example, adversarial traffic aimed at TCP
could subvert the OS, which enclaves do not prevent.2

An audit-based verifier, by contrast, is far less likely to
be subverted, because the verifier receives a small subset
of all traffic that the server does: only the application-level
requests and responses (for example, the contents of HTTP
requests). This is the trace, which is “strained out” by the
collector. The verifier then delivers those requests directly
to the re-executing application. Thus, relative to placing the
entire stack in an enclave, the audit setup has a narrower
attack surface, smaller TCB, and fewer assumptions.

Collection. A comprehensive audit solution requires ground-
truth outputs and inputs. This is the role of the collector. One
option for the collector is to run a TLS endpoint in an attested-
to enclave [87, §7]. As argued in DOG [15], this configuration
resists the sort of attacks-on-the-stack that we alluded to
above, because only the TLS implementation, not the stack
itself, is trusted. Notice, however, that the fundamental point
applies beyond attestation and enclaves. The fundamental
point is that trusting a collector (to deliver a ground-truth
trace) is a smaller assumption than trusting the entire stack
(to execute faithfully): the collector does far less. Indeed, in
contrast to the behemoth of code in a modern OS, the collec-
tor could be implemented with only a thin supervisory layer,
or even hardware, deployed as a bump-in-the-wire that has
no stack of its own [87, §1,§4.1§7].

Other approaches to execution integrity. Comprehen-
sive auditing is verifier-efficient: the verifier does less work
than naively re-executing. Two other strands of work share

this property (see also §7): (1) Byzantine fault-tolerant repli-

cation [25], which requires > % of the replicas to be fault-

free. (2) Probabilistic proofs [17, 37, 38, 43, 44, 53, 64] place

2Providing attestation certificates in server responses [24, 60, 65, 85, 97]
does not solve the problem, since it is not clear how the principal can enforce
the use or checks of such certificates.
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no trust in the server (and would also need a trace). These
theoretical constructs have seen mushrooming implementa-
tions (see [92][88, Ch.19] for surveys). However, probabilistic
proofs would impose immense overhead (factors of 10°x are
common); they are not close to handling realistic web appli-
cations.

2.3 Our starting point: Orochi

Orochi [87] is a comprehensive server audit that, as stated in
the introduction, re-executes all requests in a trace, checking
that the produced responses match the outputs in the trace.

Orochi addresses the challenge of a computationally lim-
ited verifier by exploiting an aspect of web applications:
many executions follow the same code paths [55, 87]. The
Orochi server is supposed to track control flow, and then
specify (in the advice) control flow groups, meaning which re-
quests have the same control flow as each other. The verifier
then re-executes a single control flow group as a batch, using
SIMD-on-demand. If an instruction has the same operands
across a batch, the verifier re-executes that instruction only
once, and otherwise executes the opcode for each request in
the batch. This technique is facilitated by a datatype called
a multivalue, which collapses when all of the entries in the
multivalue are identical, and expands into a vector when
needed.

Given batching (which can group together a later request
with an earlier one), a read operation may be re-executed
before the dictating write operation is re-executed. Conse-
quently, the advice should tell the verifier how to re-execute
the read. Yet, the advice is untrusted; it could be wrong. This
is one way in which Completeness, Soundness, and Efficiency
are in tension: the advice is necessary (for Efficiency and
Completeness), but possibly wrong (threatening Soundness).

Orochi includes a technique called simulate-and-check.
The advice allegedly contains, for each object shared among
requests, a linear log of the values read and written. When re-
executing a read operation, the verifier feeds that operation
from the most recent write, according to the log. When re-
executing a write operation, the verifier checks that the value
produced by re-execution matches what is in that object’s
log, thereby validating the values that have fed, or will feed,
reads.

Despite this technique, the server could arrange responses
and advice to cause the verifier to accept bogus executions [87,
§3.4]. Consequently, another technique in Orochi is consistent
ordering verification; the verifier builds a graph that includes
every operation, request arrival, and response delivery, with
edges indicating ordering (time-order between requests, pro-
gram order between operations, operation order from the
logs). The verifier then insists that the graph is acyclic.

Orochi’s techniques are provably Complete and Sound (§2.1).
However, Orochi makes simplifying assumptions. First, al-
though the server is concurrent, requests are handled mostly
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in isolation, in straight-line fashion (with the unrealistic as-
sumption that when a response is delivered, the request has
no further effect). This rules out many web application ar-
chitectures and all event-driven frameworks. Second, Orochi
would produce unacceptably verbose logs (contra Efficiency;
§2.1) in a setting where a lot of state is shared between dis-
crete execution units (for example, program variables that
are accessed by multiple event handlers). Third, external
state such as transactional storage must be strongly consis-
tent, and must be accessed synchronously; this too rules out
many deployment scenarios.

3 Execution model

We define an execution model, KEM, for unmodified con-
current web applications. In subsequent sections we use
KEM to describe our core algorithm; the proofs presented
in the Appendix also build on KEM. KEM is intended to cap-
ture the semantics of Node.js programs; it does not model
the behavior of transactional state (for that, see §4.4). Fur-
thermore, KEM models a runtime that can have multiple
concurrent threads executing at a time. This is more gen-
eral than the Node.js runtime (and indeed other JavaScript
runtimes) which is single-threaded, allowing us to minimize
assumptions about the runtime.

KEM models the state of a program as a set of variables,
a set of zero-or-more pending events and a set of zero-or-
more event handlers (defined in the following paragraphs).
Program code can read or update any in-scope variable. How-
ever, similar to JavaScript, functions and closures capture
variables by reference. Consequently, all variables in scope
when a function or closure is defined are in scope for the body
of the function; even local variables might be accessed from
multiple functions. As a result, a variable might be concur-
rently accessed and updated by multiple concurrent threads.
KEM assumes all accesses are sequentially consistent [57].
This assumption is justified; indeed, all extant JavaScript
code assumes sequential consistency.

Events in KEM are associated with a name and a type. Mul-
tiple events of the same type can occur during execution, and
the set of pending events can contain multiple events of the
same type at a time. The runtime adds I/O events, including
ones for new user requests or when a transactional query has
finished running. Program code can add to the set of pend-
ing events by calling a designated emit function. Events are
removed from the set of pending events by the runtime’s dis-
patch loop: each iteration of the loop non-deterministically
selects an event from the set, removes it from the set, and
then uses the selected event’s type to identify and call the
appropriate event handlers.

As in JavaScript, KEM event handlers are closures. Pro-
gram code can add or remove handlers by calling register
or unregister. Both functions take as input an event type
and a closure, which we sometimes refer to, loosely, as the
function associated with the event. Event handlers in KEM
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can perform computation, modify in-scope variables, emit
events, and register or unregister handlers. We refer to han-
dlers that are associated with “new user request” events as
request handlers. KEM assumes that event handlers run to
completion and that a handler’s execution is not interrupted
when it emits an event. We use the term handler activation
to refer to the act of the runtime’s dispatch loop calling an
event handler. Each such activation creates a unique handler.
Two separate handlers can, however, have the same code
(for example, if a given function is activated twice).

Programs in KEM begin execution by calling a designated
initialization function. This models the fact that JavaScript
programs, including Node.js programs, generally have static
initialization code outside of function bodies, for example as
part of object declarations. We assume that the initialization
function is deterministic.

Activation partial order. The execution model described
above induces a partial order on handler activations, A. Given
handler activations hy and h,, define the relation activator(h,)
hy if and only if hy emitted the event e that led to h;’s acti-
vation or hy issued the I/O request or transactional request
whose completion resulted in h;’s activation. This defini-
tion implies that any handler activation h without an ac-
tivator (i.e., Ak’ s.t. activator(h) = h’) must have been run
in response to a user request. For analytical convenience,
we treat the initialization function’s execution as a han-
dler activation I, and use I as the activator for all user re-
quest activations. Observe that given our execution model
and this definition, any handler A # I must have a unique
activator(h) # h. We use the activator relation to define
the partial order A as the transitive closure of the activator
relation. That is, we say (h, h") € A if activator(h’) = h or
there exists h = hy, hi,hy,...,hy, = b’ such that1 < i <
n, activator(h;) = h;_;. We sometimes write (h,h’) € A as
h<ah.

One can visualize each user request activation as inducing
a tree of handlers, with edges given by the activator relation.

Related work. KEM extends A5 [46] which provides a se-
mantic model for JavaScript. While 435 does not model events,
prior work [61] shows extensions that model several event-
driven frameworks. Similarly, KEM extends Ajs by adding
constructs for registering and unregistering event handlers
(or listeners) and for emitting events. Unlike these works,
KEM does not make assumptions about the order in which
event handlers are executed nor about the number of con-
currently executing event handlers. Thus, our algorithms,
which are designed to check execution integrity for all KEM
executions, can be extended to other languages and event-
driven frameworks. Furthermore, this generality means that
Karousos can be used even with future Node.js runtimes that
adopt different event dispatch loops or use multiple threads.
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function hO(arg) {
// handler for request
emit(el, arg);
if (arg % 2 == 0) ¥
emit(e2, arg);

function h2(arg) {
// handler for e2
1/

(r2,he)

(r3,h0)

Tzialla et al.
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(a) Application pseudocode

(b) Request execution timeline.
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(c) Re-execution batches and ordering.

Figure 2. Grouped re-execution in Karousos: (a) Pseudocode for a simple application; (b) An example execution trace. A directed arrow between handlers h
and h; indicates that hg <4 hy, i.e., the arrows represent the activation partial order; (c) Re-execution groups and the order in which groups are re-executed.

Observe that requests ry and r; are batched together for replay despite executing handlers h; and h; in different orders.

4 Auditing event-driven servers

As in Orochi [87] (§2.3), the Karousos server collects advice
that tells the verifier how to re-execute groups of requests
simultaneously, which the verifier does using the SIMD-on-
demand technique (§2.3). Karousos must address a key ques-
tion: how should it group code to be re-executed? There is an
essential trade-off: the more batching that is permitted (and
hence the more opportunity for re-execution efficiency), the
more there can be reordering in re-execution (relative to the
original execution). However, the more reordering, the more
the server has to collect advice to facilitate faithful replay;
for example, if a read of a program variable is re-executed
before the dictating write for that read, then the re-executed
read would have to be somehow fed from advice.

To highlight the trade-off, consider two extremes. Karousos
could conceivably chop each request into small pieces, and
re-execute structurally identical basic blocks from multiple
requests simultaneously; this would require logging enough
information so that each basic block has enough “context”
to be re-executed faithfully. At the other extreme, Karousos
could group together only identical requests that invoke iden-
tical handlers in the identical order and do not share state
with each other; this would require essentially no logging.

Karousos aims for the midpoint of this trade-off: we want
to enable a lot of reordering (to expose batching opportu-
nities) while controlling the burden of logging. In the re-
mainder of this section, we describe the choice of batching
granularity (§4.1) and how Karousos facilitates faithful re-
play of operations on program variables (§4.2), assuming
an honest server. We then describe how Karousos defends
against an untrusted server (§4.3). Section 4.4 extends the
design to transactional state.

Completeness and Soundness. In the following subsec-
tions, we will not discuss Completeness and Soundness ex-
plicitly, but we do discuss these properties right now. Note
that all of the mechanisms of Karousos are relevant to both
properties, in that the mechanisms must be designed so that
(a) an honest verifier can replay an execution and (b) when
the advice or observed outputs (in the trace) are wrong,
the verifier can detect that fact. Intuitively, the reason that

Karousos’s mechanisms provide Soundness is that its algo-
rithms insist (and reject otherwise) that there is some physi-
cally plausible ordering of events (at an honest server) that
could have been produced by the actual program on the ob-
served inputs. And, the reason that those same mechanisms
provide Completeness is that they give information (for ex-
ample, about scheduling) that allows the verifier to replay
an execution.

The mechanisms in Karousos, taken individually, do not
obviously reflect the underlying complexity, which is sub-
stantial. This complexity derives from the need to handle
arbitrary combinations of adversarial advice. The complex-
ity does need to show somewhere; it appears in the proofs
themselves (Appx C).

4.1 Batched re-execution in Karousos

In Karousos, a re-execution group comprises requests that
have the same tree of handlers—that is, the same A rela-
tion (§3)—and the same in-handler control flows, meaning
that corresponding handlers in different requests follow the
same branches. Re-execution respects the A relation and
program order within a handler but does not respect tem-
poral order. Specifically, later requests can be re-executed
before, or simultaneously with, temporally earlier ones. For
example, in Figure 2, r; is later than ry and ry, yet r; is re-
executed together with ry and before r;. Similarly, handlers
within a request, if not ordered by A, can be reordered during
re-execution; for example, (rg, k1) and (rg, h2) in Figure 2.

Section 5 describes how the server tracks the A relation
and the control flow within a handler. Having done so, the
server places in the advice a tag for each request in the
trace (§2.1), where requests with the same tags allegedly
belong in the same re-execution group.

Of course, the verifier does not trust that the server is
honest about the claimed grouping. However, the verifier
expects the server to include in its advice a description of the
activation partial order A. Specifically, the advice is supposed
to include, for each request, a handler log, with entries for
each emit, register, and unregister (§3). An entry specifies the
alleged activator (the handler), the alleged event, and (for reg-
ister and unregister) the allegedly registered/unregistered
function. When re-executing an emit, the verifier “trusts”
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Physical Execution Variables Handler Logs & Variable Logs
he { [activation hB. activator I. |
x = 0; x= 0
emit(el);
_ emit(e2);
(3]
B
o hi { [activation hl. activator h8. |
c
o X =x+1; x= 1 [<h1, 1>, write(x) = 1, nil |
3 }
3
5 h2 { [activation h2. activator h@.
X = X % f; B x =3 [<h2, 1>, read(x) = 1, <hl, 1>
respond(“0K"); [<h2, 1>, write(x) = 3, <h1, 1>

Figure 3. For program variables, Karousos only logs reads and writes that
are not R-ordered. Execution points in the figure are depicted as a <handler,
line number> tuple, so <h2, 1> means line 1 in handler h;. Although the
figure shows the full value logged on a read, in fact when logging reads
in a variable log, the server records only the locations of the read and
of the dictating write. When logging writes, the server records the value
being written, and the locations of the write and the write that is being
overwritten.

the handler log, which implicitly indicates which functions
are registered for the given event (all functions that have
been registered but not unregistered before the emit). When
re-executing register and unregister operations, the verifier
checks that these operations are exactly the ones that ap-
pear in the log, thereby vindicating the “trust” placed in the
handler log when re-executing emits. There are additional
checks, for example that all emit entries in the handler log
correspond to events that materialize during re-execution.
Appendix C contains details, including the necessary book-
keeping.

4.2 Trusted recorder, out-of-order replay

How does Karousos faithfully re-execute reads of program
variables? As we saw (§4.1), requests can be re-executed in
the opposite order from what happened originally, which
means that a read can be re-executed before the correspond-
ing write. This section assumes that the server is honest.

What the (honest) Karousos server does. As a strawman,
the server could include in its advice the values of all read
operations, which the verifier could use to feed each re-
executed read operation [51, 55, 68, 87] (see also §7). How-
ever, in logging every read or write of a program variable,
this solution conflicts with the goal of controlling the log
size (§2.1).

In contrast, the Karousos server decides dynamically whether

to log a given operation. Karousos introduces the concept of
R-ordered: two operations are R-ordered if one is guaranteed
to be re-executed before the other under any possible group-
ing during re-execution. We say that they are R-concurrent
if they are not R-ordered. More formally, we define a partial
order R over operations. We say that (0,0") € Ror o < o’ if
(a) o was executed as a part of handler activation h, o’ was
executed as a part of handler activation A’, and (h, h’) € A;

EuroSys ’24, April 22-25, 2024, Athens, Greece

Re-Execution State Operations  Variable Dictionary, Handler & Variable Logs

he { activation hO by I

x = 0; write(x) = 0 x@<h0,1>= © | ' [activation hl by ho

et CeD:
= emit(e2); <hl, 1>, write(x)= 1
g activation h2 by h@
o {—=—=--H<h2, 1>, read(x) =1
z h2 { ! <h2, 1>, write(x)= 3
[ X = X % 3; e m———-
o respond(“0K"); X0<h2,1>= 3

{
ooy D@<hi, =1

Figure 4. Re-execution in Karousos: During re-execution Karousos maintains
a dictionary for each variable (the figure shows the dictionary for x) that
contains previous values. Any logged reads return the logged value, while
any unlogged reads use the most recent value (as defined by <g) from the
variable’s dictionary. The figure depicts an abridged version of the logs from
Figure 3. The notation x@<h@, 1> represents, for example, the value of x
after line 1 of handler hy was executed.

or (b) 0 and 0" were both executed as part of handler activa-
tion h and o was executed before o’. Observe that R can be
regarded as the union of A and the program order, and that
R is formalizing the constraints on re-execution that were
stated in Section 4.1.

With this definition, we can now say what the Karousos
server puts in the advice. Each variable notionally has a vari-
able log. Then, as depicted in Figure 3, the server logs reads
of program variables that are not R-ordered with respect to
the dictating write. The server also logs writes of program
variables that are not R-ordered with respect to the pre-
ceding write; this helps validate executions from untrusted
servers (§4.3). In both cases, the server logs the function
location and value written by the dictating or preceding
write.

Re-execution. For a given program read, if there is a cor-
responding entry in the variable log, then the re-executor
consumes the value from the log. If that read is not in the
variable log, then (because the server is assumed to be hon-
est), the read must be R-ordered with its dictating write. This
implies, by definition of R-ordered, that by the time the read
happens, the write was already re-executed, which means
that in principle the read can be fed from that write.

We say “in principle” because Karousos must solve a prob-
lem: feeding the re-executed read with the correct write
operation. To illustrate the challenge, consider the naive
solution of simply applying re-executed writes to a recon-
structed copy of the variable, and feeding non-logged reads
from that variable. In the re-execution depicted in Figure 4,
this naive solution would cause h; to incorrectly read x=3
(the most recently re-executed write) rather than x=0, which
is the value faithful to the original execution (Figure 3).

Thus, the Karousos re-executor keeps, for each variable,
all values written during the re-execution, indexed by the
identifier of the handler and the line within the handler. We
call this versioned variable the variable’s dictionary. Figure 4
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depicts the technique. The re-executor knows that if a read
is unlogged, then originally that read must have observed
a write that was prior according to R. To find that dictating
write, the re-executor looks for the latest write in the vari-
able’s dictionary, where “latest” refers to the R relation. One
can think of this as starting at the current handler, looking
for the last write (if any) to the given variable by the current
handler, and then repeating this step for each successive
ancestor in the A tree until one encounters a write to the
variable.

Here is a sketch for why this approach works; a full proof
is in the Appendix (§C.3.1). If a read r is logged, then re-
execution of course gets the correct value. If r is not logged,
the dictionary interrogation, to be correct, needs to find the
immediately prior causal write w that happened during the
original execution. Meanwhile, we have w <pg r, otherwise
the read would have been logged. But the dictionary inter-
rogation is following R in reverse. Thus, if the dictionary
interrogation stops at a different write w’ # w, then we
have w’ <g r, which together with w <g r and the fact that
each operation has exactly one immediate predecessor in R,
implies w <g w’ <g r. Now, by definition of R (activation
partial order A and program order), in the original execution,
r would have observed w’ not w, a contradiction.

Discussion. Recall our goal of conserving log space (§2.1).
First, and most important, the server places in the variable
logs only what is necessary, given the possible reorderings
that can happen from batched re-execution.

Second, we have designed the batching scheme so that
logging is infrequently needed. In particular, looking at a
tree of handlers where each handler touches state, a common
pattern is that only the reads are concurrent with each other:
consider, for example, an execution with one or more writes
in a handler h, followed by a set of n reads, each in a handler
hi, where h activates each hi, ..., h;. In this example, there
is no logging required because each read is R-ordered: during
the original execution, each read observes a write from h,
which is an ancestor of the given k. Notice that the preceding
holds regardless of whether the h] are re-ordered during re-
execution. Overall, this leads to good batching opportunities
while controlling logging (§6.2-§6.3).

4.3 Untrusted recorder, out-of-order replay

This section relaxes the assumption of a well-behaved server.
To motivate the relevant mechanisms in Karousos, we will
consider several attacks. However, the soundness of the pro-
tocol (§2.1) is not based on reasoning about each thing that
can go wrong but instead on an end-to-end proof (Appen-
dix C.3.2).

Absent further mechanism, an adversarial server could
put arbitrary values in a variable log, thereby causing re-
executed reads to deviate from program execution. Thus, the
verifier checks that the values of re-executed writes match
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Figure 5. An example of what the Karousos verifier could observe when re-
executing the given program based on a dishonest server’s advice. Karousos
allows out-of-order re-execution by design, and can thus observe the execu-
tion shown. However, this execution is physically impossible: based on the
execution model (§3) and the possible interleavings, the response should
never be positive. So, the verifier ought to reject it.

alleged writes in the variable log. This is essentially Orochi’s
simulate-and-check (§2.3), adapted to Karousos’s log struc-
ture.

At this point, one might conclude that the worst the server
can do is incriminate itself by failing to justify an execution.
But in fact, by creating both bad advice and bogus outputs,
the server could fool the verifier into accepting impossible
executions, with semantically invalid responses. Figure 5 de-
picts a small example. Other misbehavior is possible too, for
example, the server could arrange for the verifier to wrongly
validate “reads from the future”, which would enable the
server to rationalize an allegedly-read but wrong value, if a
later request writes that value to a shared variable.

To ensure that the executions reproduced by the verifier
are physically possible and consistent with external obser-
vations (meaning the trusted trace; §2.1), the verifier has a
postprocessing phase, where it creates an execution graph
G covering its entire audit. The graph establishes an alleged
ordering among operations, and the verifier checks that it
is acyclic. This technique creates a cycle in the example:
(h1,2) — (h2,2) — (h1,1). This technique is inspired by
other systems, including Orochi [87] (§2.3); see also Sec-
tion 7. Like Orochi, the Karousos verifier includes edges for
time precedence (referring to the ordering of requests in the
trace; §2.1) and program order of operations.

The novel aspects in Karousos are as follows. First, Karousos
includes edges that reflect the alleged activation partial order,
A, based on the handler logs (§4.1). Second, the Karousos
verifier embeds in G the alleged operation history of all
variables. (Section 5 describes an optimization whereby our
implementation tracks the history of fewer variables.) No-
tice that the history of accesses to a variable in the original
execution should be a write, followed by zero or more reads,
followed by a write, followed again by zero or more reads,
and so on. The verifier reconstructs this partial order from a
combination of re-executing and the variable logs.

Specifically, for each variable and each write w to that
variable, the verifier maintains during re-execution a list



Efficient Auditing of Event-driven Web Applications

of read_observers: all the reads r that observe w in re-
execution, inferred from the variable log (if r was allegedly
not R-ordered with w), or the versioned variable (if r was
not present in the variable log). The verifier also maintains
for each write w a write_observer: the write w’ that suc-
ceeds w. Because w’ and w might not be R-ordered—and
thus the write_observer of w might not be inferrable from
re-execution—write-write pairs are logged, as stated in Sec-
tion 4.2. Now, after re-executing, the verifier uses these lists
to embed edges in the graph G: WR (read-from edges, us-
ing read_observers), WW edges (write-write, using each
write’s write_observer), and RW (anti-dependency edges,
connecting a given write’s read_observers to that write’s
write_observer). Intuitively, these edges encode the his-
tory type mentioned in the prior paragraph.

Provided G has no cycles (and together with the verifier’s
other checks), the entire execution (of all requests in the
audit) is well-ordered and physically possible, thus meeting
the requirement of Soundness (§2.1).

4.4 Transactional state

Model We consider a transactional key-value store (KV
store) that provides one of the following isolation levels:
serializability, read committed, or read uncommitted [18].
Snapshot isolation is future work (§1). Each request issues op-
erations to the KV store: tx_start, tx_commit, tx_abort,
PUT, or GET. A transaction might be split across multiple
handlers, but we assume that if multiple handlers issue op-
erations on the same transaction, these handlers are not
concurrent; in practice, the principal can efficiently check
that the program meets this restriction before outsourcing
the program.

Adya’s isolation testing We build on Adya’s algorithms [7].

For transactional KV stores, Adya’s algorithms take as input
the history of execution that comprises: (a) the event order
at the KV store, which in this paper we call TxOp order to
avoid confusion. This is a partial order of all operations in
the KV store that preserves the order of operations within
each transaction and includes the dictating write for each
read, and (b) a version order: for each key, a total order of all
committed values.

To test for an isolation level, these algorithms construct a
graph H from the history. This is distinct from the graph G
from earlier (§4.3), though both encode kinds of operation
orders. The nodes of H correspond to the committed trans-
actions in the TxOp order. H contains a read-depend edge
(T, T,) if some operation in transaction T, reads from an
operation in transaction T;. It contains a write-depend edge
(T, T,) if transaction T; writes some version of a key and
transaction T, installs the next version. It contains an anti-
depend edge (T1, T;) if transaction T; reads some version of
a key and transaction T; installs the next version.
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Each isolation level is defined in terms of properties of
H and the history. For example, a history is serializable if:
(1) the graph H has no cycles, (2) a committed transaction
never reads from an uncommitted transaction in the TxOp
order, and (3) if a committed transaction T, reads a value of
a key that is written by a transaction T3, that value is the last
modification (per the version order) that T; makes to that
key.

Advice collection To adapt Adya’s algorithms to Karousos,
we augment the server’s advice to include (a) the (alleged)
TxOp order at the KV store, and (b) an (alleged) global order
of writes (which implies an Adya version order). The alleged
TxOp order is encoded as a list, for each transaction, of
operations and the dictating PUT for each GET; we call such
a list a transaction log. We call the alleged global order of
writes, the write order.

Advice validation The verifier executes Adya’s algorithms
on the transaction logs and write order to provisionally verify
the isolation level. Depending on the expected isolation level,
the verifier checks for the relevant phenomena by generating
the graph H (see above) and checking for acyclicity. This
verification is provisional because Adya’s algorithms take
as input the true history at the KV store. But the server is
untrusted, so the transaction logs and write order may not
correspond to the true history. The verifier thus needs to
perform additional checks, as follows.

First, similar to Section 4.3, the verifier ensures that all
operations in the transaction logs are produced during re-
execution. Second, the verifier ensures that the transaction
logs are well-formed; specifically the verifier checks, by com-
prehensively inspecting the transaction logs, that transac-
tions observe their own writes. Third, the verifier ensures
consistency between the transaction logs and write order
by checking that the operations in the write order are the
last operations of committed transactions in the transaction
logs.

Finally, the verifier needs to check that the transaction
logs correspond to a legal KV store execution history that
is consistent with the rest of the advice. Consider a server
that claims that request r; issues the following operations,
where k is a key in the KV store and x is a program variable:
op, = GET(k); op, = write(x, 1), and request r, issues: op; =
read(x); op, = PUT(k, 1). Additionally, the server claims that
the dictating write of op, is op, and that op, reads from op,.
But op, reading from op, implies that op, originally preceded
op,, which implies that op, precedes op,. Thus, the server
is claiming, preposterously, that op; read from an operation
that, according to the rest of the advice, was executed after it.
To detect these types of misbehaviors, the verifier expands
the graph G (§4.3) with nodes for external state operations,
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and adds write-read edges from PUTs to the corresponding
GETs.?

5 Implementation

This section describes how the design in Section 4 is instan-
tiated in a built system for auditing Node.js applications that
optionally use MySQL as a transactional KV store.

Our system uses a transpiler to reduce the amount of ef-
fort that the principal needs to expend when using Karousos.
Given an input program, this transpiler generates two pro-
grams: an instrumented version of the server that generates
re-execution advice and can be deployed in an untrusted
environment; and a verifier. We implemented our transpiler
by extending the Babel [1] JavaScript transpiler, via Babel’s
plugin mechanism. Our transpiler supports a core subset
of Node.js, however we currently do not support some fea-
tures, including JavaScript workers and timers, and monkey
patching.

The transpiler does not fully automate the process of
using Karousos. Most significantly, the implementation of
Karousos includes a substantial performance optimization
that requires developer input. Namely, the developer anno-
tates the variables that might be accessed by R-concurrent
operations; such a variable is called a loggable variable. Now,
if a variable is not annotated, that tells Karousos to assume
every operation on the variable is R-ordered, allowing the
server to skip the corresponding checks of R-concurrent
accesses and the verifier not to track that variable’s ver-
sions (§4.2). We note that marking a variable that has no
R-concurrent operations loggable impacts performance but
has no effect on Karousos’s Soundness or Completeness (§2.1).
Conversely, not annotating a loggable variable does not im-
pact Karousos’s Soundness (all unfaithful executions will
be rejected) but compromises Completeness (some faithful
executions might not be accepted).

Beyond that, the developer must change the application
to use Karousos-provided versions of the Knex and Express
libraries. The Karousos versions of these libraries are aug-
mented to aid in advice generation; Express is augmented
to annotate request handlers (§3) while Knex is augmented
to collect TxOp order (§4.4). One can in principle extend the
Karousos transpiler to automate these tasks. Below, we de-
scribe implementations of some of Karousos’s mechanisms.

Identifying batches (§4.1). Recall that the Karousos server
has to group requests (§4.1) with the same A relation and
the same control flow within the handlers. To encode the A
relation in a way that is invariant across requests, the server

3Tt would be wrong to augment G with write-write edges or read-write
edges between external state operations as Karousos does for program vari-
ables (§4.3). Program variables are sequentially consistent, whereas external
state operations are more weakly ordered even in valid executions. These
types of edges would thus constrain TxOp order artificially, causing the ver-
ifier to mark such executions as invalid, undermining Completeness (§2.1).
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assigns an identifier to each function (functionID), and com-
putes a handlerID as a digest of the functionID, the event
that activates the handler, and the activator’s handlerID. No-
tice that a handlerID is unique only within a request, and
that if two requests have the same set of handler IDs, they
have the same handler tree. To encode control flow within
a handler, the server (as in Orochi [87, §4.3] and EAR [16,
§3.1]) computes a control flow digest, updating it according
to which branches are taken by the handler (the transpiler
instruments the code that the server executes to enable track-
ing of branches during runtime). Then, the server computes
the top-level tag of a request (§4.1) as a digest of all handler
IDs and their corresponding control flow digests.

Accelerated re-execution (§2.3, §4.1). Karousos borrows
SIMD-on-demand (§2.3) from Orochi [87] but implements
it differently. Whereas Orochi modified a PHP runtime to
expose multivalue (§2.3) versions of primitive types, we use
the transpiler to turn program variables into multivalues.

Testing A, computing the activator relation (§3, §4.2).
The Karousos server needs an efficient check of whether two
handlers are ordered by A; similarly, the verifier needs to
efficiently compute a handler’s activator, when interrogating
the variable dictionary (§4.2). For these purposes, the imple-
mented server assigns a label to each handler so that two
handlers are ordered by A iff the label of the one is a prefix
of the other. In contrast to handlerIDs, labels do not corre-
spond across requests; handler labels encode only enough
information to check the A relation and compute activator().
Mechanically, a handler’s label is computed at runtime as
parent_label/num where num is the number of children of
the parent that have executed so far.

Non-determinism. Node.js programs often use non-deterministic

operations, which Karousos handles as other record-replay
systems do [29, 30, 33]: the server records the result of each
non-deterministic operation in the advice, and, during re-
execution, the verifier supplies the recorded information in
response to the operation. Karousos does not currently give
soundness guarantees about non-deterministic operations,
but prior works show how to implement basic checks of
well-formedness [13, 20, 27, 50, 87, 96].

Transactional state (§4.4). Karousos uses MySQL as a
transactional KV store by requiring individual queries to
SELECT or UPDATE only a single row, specified by the row’s
primary key. This maps naturally to the abstract PUT-GET
interface from Section 4.4. The server generates the transac-
tion log (§4.4) by logging operations when they are executed
by the application. The server captures the dictating PUT of
each GET operation by storing each row’s last writer in the
row itself.

Our implementation obtains the write order (§4.4) by re-
purposing MySQL’s binary log, or binlog. Repurposing the
binlog required some effort, since it is designed for a dif-
ferent purpose (state replication), is in a format that is not
well-documented, and contains extraneous information.
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LOC, challenge, and limitation. Our implementation
comprises 16,600 lines of JavaScript. In addition to the tran-
spiler (5,700 lines), the implementation includes a library of
helper functions used by the transpiled server and verifier
(10,900 lines) and a program that periodically processes the
MySQL binlog (100 lines of JavaScript).

Maintaining the activation partial order was a significant
source of implementation overheads, and is also a significant
source of runtime overheads (§6.1). It requires endowing each
handler activation with knowledge of its activator’s ID, and
passing that information to all functions called by the handler.
Meanwhile, many JavaScript functions are implemented in
native code, and the transpiled code cannot change their call
signatures or semantics. Our transpiler adopts a variety of
strategies for this purpose some of which are reminiscent of
techniques in Jardis [19] (for example, it saves the activator’s
id in a global variable that can be later retrieved).

6 Evaluation

We evaluate Karousos by answering the following questions:

1. What is the overhead of collecting advice (§6.1)?

2. What speedup does Karousos get from batching re-
quests during verification, and what is the impact of
Karousos’s techniques (§6.2)?

3. What is the size of the advice that the server sends to the
verifier, and what impact does Karousos’s techniques
have (§6.3)?

Applications. We evaluate Karousos with two model appli-
cations that we developed, which are designed to exercise
and evaluate Karousos’s algorithms, and can thus exhibit
pathological behavior. We also evaluate with a real-world
application: Wiki.js [2]. Details follow.

Message of the day: We created an application (executes
~1.6k LOC, including libraries) with which users can get or
set a “message of the day” (MOTD). When setting the MOTD,
a user specifies whether the message should be displayed
every day or only on a particular day. Messages and metadata
are stored in a local hashmap rather than in a transactional
store.

Stack dump logging: We created an application (exe-
cutes ~9k LOC, including libraries) to track stack dumps.
Users can submit stack dumps, count how many times a stack
dump has been reported, and get a list of unique dumps. Stack
dumps, and the number of times they have been reported,
are stored in a table (in the transactional store) indexed by
the stack dump’s digest. When a dump is submitted, the ap-
plication first checks if a concurrent request has reported
the same dump, in which case it returns a retry error (to
avoid deadlocks). Next, the application checks if the dump is
unique, if so it is added to the table. Otherwise, the number
of times the dump has been submitted is incremented. To
respond to list requests, the application issues a query for
each digest in a particular variable that it maintains; the
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variable contains all digests stored in the table. The appli-
cation thereby exercises the transactional key-value store
interface (§4.4). Our figures call this application stacks.

Wiki.js [2]: We modified the code to use only the Node.js
features that our implementation supports and to add anno-
tations (§5). These modifications required changing 200 lines
of code (in a project with ~19k lines of code). The majority
of these changes are simple: we merely needed to identify
and annotate shared variables.

Baselines. We use three baselines:

1. An unmodified server, to evaluate the overhead added
by Karousos.

2. A sequential re-executor, which is the application server,
modified to re-execute from the trusted trace. This helps
evaluate the Karousos verifier, and is pessimistic for
Karousos: any verifier that uses re-execution and does
not batch requests would in addition need to consult
some sort of advice (which this baseline does not do),
and would thus be at least as slow as this baseline.

3. Orochi-7FS, which helps evaluate the Karousos verifier,
compared to Orochi. We cannot directly run Orochi,
since its implementation is bound to PHP [87, §4]. In-
stead, we implement Orochi’s algorithms using the
Karousos codebase. Specifically, requests are placed in
a re-executed batch only if they induce the identical
sequence of handlers, not merely a topologically equiv-
alent tree (§2.3, §4.1). Also, all accesses to (loggable)
variables are logged, rather than only the R-concurrent
accesses (§2.3, §4.2).

Workloads. For Wiki.js we use a mixed workload consist-
ing of 25% page creations, 15% comment creations, and 60%
render requests. The ratios are loosely derived from a Wikipedia
trace [89]. For the other applications, we use three types of
workloads: (a) read-heavy with 90% read requests and 10%
write requests (90% reads in the figures); (b) write-heavy
with 90% write requests and 10% read requests (90% writes
in the figures); and (c) mixed with 50% write requests and
50% read requests. Across all workloads, write requests to
the stack dump application are split so that 10% of them
report a new stack dump and the remaining 90% report a
previously reported one. Our experiments vary the number
of concurrent requests from 1 to 60, and use 600 requests.
Unless otherwise specified, graphs show the median from
10 experiments, and errors bars show 5 and 95" percentile
values.

Testbed. All experiments are run on servers equipped with
a 3.7GHz Intel(R) Xeon(R) E5-1630 v3 (4-core) CPU with
32GB RAM and 1TB SSD, running Ubuntu 16.04. We run the
server and verifier using the Node.js v12.20.0 runtime, and
use MySQL 8.0.19 as the transactional store. The application
and MySQL are co-located on the same server and use up to
10 concurrent connections.
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Figure 6. A Karousos server compared to an unmodified server, in terms of processing time, for 480 requests. We show results for workloads with the largest

overheads; overheads are otherwise lower (see text).

6.1 Advice collection overheads

We measure the time taken to serve a request trace while
varying the number of concurrent requests, for Karousos
and the unmodified server. Of the 600-request workload,
each experiment uses the first 120 requests to warm up the
application; we report time taken to serve the remaining 480
requests.

Figure 6 depicts the results. In the MOTD application,
Karousos’s overheads for the server depend on the type of
workload and the number of concurrent requests. Workload
has a stronger effect. The more writes, the worse Karousos’s
overhead. Specifically, for the write-heavy workload, the to-
tal execution time at the Karousos server is 5.4-6.3% larger
than the baseline. Not depicted are the mixed workload,
where Karousos’s overhead is 3.4-3.7x larger, and the read-
heavy workload, where Karousos’s overhead is 2.5-2.7X
larger (see Appx B). The reason is that recording a write
access to a variable is more expensive on average: an R-
concurrent write induces one or two logged values, whereas
an R-concurrent read induces zero or one logged values (§4.2).

In the stack dump application, the execution time both for
the unmodified server and for the Karousos server decreases
as concurrency increases. This is an artifact of the applica-
tion, in which increasing concurrency leads to more conflicts,
which leads to retry errors (as described earlier), and thus
less useful work. Furthermore, overheads in this application
are higher for workloads with more reads. Consequently,
in the read-heavy workload (depicted) Karousos overheads
are 1.7-3.5X%, in the mixed workload (not depicted) they are
1.4-3.6X, and in the write-heavy workload (not depicted)
they are 1.2-2X (see Appx B). For read requests, the bottle-
neck is tracking the activation partial order (§3, §4.1, §5), a
burden that rises with the degree of concurrency. For write
requests, by contrast, write transactions are the bottleneck
for both the Karousos and unmodified servers. Consequently,
Karousos’s overheads have a smaller effect on the applica-
tion’s processing time for write-heavy workloads.

For Wiki.js, the Karousos server’s response latency is 1.2—-
2.8% higher than the baseline. Similar to read requests in
the stack dump application, overheads in this application
increase with the number of concurrent requests because

tracking activation order becomes more expensive. However,
in Wiki.js, each request has a smaller number of activations
(each request causes fewer transactions), so we see a smaller
increase in overheads as we increase concurrency.

6.2 Verification performance

We compare Karousos’s verifier to the re-execution and
Orochi-JS baselines, using the 600-request workload, and
measuring total time to verify a trace.

Figure 7 depicts the results. In the MOTD application,
Karousos is worse (~ 22X) than sequential execution for the
write-heavy workload. For the mixed workload (depicted
in Appx B), Karousos is ~ 4.3X more expensive; for the
read-heavy workload, Karousos is 30% faster than sequential
execution. The reason is that the bottleneck for re-executing
any request, whether batched or otherwise, is accessing the
hashmap. Meanwhile, accesses to the hashmap are not dedu-
plicated. The write-heavy workload has higher verification
time when using Karousos because the number of writes
dictate the size of the value dictionary (§4.2) and thus the
verifier’s heap size (which in turn dictates allocation and
memory management overheads).

In this application, Karousos has no benefit over Orochi-JS;
the reason is interesting. Because there is only one handler,
all handler executions are user request activations; thus, all
are R-concurrent with each other, as children of I (§3, §4.2).
Indeed, these requests, though not necessarily physically
concurrent, can be re-executed in any order. Now, because
all are R-concurrent, Karousos logs all of the accesess (as
Orochi-JS does). Batching is also the same because, with no
tree of handlers, Karousos and Orochi-JS group identically.

In the stack dump application, Karousos outperforms se-
quential execution when there is no concurrency. With con-
currency, the comparison is equivocal because advice size
increases, and this effect competes with the benefit from
more batching opportunities (discussed immediately below).
In all workloads for this application, Karousos outperforms
Orochi-JS. By analyzing the workloads, we find that the
higher the number of concurrent handlers activated by re-
quests in the workload, the larger the speedup for Karousos
relative to Orochi-JS. This is because a larger number of con-
currently activated handlers increases the likelihood that
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Figure 7. Karousos verification time vs baselines, on 600-request workload.

handlers are re-ordered (§4.1), decreasing the grouping op-
portunities for Orochi-JS, thus demonstrating the impor-
tance of Karousos’s design decision.

For Wiki.js, the Karousos verifier outperforms both base-
lines. The Karousos verifier’s re-execution time increases
with the number of concurrent requests (because more con-
currency results in more advice that needs to be processed
by the verifier), but not as dramatically as in stack dump
because Wiki.js activates fewer handlers. Also, as the num-
ber of concurrent requests increases, so do the speedups
of Karousos compared to Orochi-JS: with no concurrent re-
quests the Karousos verifier is 19% faster than the Orochi-JS
verifier while for 60 concurrent requests it is 34% faster.

The speedup of Karousos, relative to both baselines, also
improves as we increase the number of requests being veri-
fied (not depicted). That is because, the more requests, the
more opportunities for batching.

6.3 Advice size

The experimental configuration is the same as in the prior
section. Figure 8 depicts the size of the advice sent by a
Karousos server to a Karousos verifier. In the MOTD applica-
tion, advice size does not vary with the number of concurrent
requests, and is the same for Karousos and Orochi-JS. That
is because nearly all of the advice (~ 95%) is the variable
log (§4.2) of the hashmap. Meanwhile, every request is logged
in both configurations because all accesses are R-concurrent,
as explained in Section 6.2.

For Wiki.js, advice size under Karousos increases with the
number of concurrent requests, because more accesses are
logged, and because some of the logged objects (for example,
an object that pools connections to the transactional store)
increase in size with the degree of concurrency. The majority
of the advice is variable logs (65% of total advice for no
concurrent requests, and 95% of total advice for 60 concurrent
requests). Karousos has smaller advice size than Orochi-]JS,
by 50%, because Karousos logs less (§4.2), thus demonstrating
the effectiveness of Karousos’s logging technique.

For the stack dump application, we do not report how ad-
vice size depends on the number of concurrent requests. This
is because, for this application, a larger number of concurrent
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requests does not result in the execution of more concur-
rent handlers: as mentioned earlier, the application returns a
retry error if one concurrent request reports the same stack
dump as another, which actually leads to fewer concurrent
handlers. Empirically, we observed that the advice size for
this application was similar under Karousos and Orochi-]JS,
because although Karousos improves the size of the variable
logs, the size of the handler log remains the same in both
configurations. However, much of this application’s state is
in transactional storage, and variable logs are a relatively
small component of the overall advice.

7 Other related work

We have discussed related works (§3, §4.4, §5) including
those aiming at Karousos’s goal of verifier-efficient execu-
tion integrity (§2.2, §2.3). Here we focus on other related
techniques, primarily record-replay. Record-replay is a vast
area, with several excellent surveys [29, 30, 33]. Karousos
is the first to support the combination of: (a) an untrusted
recorder, (b) accelerated replay, (c) executions with concur-
rency, and (d) controlling the size of advice supplied to the
replayer.

Record-replay for execution integrity. AVM [48], Rip-
ley [91], and Dickerson et al. [32] meet (a) but not (b). In
AVM, an untrusted hypervisor records an execution while a
trusted replayer uses something akin to our trace, together
with VM replay [23, 36], to validate the execution. AVM’s
performance would be similar to the evaluated baseline (see
Fig. 7). In Ripley [91], a web server re-executes client-side
code. In Dickerson et al. [32], miners in a blockchain net-
work execute transactions in parallel while validators re-
execute the transactions in each block deterministically and
concurrently. In DIVA [14], a trusted checker accelerates re-
execution of an untrusted uniprocessor core; this meets (a)

and (b) but not (c).

Record-replay with a trusted recorder. None of the works
that we cite in the remainder of this section are designed for

an untrusted server (characteristic (a)); any proposed use of

them for execution integrity would require proof (§1).
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Several works aim at (b). In Poirot [55] and Shortcut [34],
the recorder captures hints that the replayer uses to re-
execute (in Poirot’s case, in a batch, as in Karousos), but
the hints necessitate trust in the recorder.

Many works re-execute concurrent executions while con-
trolling the size of advice supplied to the replayer; they are
geared to (c) and (d). Below, we cover techniques relating
to Karousos’s variable logs (§4.2); for other record-replay
work that targets concurrency, see JaRec [39], Respec [59],
DoublePlay [90], and citations therein.

In Netzer [71], implemented in hardware by FDR [93] (see
also [74]), when a data race occurs, the recorder logs the
conflicting operations; the goal is to log a minimal set of
such races. The replayer synchronizes these data races to
reproduce the original order. In Bugnet [67], implemented in
software by PinSEL [66] (see also [22, 74]), the recorder ap-
plies memory store operations to main memory and a shadow
memory; on a load, if the main and shadow values disagree,
the recorder infers that the memory was concurrently modi-
fied (for example by DMA), and logs the load. This technique
also appears in Jalangi [78], which re-executes JavaScript
and shares some of Karousos’s approaches to handling calls
to native code (§5).

These techniques are reminiscent of how Karousos decides
whether to log an access to a program variable. However,

they handle only physical concurrency, not R-concurrency (§4.2).

Notice that R-concurrency is strictly harder: two accesses
that are not physically concurrent (and hence are recon-
structible with a traditional re-execution) could nevertheless
be R-concurrent, and hence need logging (§4.2).

A third approach is to log enough information for the
replayer to reconstruct a thread schedule equivalent to the
original. In CREW systems [28, 35, 56, 58, 95], the recorder
logs, for read operations, a current version number; for write
operations, the recorder logs the number of readers before
this write. The replayer then blocks a given write until all
prior readers execute their read. As in Karousos, this ap-
proach has the freedom to re-order concurrent reads, with
the “number of readers” (collected online) playing the same
role as the anti-dependency edges in Karousos (§4.3). How-
ever, CREW reproduces a schedule equivalent to the original
physical one, and thus cannot handle R-concurrency.

LEAP [51] has a similar log structure to Karousos’s vari-
able logs (§4.2), and thus would be amenable to out-of-order
re-execution. However, LEAP is not designed to control the
size of the logs. ORDER [94] improves on LEAP; it stati-
cally analyzes a program to determine which accesses need
logging. Karousos could borrow these techniques to auto-
matically identify which variables are loggable (§5).

Other related techniques. Prior work uses server-side log-
ging in the JavaScript context to optimize page load times [68,
69], debug web applications [70], and facilitate archives [41].
These works are built on the Scout [68] framework, which

Tzialla et al.

comprehensively tracks server-side data flow. This work,
impressively, shows that such tracking can have negligible
overhead. However, the logs in question are large. This is
acceptable in that context; for example, optimization gener-
ally happens during testing. Karousos’s logging, by contrast,
happens during online use, so is aimed at keeping communi-
cation overhead low, so logs selectively. More fundamentally,
data flow tracking at the server is tantamount to an untrusted
recorder: any proposed use of this mechanism requires rig-
orous proof.

JarpIs [19] is a time-travel debugger for JavaScript; it
allows (among other things) stepping from the execution of a
callback backward to the handler that registered that callback.
To do so, JaArRDIs wraps each handler, to pass in information
about where it was registered, enabling the debugger to
“walk up the activation stack.” This is similar to Karousos’s
use of handler labels (§5).

Karousos’s techniques for ensuring well-ordered execu-
tions (§4.3-§4.4) relate to memory checking and consistency
checking: typically there is a dependency graph that the
checker wants to be acyclic [7-9, 12, 21, 42, 72, 80, 82, 86].

8 Summary and discussion

Karousos introduces several new techniques to record-replay
systems, including formalizing (with the definition of R-
ordered) the kind of reordering that can exist in batched
re-execution systems. The evaluation results show that au-
ditability in this context has a price, primarily in server over-
head. Although it is higher than we might like, it is not
exorbitant, and now we know what the price actually is. Be-
sides, we expect auditability to cost something. The results
also show that Karousos’s individual techniques balance re-
execution throughput and the size of advice, and that in many
applications and workloads (though not pathological ones)
Karousos benefits over naive baselines and an implemen-
tation of Orochi for Node.js. Our implementation requires
work from the developer to apply Karousos; nonetheless,
Karousos substantially expands the frontier of comprehen-
sive server auditing.
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A Artifact Appendix
A.1 Abstract

The primary purpose of the artifact is to allow reproduction of the results in Figures 6, 7, and 8 of the paper. We also provide
instructions on how to reproduce the results in figures 9, 10, 11, and 12 of Appendix B. All runtime estimates are for a Linux
system with a 3.7GHz Intel(R) Xeon(R) E5-1630 v3 (4-core) CPU, 32GB RAM and 1TB SSD.

After setting up the environment to execute Karousos (takes ~ 20 minutes), reproducing the results for the paper requires:
(1) compiling each of the target applications to produce the code that the server and verifier execute (takes ~ 45 minutes). (2)
running both the unmodified and the Karousos server on our target workloads to produce performance results for Karousos
server overheads. Producing results only for Figure 6 takes = 9 hours. Producing results for all figures (Figures 6, 9a, 10a, 11a,
and 12a takes ~ 20 hours. (3) running the unmodified application, a modified version of the server that collects advice both for
Karousos and Orochi-JS, the Karousos verifier, and the Orochi-JS verifier on our target workloads to produce performance
results for the verifier turnaround time and the advice size. Producing results only for Figures 7 and 8 takex ~ 7.5 hours.
Producing results for all figures (Figures 7, 8, 9b, 9¢, 10b, 10c, 11b, 11c, 12b, and 12c) takes ~ 13.5 hours.

A.2 Description & Requirements

A.2.1 How to access

Code is publicly available at https://github.com/nyu-systems/karousos/
A.2.2 Hardware dependencies

8G RAM

A.2.3 Software dependencies

Docker if using the artifact. If running locally, Node v12.16.1, NPM 6.13.4, and wrk [3]. However, we advise against this (details
below).

A.2.4 Benchmarks
None
A.3 Set-up

We recommend using docker to run the experiments. Details on how to install docker are in the README at the repo.
You can also run the experiments locally. This requires installing a modified version of MySQL that collects advice for
Karousos. Instructions are in the repo but process is complicated.

A.4 Evaluation workflow

Major claims are Figures 6, 7, and 8. Secondary claims in Figures 9, 10, 11, and 12. Claims can be validated either with docker
or by running in local machine. Docker is recommended. Instructions to execute in local machine are in the README.
Easiest way to reproduce data for Figures 6, 7, and 8 is executing make produce-results. This will set up the environment
in the docker container, compile the applications for Karousos, and produce data for figures 6, 7, and 8.
Alternatively, you can use individual commands to create the container, set it up, and run the experiments. Instructions in
the README. This way, you can also reproduce the data for figures 9, 10, 11, and 12.
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Below are the graphs for the workload types that are omitted from Section 6. To evaluate server overhead we use the same
setup as in Figure 6. For verification performance we use the same setup as in Figure 7 and for advice size we use the same

setup as in Figure 8.
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C Karousos Algorithms And Correctness Proofs

C.1 Algorithms

In the following, a global handler is a handler that is registered by the initialization function (§3).
C.1.1 Annotating loggable accesses

The principal annotates a program P (§4.2) by identifying all loggable variables S and placing a special annotation called
Onlnitialize right after the initialization of each variable v in S.

Then, the Karousos compiler produces an annotated program P, by taking the program with the Onlnitialize annotations
and performing the following modifications:

o It replaces each read of a variable v that has an Onlnitialize annotation (and is, thus, in S) with a special annotation called
OnRead

e Right after each write of a variable v that has an Onlnitialize annotation, it places a special annotation called OnWrite

We use the term annotated operation to refer to an annotation in P, along with its corresponding variable operation if it
exists (that is, if the annotation is Onlnitialize or OnWrite).

C.1.2 Request ids, Handler ids, Variable IDs, and Transaction ids

During execution, each request has a globally unique id which we denote rid.

Also, the honest server assigns a handler id to each handler that is running. This handler id is unique within a request and is
a tuple (functionID, parent_hid, opnum) where functionID is a globally unique identifier of the handler function (piece of code),
parent_hid is the id of the handler that activates this handler and opnum is the index of the event that activates the handler
within the parent handler. For instance, if a handler with functionID f is activated by the third operation of handler with id
hidy, this handler is assigned handler id (f, hids, 3). Because each handler function can only be registered once for each event,
handler ids are unique within a request, but not across requests.

Also, the honest server assigns a globally unique variable ID to each variable, and a globally unique transaction id to each
transaction.

C.1.3 Advice collection

The honest server collects the following advice:

e The control flow groupings (C) (§4.1).

o The handler logs HLs (§4.1): for each request, the ordered log of handler operations that the request issued. Each entry

in the log is one of the kinds below. For all of these, hid is the id of the handler that issues the operation and opnum is

the order of this operation among all operations that the handler issues:

— register operations are tuples (hid, opnum, functionID, eventNames), where functionID is the id of the function, and
eventNames is the set that contains the names of the events that the handler is registered for.

— emit operations are tuples (hid, opnum, eventName), where eventName is a string that corresponds to the name of the
event. An emit operation activates all functions that are registered for the event with name eventName (For more
details on events and handler operations check Section 3).

— unregister operations are tuples (hid, opnum, functionID, eventName), where functionID is the id of the function that
is unregistered from event name eventName.

— Check operations is a class of operations that inspect the handlers and the events. The server logs such operations as
tuples (hid, opnum, opInfo), where oplnfo is the name of the operation and any arguments that the operation is called
with.

The variable logs VLs (§4.2): We denote the variable log of a variable id v as VLv. VLv is a map from triplets (request id,

handler id, opnum) to tuples of type (t: AccessType, v: Value, prec_rid: request id, prec_hid: handler id, prec_anum: Int).

These are created during execution; on each variable access, the server follows the algorithms of Figure 13. AccessType

is READ or WRITE. READ entries contain references to the write that they observe. WRITE entries contain the value

written.

o The transaction logs TXLs (§4.4): for each transaction id, an ordered log of all operations that the transaction executes.
Each entry is of the form:

(hid, opnum, optype, key, opcontents)

where
— hid is the id of the handler that executes this operation
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1: logs are of type (requestid, handlerid, N) — ({read, write}, value, requestid, handlerid, N)
2: READ entries contain references to the write that they observe.
3: WRITE entries contain the value written.
4: procedure ONINITIALIZE(rid, hid, opnum, v)
5: Let v.log < empty VL
6: Let v.value < nil //the most recent written value
7: //Store the most write operation (rid, hid, opnum)
8: Let v.rid « rid
9: Let v.hid < hid
10: Let v.opnum < opnum

11: procedure ONREAD(rid, hid, opnum, v)

12: if Rconcurrent((rid, hid, opnum), (v.rid, v.hid, v.opnum)) then
13: //Check that the write that we read from has already been logged. If it has not, log it.
14: if v.log{v.rid, v.hid, v.opnum} = nil then
15: Let v.log{v.rid, v.hid, v.opnum} « (write, v.value, nil, nil, nil)
16: //Log the read
17: Let v. log{rid, hid, opnum} « (read, nil, v.rid, v.hid, v.opnum)
return v

18: procedure ONWRITE(rid, hid, opnum, opcontents, v)

19: if Reoncurrent((rid, hid, opnum), (v.rid, v.hid, v.opnum)) then

20: //Check that the write observed by this one has already been logged. If it has not, log it.
21: if v.log{v.rid, v.hid, v.opnum} = nil then

22: Let v. log{v.rid, v.hid, v.opnum} « (write, v.value, nil, nil, nil)

23: //Log the write

24: Let v. log{rid, hid, opnum} « (write, opcontents, v.rid, v.hid, v.opnum)
25: //This write is the most recent write. So set the v fields value, rid, hid, opnum
26: //to those of this write operation.

27: Let v.value < opcontents

28: Let v.rid « rid

29: Let v.hid < hid

30: Let v.opnum < opnum

Figure 13. Pseudocode for server’s logic on reaching an annotation.

— opnum is the order of this operation among all other operations that the handler executes.
— optype is the type of operation, namely tx_start, tx_commit, tx_abort, PUT or GET,
- key is the key for PUT and GET operations and null otherwise.
— opcontents are null except for PUT and GET operations: For PUT operations they are the contents that are written and
for GET operations they are the position in the logs of the write that they read from.

o writeOrder (§4.4): a single log that allegedly reflects the order in which the server applied the writes to shared external
state.

e responseEmittedBy: a map from request ids to tuples (hid, opnum) s.t. the handler with id hid is the one that sends back
the response and opnum is the number of operations that hid had issued prior to sending the response.

o opcounts: a map from the id (rid, hid) of every handler that is executed to the total number of operations that the handler
issues (may be zero).

C.1.4 Verifier
The verifier’s algorithms are in Figures 14, 16, 17, 18, 19, 20, 21:
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1: Input Trace Tr, Input Advice A, Input Isolation level I

: Global Graph G

: Global Map OpMap : (requestid, handlerid, N) — (“handler_log”, requestid, N) U (“tx_log”, txid, N):
maps the i-th operation of a handler to the location of this operation in the logs.

: Global Map activatedHandlers: (rid, hid, i) — Set of invoked hids:
defined over (rid, hid, i) s.t. the i-th operation of handler (rid, hid) is an emit operation (§C.1.3); maps these triples to
the set of hids they invoke.

: Global Set Committed: a set of tuples (requestid, txid) of purported committed transactions,
: Global Map ReadMap: Map from write ops to the read ops that read from them
: Global Set GlobalHandlers: Set of tuples (e, f) s.t. f is a global handler listening for e

: Global Map lastModification: Map from (requestid, handlerid, key) to an integer representing the order of the
last operation of the transaction that modifies this key among all other operations that the transaction issues

: procedure AUDIT
Preprocess()
ReExec() // Figure 18
Postprocess()

: procedure PREPROCESS

Check Tr is balanced.

Run the initialization phase and log all global handlers.
Gty < CreateTimePrecedenceGraph() // [87, Figure 6]
SplitNodes() // [87, Figure 6]

AddProgramEdges()

AddBoundaryEdges() // Figure 15
AddHandlerRelatedEdges() // Figure 16
AddExternalStateEdges() // Figure 16
IsolationLevelVerification() // Figure 17

: procedure POSTPROCESS
AddInternalStateEdges() // Figure 21
if CycleDetect(G) then REJECT

: procedure ADDPROGRAMEDGES
//This procedures adds all the nodes of each handler and program edges
//between consecutive operations within a handler.
for all (rid, hid) in A.opcounts do
if rid does not appear in Tr then REJECT
//Add the handler end, start nodes
G.add_node((rid, hid, 0))
G.add_node((rid, hid, ))
fori « 1,..., A.opcounts|(rid, hid)] do
G.add_node((rid, hid, i))
G.add_edge((rid, hid, i — 1), (rid, hid, 1))
G.add_edge((rid, hid, A.opcounts|(rid, hid)]), (rid, hid, o))

Figure 14. Pseudocode for verifier’s audit procedure in Karousos.
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1: // Global Variables are the ones in Figure 14

2:

3: procedure ADDBOUNDARYEDGES

4 /! For all (rid, hid) that are request handlers, add edge from (rid, 0) to (rid, hid, 0)

5 for all (rid, hid) in A.opcounts do

6 if hid.parent_hid = null then

7 G.add_edge((rid, 0), (rid, hid, 0))

8: /! For each rid, (rid, o) represents delivering the response. For the handler (rid, hid,)
9: // that delivers the response for rid (according to A), add an edge to (rid, o)

10: // from the operation of hid, just prior to delivering the response, and an edge from (rid, ) to the
11: // operation of hid, just after delivering the response.

12: for all rid in Tr do

13: if A.responseEmittedBy[rid] = null or A.responseEmittedBy is not of type (handler id, i) where i € N then
14: REJECT

15: Parse A.responseEmittedBy|rid] as (hid,, opnum, )

16: if (rid, hid,, opnum,) ¢ G.Nodes then REJECT

17: G.add_edge((rid, hid,, opnum,), (rid, c0))

18: if opnum, = A.opcounts[(rid, hid,)] then

19: //In this case the handler’s next operation is handler exit

20: G.add_edge((rid, ), (rid, hid,, c0))

21: else

22: G.add_edge((rid, o), (rid, hid,, opnum, + 1))

Figure 15. Pseudocode for verifier’'s AddBoundaryEdges procedure in Karousos.
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9:
10:
11:
12:
13:
14:
15:
16:
17:

1
2
3
4
5:
6
7
8

18:

19:
20:
21:
22:

23:
24:
25:
26:
27:
28:
29:
: procedure ADDEXTERNALSTATEEDGES

30

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:

56:

57:
: procedure CHECKOPISVALID(rid: request id, op: operation)

58

59:

60:
61:

REJECT

: // Global Variables are the ones in Figure 14

: procedure ADDHANDLERRELATEDEDGES
//add edges between consecuting operations in handler logs and activation edges
for all rid in A.HL do

if rid does not appear in Tr then REJECT

Registered «— new Set()
fori« 1,...,A.HL,y.length do
op — A.HL,4i]
CheckOplsValid(rid, op)
OpMap|(rid, op.hid, op.opnum)] « (“handler_log”, rid, i)
//Add the handler op precedence edge
if i # 1 then
Let prev_op « (rid, HL,jg[i — 1].hid, HL,;4[i — 1].opnum)
G.add_edge(prev_op, op)
if op is a register operation then
for all eventName in op.eventNames do

Registered.add(eventName, op.functionID)

else if op is an unregister operation then
Registered.remove(op.eventName, op.functionID)

else if op is an emit operation then
for all (op.eventName, functionID) in Registered U GlobalHandlers do

hid’ « (functionID, op.hid, op.opnum)

//Check that the server has reported the activated handler
if A.opcounts|(rid, hid’)] = 0 then REJECT
activatedHandlers[rid, op.hid, op.opnum)].add(hid")

//add the activation edge

G.add_edge((rid, op.hid, op.opnum), (rid, hid’, 0))

//Bookkeeping for external state and edges described in Section 4.4
for all (rid, tid) in A.TXL do
//Check if the transaction is allegedly committed or not
if last operation in the log TXL (g, ig) is of type commit then
Committed.add(rid, tid)
Initialize map MyWrites
foralli—1,..., TXL(n-d’ tid) do
Let op < TXL(rid, tia)li]
CheckOplsValid(rid, op)
OpMap|(rid, op.hid, op.opnum] « (“tx_log”, tid, i)
if i # 1 then
if op.optype = GET then
Let (rid.y, tidyy, iry) < op.opcontents
Let op,, < A.TXL(yid,, tid,,)liw]
CheckOplsValid(rid, op,,)
G.add_edge((rid.y, op,,.hid, op,,.opnum), (rid, op. hid, op.opnum) //Add a read-from edge
// Add this op to the dictating write’s list of readers
if op,,.optype # PUT V op,,.key # op.key then REJECT
ReadMap|(rid, tid,y, i)].add(rid, tid, i)
//Make sure that if it reads a key that it has modified, it reads the last modification
if op.key € MyWrites A MyWrites[key] # (rid,y, tidyy, i) then REJECT
else if op.optype = PUT then
/lupdate MyWrites
MyWrites[op.key] « (rid, tid, i)
if (rid, tid) € Committed then

lastModification|rid, tid, key] « i

if A.opcounts[(rid, op.hid)] = 0 then REJECT
if op.opnum < 1V op.opnum > A.opcounts|(rid, op.hid)] v OpMap|(rid, op.hid, op.opnum)] exists then

Figure 16. Pseudocode for verifier’'s AddHandlerRelatedEdges and AddExternalStateEdges in Karousos

Tzialla et al.
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1: // Global Variables are the ones in Figure 14

2.

3: procedure ISOLATIONLVLVER

4: Initialize DG to an empty graph

5: //Add a node for each committed transaction

6 for all (rid, tid) € Committed do

7 DG.add_node((rid, tid))

8: writeOrderPerKey < ExtractWriteOrderPerKey()
9: if I = READ UNCOMMITTED then

10: AddWriteDependencyEdges(writeOrderPerKey)
11: if CycleDetect(DG) then REJECT

12: else if ] = READ COMMITTED then

13: AddWriteDependencyEdges(writeOrderPerKey)
14: AddReadDependencyEdges()

15: if CycleDetect(DG) then REJECT

16: else if I = SERTALIZABILITY then

17: AddWriteDependencyEdges(writeOrderPerKey)
18: AddReadDependencyEdges()

19: AddAntiDependencyEdges(writeOrderPerKey)
20: if CycleDetect(DG) then REJECT

21:

22: procedure EXTRACTWRITEORDERPERKEY
23: if writeOrder.length # |lastModification| then REJECT

24: Initialize writeOrderPerKey <« Map from keys to lists

25: for all (rid, tid, i) in A.writeOrder in order do

26: Let op «— TXL(rid,tid) [i]

27: if lastModification|(rid, tid, op.key)] # i then REJECT
28: writeOrderPerKey|op.key].append(rid, tid, i)

29: return writeOrderPerKey

30:

31: procedure ADDREADDEPENDENCYEDGES // w-r edges
32: for all (ridyy, tidyy, i) in ReadMap do

33: //check that if the write is not the last modification, no committed transaction reads from it
34: if (ridy, tidyy, ivy) € writeOrder then

35: for all (rid,, tid,, iy) in ReadMap|(ridyy, tid,y, i )] do

36: if (ridy, tid,) € Committed then REJECT

37: else

38: for all (rid,, tid,, iy) in ReadMap|(ridyy, tid,y, ir)] do

39: if (rid,y, tid,,) € Committed A (rid,, # rid, V tid,, # tid,) then

40: DG.add_edge({(rid, tidy), (ridy, tidy)))

41:

42: procedure ADDWRITEDEPENDENCYEDGES(writeOrderPerKey) // w-w edge
43: for all key € writeOrderPerKey do

44: Let o « writeOrderPerKey[key|

45: forj=1,...,0.length—1do

46: //check that there’s only one version per transaction

47: DG.add_edge({(o[j].rid, o[j].tid), (o[j + 1].rid, o[j + 1].tid)))
48:

49: procedure ADDANTIDEPENDENCYEDGES(writeOrderPerKey) // r-w edges
50: for all k € writeOrderPerKey do

51: Let 0 « writeOrderPerKey|k]

52: forj=1,...,0.length—1do

53: for all (rid, tid, _) € ReadMaplo[j]] do

54: Let Ty = (rid, tid) and T» = (o[j + 1].rid, o[j + 1].tid)
55: if Ty # Ty A Ty € Committed then

56: DG.add_edge({T1, T»))

Figure 17. Pseudocode for verifier’s isolation level verification in Karousos (§4.4)
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1: //Global Variables are the ones in Figure 14
2: procedure REEXEC

3:

4
5:
6:
7.
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

Re-execute Tr in groups according to A.C
(1) Initialize a group as follows:
Read in inputs for all requests in the group. Let in be these inputs
Allocate program structures for each request in the group
Initialize active: a queue of tuples (handler id, inputs)
Find the functionIDs of the request handlers.
if the functionIDs of the request handlers don’t line up across requests then REJECT
for all functionID in functionIDs do
Let hid « (functionID, null, 0)
active.Enqueue(hid, in)
if 3rid in the group s.t. A.opcounts[(rid, hid)] = 0 then REJECT
(2) Execute the requests in the group with SIMD-on-demand:
while active # 0 do
(a) The runtime picks the next handler c to execute
if ¢ # null then
Compute hid from the functionID of the function, the parent handler and the event.
if hid ¢ active then
continue;//Do not execute this handler.
else
Name the handler hid and set the inputs to the ones associated with hid in active
Remove hid from active
idx[hid] « 1
Execute the activated handler for all requests in the group
else
//Pick the next handler to be executed from active
(hid, in) « active.Dequeue
idx[hid] « 1
Execute the function hid. functionID for all requests in the group with inputs in
(b) ReExecute hid for all requests:
if execution within the group diverges then REJECT
if the group makes an external state operation then
optype « the type of state operation
for all rid in the group do
opcontents, tid, txnum « parameters from execution
s « CheckStateOp(rid, hid, idx[hid], optype, tid, txnum, key, opcontents)
if optype = GET then
state op result < s
idx[hid] = idx[hid] + 1
if the group reaches an annotated operation then
For all rid in the group:
if opnum > A.opcounts[(rid, hid)] then REJECT
if it is a write or initialization then
Execute the operation
Execute the annotation according to Figure 20 where opnum is set to idx[hid)|
idx[hid] = idx[hid] + 1
if the group makes a handler operation then
optype « the type of handler operation
for all rid in the group do
info < parameters from execution
CheckHandlerOp(rid, hid, idx[ hid], optype, info)
if optype = emit then ActivateHandlers(hid, idx[hid], active)
Execute the handler operation
idx[hid] = idx[hid] + 1
if the group sends back a response then
if 3rid in the group s.t. A.responseEmittedBy[rid] # (hid, idx[hid]) then REJECT
Write out the produced outputs
(c) When the execution of the handler hid exits
if 3rid in the group s.t. idx[hid] < A.opcounts[(rid, hid)] then REJECT
(3) for all rid in the group do
if the produced outputs are not exactly the responses in Tr then REJECT
//Check that there are no handlers in the advice that we did not execute
if 3rid s.t. 3hid : A.opcounts[(rid, hid)] but (rid, hid) was not executed by ReExec then REJECT
return ACCEPT

Figure 18. Pseudocode for verifier’s ReExec in Karousos
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30:

1
2
3
4
5:
6
7
8
9

: //Global Variables are the ones in Figure 14

: procedure CHECKSTATEOP(rid, hid, opnum, optype, tid, txnum, key, opcontents)
: //Simulate and check logic for state operations (§2.3, §4.4)
if opnum > A.opcounts[(rid, hid)] then REJECT
Let (¢, tid., txnum.) < OpMap|(rid, hid, opnum)]
if t # “tx_log”V tid. # tid V txnum, # txnum then REJECT
Let op < A.TXL,i4tid[txnum)]
if op.optype # optype A op.optype # tx_abort A optype # tx_commit then REJECT
if op.key # key then REJECT
if optype # GET then
if op.opcontents # opcontents then REJECT
else
Let (rid,,, tid,,, i,y) < op.opcontents
Let op,, < A.TXL,jq,, tid,,[i\,] return op  .opcontents

: procedure CHECKHANDLEROP(rid, hid, opnum, optype, info)

//Check that the handler operation matches the entry in the logs (§4.1)
if opnum > A.opcounts[(rid, hid)] then REJECT

Let (¢, rid,, i) « OpMap|(rid, hid, opnum)]

if t # “handler_log”V rid. # rid then REJECT

Let op « A.HL,4[i]

if info does not match the fields in op then REJECT

: // The following procedure is called by ReExec while it is executing a control flow group

: // when it encounters an emit operation.

. /1 It checks that all requests in the group induce the same handlers,

: // and adds the handlers to active.

: procedure AcTIVvATEHANDLERS(hid, i, active)

//Check that (hid, i) activates the same handlers across all requests, according to the advice (§4.1)

if exist rid,, rid; in the group s.t. activatedHandlers[ridy, hid, i] # activatedHandlers|ridy, hid, i] then REJECT

Let in the set of values of the emit operation across all requests.
for all hid’" € activatedHandlers[rid, hid, i] for some rid in the group do
active.Enqueue(hid’, in)

Figure 19. Pseudocode for verifier’s check op routines and activateHandlers routine in Karousos
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1:
2:
3
4:
5:
64
7
8
9

10:
11:
12:
13:

14:

all_variables «— {} // A set of all variables.
procedure ONINITIALIZE(rid, hid, opnum, v)
Let v. log « VLv.variableID
Let v.rid « rid
Let v.hid < hid
Let v.opnum < opnum
Let v.var_dict < {} // Map from rid, hid, opnum to values.
Let v.read_observers < {} // maps from a write op to all readers who allegedly observed that op,
// based on both server-supplied advice, and re-execution.
Let v.write_observer « {} // maps from a write op to 0 or 1 writers who allegedly observed that op,
// based on either server-supplied advice or re-execution.
Let v.initializer < nil
all_variables.insert(v)

15: procedure ONREAD(rid, hid, opnum, opcontents, v)

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

if v.log .contains(rid, hid, opnum) then

// if a read is logged, then the server was supposed to

// have logged the dictating write. So find the dictating

// write in the log, and feed its value to the read.

op, _, ridop, hidop, opnum,, < v. log{rid, hid, opnum}

if op is not read or lv.log .contains(ridop, hid,p, opnum,,) then

return nil
op, value, _, _, _ « v.log{rid,p, hid,, opnumop}
if op is not write then

return nil

v.read_observers{(rid,, hid,p, opnum,, p)}.insert((rid, hid, opnum))
return value

else

//Below FindNearestRPrecedingWrite returns the last write by the nearest ancestor handler
//by climbing up the handler tree and checking v.var_dict.
Let rid, hid,, opnum,, value «— FindNearestRPrecedingWrite(v, rid, hid, opnum)
if rid, = nil and hid, = nil then
return nil
v.read_observers{(rid,, hid,, opnump)}.insert((rid, hid, opnum))
return v

Figure 20. Code that verifier executes upon an annotated operation (§4.3), I

Tzialla et al.
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1: procedure ONWRITE(rid, hid, opnum, opcontents, v)

2 Let v.var_dict{(rid, hid, opnum)} < opcontents

3 if v.log .contains(rid, hid, opnum) then

4 Let op, value, rid,, hid,, opnum,, < v.log{rid, hid, opnum}
5 if op is not write or value # opcontents then

6 return false // Operations or values don’t agree.

7 if rid, # nil and hid, # nil and opnum, # nil then

8 if v.write_observer{rid,, hid,, opnum,} # nil then

9: . return false // Two handlers cannot overwrite the same value.
10: else
11: Let v.write_observer{rid,, hid,, opnum,} « (rid, hid, opnum)
12: return true
13: else
14: Let (rid,, hidy, opnum , value) < FindNearestRPrecedingWrite(v, rid, hid, opnum)
15 if rid, # nil and hid, # nil and opnum,, # nil then
16: Let v.write_observer{rid,, hid,, opnump} « (rid, hid, opnum)
17: else
18: Let v.initializer « (rid, hid, opnum)
19: return true

20: procedure ADDINTERNALSTATEEDGES

21: for all v « all_variables do

22: Let (rid, hid, opnum) « v.initializer

23: while rid # nil and hid # nil and opnum # nil do

24: // Add WR (write-read) edges.

25: for all (rid,, hid,, opnum,) < v.read_observers{rid, hid, opnum} do

26: G.add_edge((rid, hid, opnum), (rid,, hid,, opnum, ))

27: if v.write_observer{rid, hid, opnum} # nil then

28: // Add RW (anti-dependency) edges.

29: for all (rid,, hid,, opnum,) < v.read_observers{rid, hid, opnum} do

30: G.add_edge((rid,, hid,, opnum,), v.write_observer{rid, hid, opnum})
// Add WW edge.

31: G.add_edge((rid, hid, opnum), v. write_observer{rid, hid, opnum})

32: Let (rid, hid, opnum) « v.write_observer{rid, hid, opnum}

Figure 21. Code that verifier executes upon an annotated operation (§4.3), Il
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C.2 Correctness Properties

Definition 1 (Request/Response trace Tr). An ordered list of the request and response events. The events appear in the list in
chronological order. A request event is a tuple (REQ, rid, x) where rid is the request id of the request that was issued and x is
the input data. A response event is a tuple (RESP, rid, y) where rid is the request id of the request that corresponds to this
response and y are the contents of the response.

Definition 2 (Completeness). An advice collection procedure and an audit procedure are defined to be Complete if the
following holds: If the server serves the requests according to the annotated program P, and executes the given advice
collection procedure, then the given audit procedure (applied to the resulting trace and advice) passes.

Definition 3 (Request Schedule). A request schedule is an ordered list of request ids that models the execution schedule.
Notice that request ids are permitted to repeat in the schedule.

Definition 4 (Operation-wise execution). Consider a model where, instead of requests arriving and departing, the executor
has access to all request ids in a trace Tr and their inputs. Operation-wise execution means executing the program P by
following a request schedule S; the output of operation-wise execution is a trace Tr’. Specifically:
e The executor runs the initialization process of P.
e Then, for each request id rid in the request schedule S in order:
- If it is rid’s first appearance, the executor reads in the request’s inputs x, appends (REQ, rid, x) to Tr” and initializes
the active handlers set of rid with the request handlers for this request
— Otherwise, the executor non-deterministically chooses one of the handlers in the active handlers set of rid and runs it
up to and including its next special operation.
After the execution of a request’s handler, the request is held, until the executor reschedules it. If a request is scheduled
but the request has no active handlers, the executor immediately yields and chooses the next rid in S.
e At the end, output Tr’.

Our operation-wise execution differs from the one in given in Orochi [87] in that it explicitly constructs an alternate trace
instead of consulting the observed one.

Moreover, because of the non-deterministic choices flagged above, this procedure can produce multiple ouput traces for the
same starting schedule S.

Definition 5 (Os). For a request schedule S, Og is the set of all possible output traces that Operation-wise execution on
request schedule S can generate.

Definition 6 (Soundness). An advice collection procedure and an audit procedure are defined to be sound if the following
holds: If the given audit procedure accepts a trace Tr and advice A, then there exists a request schedule S such that Tr € Og.

C.3 Proofs
We need the following definitions:
Definition 7 (R-precedes). An operation op = (rid, hid, opnum) R-precedes an operation op’ = (rid’, hid’, opnum’), written
op <R Op’, iff
e rid = rid’ and hid = hid’ and opnum < opnum’, or

e rid = rid’ and hid is an ancestor of hid’ in the handler tree.

Definition 8 (R-ordered, R-concurrent). Two operations op and op’, with op # op’, are R-ordered iff op <g op’ or op” <g op.
They are R-concurrent iff op £ op’ and op’ £g op.
Definition 9 (Op Schedule). An op schedule is a map:
S : N — requestid x ({0, 0o} U { handlerid x (N U {c0})})
For example:
(1,0),(23,0), (1, hidy, 0), (23, hidy, 0), (1, o), (1, hid;, 1) ...
where hid;, hid; are handler ids as defined in Section 3.2 of the paper, and the natural number domain is implicit in the
order.
Definition 10 (Well formed op schedule). An op schedule S is well formed (with respect to a trace Tr and set of advice A) if:

1. it is a permutation of the graph G that is constructed by Preprocess,
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2. it respects program order (that is, if there exists a program edge added by AddProgramEdges or a boundary edge added
by AddBoundaryEdges in G from node n; to node n,, then n; appears before n, in S), and

3. it respects activation order (that is, if there exists an activation edge from node n; to node n; in G, n; appears before n;
in S)

Remark. Notice that any topological sort of the graph G constructed by Preprocess in Audit(Tr, A) is well-formed. This is
immediate from the definition.

OOOAudit This procedure is shown in Figure 22.

Lemma 1 (Equivalence of well formed op schedules). For all op schedules Sy, S; that are well-formed (with respect to Tr and
advice A)

OOOAudit(Tr, 4, S;) = O00Audit(Tr, A, S,).

Proof. The schedule does not affect the OOOAudit until the line where OOOExec is invoked. So up until then, either both
executions accept or both reject.

Now, assume that OOOExec(S;) and OOOExec(S;) are equivalent, meaning that (a) either both accept or both reject and (b)
they access the same variables setting the initializer, write_observer and read_observers of each variable to the same values.
Now examine the execution of Postprocess. (b) implies that the edges that are added to G by AddInternalStateEdges are the
same in both executions and, thus, the constructed graph G is the same in both executions. CycleDetect thus runs the same in
both executions. Therefore, either both executions accept or both reject.

Now we need to prove that OOOExec(S;) and OOOExec(S;) are equivalent: The two schedules contain the same operations
because they are constructed from the same graph G. We need to prove that each operation is executed in the same way in
both executions. We will prove this by induction on the operations of each request.

1. Fix a request rid.

2. First notice that the only global state that is modified during OOOExec is the active map, per-variable dictionaries, lists
of read_observers, write_observers, and initializer.

3. Base case: Because both schedules are well-formed, the first operation of a request is (rid, 0): none of the data that
this execution depends on get modified throughout OOOExec. So the execution of this operation is independent of its
position in the log, and it is executed in the same way in both executions.

4. Induction: If both executions are about to execute operation k of request rid, and neither has rejected so far, the execution
of operation k will proceed in the same way in both executions.

e Assume that the next operation is (rid, 00): The handler hid which both executions of OOOExec execute is the one in
A.responseEmittedBy. Moreover, because the schedules are well formed, the latest operation of (rid, hid) that has been
executed so far on both executions is
(rid, hid, A.responseEmittedBy|rid].opnum). Thus, both executions will execute the handler that allegedly sends back
the response, from the (allegedly) last operation prior to the response up until the next operation. Because of the
induction hypothesis and the fact that the execution of a handler between operations is deterministic, the two
executions will proceed in the same way up until right before the next event, producing the same state. Moreover, the
next event will be the same in the two executions. If this event is not the emission of a response, both executions will
reject. Otherwise, because both executions have the same state, the produced outputs will be the same.

e Operations (rid, hid, i):

- If it is a handler start operation (i = 0) then the executions do not depend on state that is modified except for the

check in line 25. We will show that either both executions accept or both reject: Assume that this does not hold.
Then, without loss of generality assume that the check passes in OOOExec(S;) and fails in OOOExec(S;). So in
OOOExec(S,), hid is not in active[rid], either because (i) hid was in active[rid] and removed from it, or (ii) hid was
never added to active[rid]. We can rule out case (i) because the only place where hid could be removed is line 32
which, if it were executed, would mean that (hid, rid, o) appears before (hid, rid, 0) in S,, which is not possible,
since S, is well-formed and in particular respects program order. So case (ii) holds.
Now, in OOOExec(S;), hid is in active[rid]. There are two places where hid could have been inserted: (a) line 16
during execution of (rid, 0) or (b) line 49 during the execution of an emit operation (rid, parent, j). Consider case (a).
Because Sy and S; are well-formed, (rid, 0) appears before (rid, hid, 0) in both S; and S;. Also, as argued above, both
OOOExec(S;) and OOOExec(S;) execute (rid, 0) the same way, initializing active[rid] to the same value. Therefore,
if case (a) holds for OOOExec(S;) then correspondingly, hid would have been inserted in OOOExec(S;) in the same
line, in contradiction to case (ii) above. So case (b) holds.
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1: //Global Variables are the ones in Figure 14

2: procedure OOOAuUDIT(0p schedule S)
3 Preprocess() // Figure 14
4 OOOExec(S)
5 Postprocess() // Figure 14
6:
7. procedure OOOExEc(op schedule S)
8 for each opin S do
9: if op = (rid, 0) then
10: Read inputs in of the request
11 Allocate program structures
12: active[rid| « new Map
13: Find the functionIDs of the request handlers
14: for all functionID in functionIDs do
15: Let hid < (functionID, null, 0)
16: active[rid|[hid] « in
17: if A.opcounts[(rid, hid)] = 0 then REJECT
18: else if op = (rid, o) then
19: Let hid < A.responseEmittedBy|rid].hid
20: Run the handler (rid, hid) until the next event
21: if the next event is not a send response operation then REJECT
22: write out the produced outputs
23: else if op = (rid, hid, i) then
24: if i = 0 then
25: if (hid is not in active[rid]) then REJECT
26: //1t is the first operation
27: Set the handler’s inputs to active| rid][ hid].
28: Allocate structures for running the handler
29: else if i = co then
30: Run the handler (rid, hid) until the next event
31: if it is not a handler exit operation then REJECT
32: Remove hid from active[rid]
33: else
34: Run the handler (rid, hid) until the next event
35: if the next event is an external state operation then
36: optype « the type of state operation
37: opcontents, tid, txnum «— parameters from execution
38: s « CheckStateOp(rid, hid, i, optype, tid, txnum, opcontents)
39: if optype = GET then
40: state op result < s
41: else if the next event is an annotated operation then
42: if it is a write or initialization then
43: Execute the operation
44: Execute the annotation according to Figure 20 where opnum is set to i
45: else if the next event is a handler operation then
46: info « parameters from execution
47: CheckHandlerOp(rid, hid, i, optype, info)
48: if the event is an emit operation then
49: for all hid’ € activatedHandlers[(rid, hid, i)] do active[rid][ hid'] < value of the emit
50:

51: if 3rid s.t. hid : A.opcounts|(rid, hid)] but (rid, hid) was not executed by OOOExec then REJECT
52: if the produced outputs exactly match the responses in Tr then return ACCEPT
53: return REJECT

Figure 22. Pseudocode for OOOAudit in Karousos.

In this case, because OOOExec(S;) adds hid to active|rid] during the execution of an emit operation (rid, parent, j) at
line 49, hid € activatedHandlers|(rid, parent, j)|. This, in turn, implies that there is an activation edge ((rid, parent, j), (rid, hid, 0))
in G. So, because S; is well-formed, operation (rid, parent, j) appears before (rid, hid, 0) in S,. This means that
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OOOExec(S2) executes operation (rid, parent, j) prior to executing (rid, hid, 0) but during its execution it does not

add hid to active[rid]. This can only be the case if during OOOExec(S;), hid ¢ activatedHandlers[(rid, parent, j)]. But

this is impossible because activatedHandlers is the same across both executions (it is initialized during preprocessing
and is not modified after preprocessing), and hid € activatedHandlers|(rid, parent, j)] during OOOExec(S;).
- If it is a handler end operation (i = o0), the execution does not depend on any objects that are modified during

OOOExec so both executions proceed in the same way.

— If it is an external state operation: same argument as i = oco.
— If it is an annotated operation (and hence interacting with, the aforementioned per-variable dictionaries and lists):

* The parameters of the operation are the same across both executions because of the induction hypothesis and the
fact that OOOExec proceeds deterministically from operation to operation.

# If the operation is in the advice, then the execution proceeds in the same way in both executions.

« If the operation is not in the advice, then both executions will find the nearest R-preceding write. Because of the
induction hypothesis, and the fact that both schedules respect activation and program order, the nearest ancestor
write will be the same in both executions, regardless of the order in which concurrent handlers are re-executed. This
means that reading from the nearest ancestor will be the same in both executions (the same ancestor, the same
value read) and, for this operation, both executions will add the same value to the variable dictionary (if it’s a
write operation) and both update read_observers, write_observer and initializer in the same way.

— If it’s a handler operation: Same argument as i = co and external state.

C.3.1 Completeness

At a high level, we need to show that if the server honestly executes the given program and the advice collection procedure,
producing trace Tr and advice A, then Audit(Tr, A) accepts. We will do this in two steps:

1. First, we establish that for any well-formed op schedule S, OOOAudit(Tr, A, S) accepts (Lemma 2).
2. Next, we show that Audit(Tr, A) is equivalent to OOOAudit(Tr, A, S”) for a specific well-formed op schedule S’ (Lemma 3).
We take S’ to be the op schedule that results from a “flattened” batch execution.

Lemma 2 (OOOAudit Completeness). If the executor executes the given program (under the execution model given in
Section 3 and the given advice collection procedure, producing trace Tr and advice A, then for any well-formed op schedule S
(with respect to Tr and A), OOOAudit(S) accepts.

Proof. Because of Lemma 1, it is sufficient to prove that there exists some well-formed op schedule S” (with respect to Tr and
A) for which OOOAudit(S”) accepts.

We will derive the op schedule S’ from the online execution at the honest server. Define the following events during online
execution:

o A request event happens when a request rid reaches the server, and is notated as (rid, 0).

o A response event happens when the server issues a response for a request rid, and is notated as (rid, o).

o A handler start event happens when the server starts executing a handler (rid, hid), and is notated as (rid, hid, 0).

o A handler end event happens when the server finishes executing a handler (rid, hid), and is notated as (rid, hid, o).

o A (rid, hid, i) event happens when the server either collects advice associated with a handler op or a state op, or when
the handler executes an annotated operation.

We observe that there exists a partial order in which these events happen during online execution. The order is partial because
some events may happen concurrently from the perspective of the system; for example, even if the trace shows that a particular
event (such as a request’s arrival) is earlier than another (such as a different request’s arrival or response), the server may have
“seen” those two events in the opposite order. Define a total order on these events by ordering concurrent events according to
Tr if the events are both request/response events and arbitrarily otherwise. Take the op schedule S’ to be this total order.

Sub-lemma 2.1. S’ is well-formed, with respect to the Trace Tr and advice A produced by the online execution.

Proof. First, we show that S’ is a permutation of the nodes in graph G. Since the server is honest, S’ contains exactly one
request event and exactly one response event for each request in Tr; so does G (from the logic of CreateTimePrecedenceGraph
and SplitNodes). Moreover, S’ contains exactly one handler start event and exactly one handler end event for each handler
(rid, hid) that is executed; so does G. This follows from the logic of AddProgramEdges, specifically, lines 39 and 40 of Figure 14,
and the fact that the server faithfully executes the advice collection procedure, and sets the entries of A.opcounts to exactly the
handlers that are executed during online execution. Last, S’ will contain exactly one entry for each handler operation/state
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operation/annotated operation that it executes. Because the honest server faithfully reports A.opcounts, S” will contain exactly
one (rid, hid, i) for each i < A.opcounts. So will G (line 42 of Figure 14). S” contains no other entries other than the ones above
and G contains no other nodes other than the ones above. Thus, S’ is a permutation of the nodes of G, as required.

Moreover, S’ respects program order (Definition 10): The server faithfully executes the given program and collects the advice.
This means that the relevant order of events within a handler implied by the opnum field of the corresponding operations in
the logs, and the order of the response event relative to the other events of the handler that issues the response implied by
the contents A.responseEmittedBy reflect what happened online. As a result, from the logic of AddProgramEdges of Figure 14
and AddBoundaryEdges of Figure 15, the existence of a program edge or boundary edge (ny, ny) in G implies that n; happens
before n, during online execution. Thus, n; also appears before n; in S’, by construction of S’.

Last, we argue that S’ respects activation order (Definition 10). Since S’ reflects the order of events during online execution,
it is sufficient to show that if there exists an activation edge

((rid, parent_hid, i), (rid, hid, 0))

in G, then the emit event e = (rid, parent_hid, i) activates handler (rid, hid) during online execution (because during a faithful
execution a handler cannot start running until after the event that activates it is emitted). The activation edge is added to G at
line 28 of Figure 16 only if hid.functionID is registered for the event e according to GlobalHandlers or according to Registered.
We will show that in both cases, hid.functionID is registered for the event e during online execution and, thus, e activates
handler (rid, hid). In the former case, hid.functionID is registered for e at the end of the initialization procedure at the verifier.
Because the initialization procedure is deterministic, hid.functionID is registered for e at the end of the initialization procedure
at the online server and, because requests don’t modify global handlers, it is still registered when e is emitted, as required. In
the latter case, hid.functionID is registered for e according to Registered only if there exists a register operation prior to e in
HL,;;. Because the server executes the advice collection procedure faithfully, the order of operations in HL,4 reflects the order
in which they are executed at the online server. This implies that hid. functionID is registered for e during online execution. O

Sub-lemma 2.2. Preprocess passes.

Proof. Consider all the lines in which OOOAudit may reject during Preprocess. We need to show that if the server is well-
behaved then all of the checks pass.

e Line 19 of Figure 14: Passes because the honest server always sends back a response for each request it receives.

e Line 37 of Figure 14: When the server is honest, it does not execute nor collect advice for any requests that are not in Tr.

e Lines 14 and 16 of Figure 15: The honest server executes exactly the requests in Tr and sends back responses for exactly
those requests. Moreover, it faithfully executes the advice collection procedure setting the contents of A.responseEmittedBy|rid)
for each rid that appears in the trace to a tuple: (hid,, opnum,) s.t. 0 < opnum, < A.opcounts[(rid, hid)]. Consequently,
the check of line 14 passes. Moreover, notice that because of the logic of AddProgramEdges and the fact that the honest
server correctly sets the A.opcounts, (rid, hid,, opnum,) is added to G before the check of line 16 which implies that the
check passes.

e Line 6 of Figure 16: Because the server is well-behaved, it never includes a handler operations log in A for a request that
is not in Tr.

e Line 25 of Figure 16: As argued in the proof of lemma 2.1, if a functionID is registered for an event e when e is emitted
according to Registered or GlobalHandlers during AddHandlerRelatedEdges, this functionID is registered for e during
online execution. This implies that all handler ids for which line 25 is executed are handler ids that are actually activated
by this operation during online execution. Moreover, the server, being well-behaved, has these ids as keys in A.opcounts.
Thus, the check passes.

e Invocation of CheckOplsValid in Line 10 of Figure 16: When the server is honest, it correctly sets opcounts for each
request in Tr and the contents of the logs so that each operation appears exactly once in the logs. Under these conditions
the checks pass.

o Line 48 of Figure 16: When the server is honest, each GET(key) operation reads the contents of a PUT(key, -) operation.
Moreover, the honest server correctly logs state operations in A.TXL. Under these conditions, the check passes.

e Line 51 of Figure 16: When the server is well-behaved, the execution at the database is internally consistent (Section D)
meaning that if a transaction modifies a key and later reads it, it reads its latest modification. Moreover, the well-behaved
server correctly sets the opcontents field of each GET operation to the position of its dictating write in A.TXLs. This
implies that for each GET operation op that appears in some A.TXL; after a PUT operation op’ with op’.key = op.key,
op.opcontents corresponds to the last PUT operation to op.key that precedes op in A.TXL;. Meanwhile, from the logic
of AddExternalStateEdges, when a GET operation op € A.TXL; is processed, op.key ¢ MyWrites iff there are no PUT



Efficient Auditing of Event-driven Web Applications EuroSys ’24, April 22-25, 2024, Athens, Greece

operations to op.key prior to op in A. TXL,. Otherwise, MyWrites[op.key] is the last PUT operation to op.key that precedes
op in A.TXL,. Thus, either op.key ¢ MyWrites or MyWrites[op.key] = op.opcontents. So, the check passes.

Lines 23 and 27 of Figure 17: We show that both checks pass by showing that the entries (rid, tid, i) of A.writeOrder
are exactly the set of (rid, hid, i) s.t. 3key : lastModification|rid, tid, key] = i. First, notice that because the server is
well-behaved the entries (rid, tid, i) of A.writeOrder correspond to the PUT operations that the server applied to the
external state. These are exactly the last modifications of committed transactions: that is, the PUT operations op s.t.
op belongs to a committed transaction and op is the last operation of the transaction that modifies a key. Moreover,
the honest server correctly sets the entries of A.TXLs. Thus, the entries (rid, tid, i) of A.writeOrder are exactly the
operations op = A.TXL(rig 1q)[i] s.t. (1) the last operation of (rid, tid) is tx_commit, and (2) there exists no j > i
s.t. A.TXL(yiq,1ig)[j] is a PUT on op.key. From the logic of AddExternalStateEdges, these are exactly the (rid, hid, i) s.t.
Akey : lastModification[rid, tid, key] = i, as required.

Line 36 of Figure 17: First, observe that from the logic of AddExternalStateEdges, ReadMap maps each PUT operation
that appears in the logs to the set of GET operations that read from it according to the advice. Thus, to show that this
check passes for all GET operations in the range of ReadMap, we show that for each GET operation op that appears
in some A.TXL, either t ¢ Committed or op.opcontents € A.writeOrder. Observe that this line is executed only when
the purported isolation is READ COMMITTED or SERIALIZABILITY. Consider the history of execution (Section D)
at the honest server. The history is consistent with the isolation level and, thus, does not exhibit phenomena Gla
and G1b. Consequently, during online execution, GET operations of committed transactions only read from operations
that correspond to last modifications of committed transactions. These latter operations are exactly the ones that the
honest server places in the A.writeOrder. Thus, GET operations of committed transactions only read from operations
that are in the A.writeOrder. Because the server correctly logs state operations in A.TXLs, we deduce that for each GET
operation op that appears in some A.TXL; either the last operation in A.TXL; is tx_abort and, thus, t ¢ Committed or
op.opcontents € A.writeOrder, as required.

Line 11 of Figure 17: We need to show that if the server is honest, then the graph DG when this line is executed is
acyclic. This line is executed only when the purported isolation level is READ UNCOMMITTED. Consider the history of
execution H at the honest server (Section D). Because the server is well-behaved, H exhibits READ UNCOMMITTED
which implies that H does not exhibit phenomenon G0: DSG(H) contains no cycles consisting of write depend edges.
We show that DG is acyclic by showing that DG is the subgraph of DSG(H) that contains only write depend edges.
First, DG and DSG(H) have the same nodes: DG has a node for each transaction that commits during online execution
whereas DSG(H) has a node for each transaction in Committed. Because the honest server collects advice for each
transaction that it executes and the last operation of each committed transaction ¢ in A.TXL, is a tx_commit operation,
AddExternalStateEdges adds exactly the transactions that commit during online execution to Committed (line 35 of
Figure 16). Thus, DG and DSG(H) have the same nodes, as required. Now we argue that the edges of DG which are the
write dependency edges (added at line 47 of Figure 17) are exactly the write depend edges of DSG(H): Observe that the
write depend edges of DSG(H) are the edges(t;, t;) s.t. t; writes a key and #, writes the next version of the key according
to H (Section D). That is, DSG(H) has a write depend edge (t1, t,) iff there exist operations op, = (t1, i) and op, = (f2, )
s.t.

1. op, appears before op, in the version order of H,

2. op,.key == op,.key, and

3. for each operation op’ that appears between op, and op, in the version order of H, the key that op’ writes is not key.
Moreover, a well-behaved server sets A.writeOrder to the version order of H, and correctly logs state operations in
A.TXLs. Thus, the write depend edges of DSG(H) are exactly the edges (1, t;) for which there exist indexes i and j s.t.
1. (t1, 1) appears before (5, j) in A.writeOrder,

2. A TXLy, [i].key = A. TXL,,[j].key, and

3. for each operation (¢, k) that appears between (#;, i) and (t3, j) in A.writeOrder, A. TXL;[k].key # A.TXL, [i].key.
Meanwhile, from the logic of ExtractWriteOrderPerKey, t; and t; are consecutive in some writeOrderPerKey[key] iff they
meet the above conditions. Thus, ¢; and ¢, are consecutive in some writeOrderPerKey[key] iff (1, ;) is a write depend
edge of DSG(H). Moreover, from the logic of AddWriteDependEdges the edges of DG are exactly the edges (1, t2) s.t.
t; and f, are consecutive in some writeOrderPerKey[key]. Thus, the edges of DG are exactly the write depend edges of
DSG(H), as required.

Line 15 of Figure 17: As in the previous case, we need to show that the graph DG when this line is executed is acyclic.
This line is executed only when the purported isolation level is READ COMMITTED. Consider the history of execution
H at the honest server (Section D). Because the server is well-behaved, H exhibits READ COMMITTED which implies
that H does not exhibit phenomenon Glc: DSG(H) contains no cycles consisting of write depend edges and read depend
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edges. We show that DG is acyclic by showing that DG is the subgraph of DSG(H) that contains the write depend and

read depend edges of DSG(H). Specifically, we show:

1. that DG and DSG(H) have the same nodes,

2. that the write dependency edges of DG (added at line 47 of Figure 17) are exactly the write depend edges of DSG(H),
and

3. that the read dependency edges of DG (added at line 40 of Figure 17) are exactly the read depend edges of DSG(H).

We show 1 and 2 as above (in the proof that the check at line 11 of Figure 17 passes). Now we show 3: First, observe that

the read depend edges of DSG(H) are the edges (t;, t;) s.t. some operation of t, reads a value written by ;. Moreover,

because the server is well-behaved, the history H does not exhibit phenomenon G1b: as explained above (in the proof

that the checks at lines 23 and 27 of Figure 17 pass), this implies that all GET operations of committed transactions read

from operations that are in H’s version order. Thus, the read depend edges of DSG(H) are the edges (t1, t2) for which

there exist an operation op; that t; issues and an operation op, that f, issues s.t.

- op, reads the value written by op,,

- op, appears in H’s version order,

— t, commits, and

-ttt

Because the server is well-behaved, it correctly logs all state operations in the A.TXLs and sets A.writeOrder to H’s

version order. Moreover, as argued above (in the proof that the check at line 11 of Figure 17 passes), when the server is

honest, Committed contains exactly the transactions that commit during online execution. Thus, the read depend edges

of DSG(H) are exactly the edges (¢, t2) for which there exist operations (t1, i) and (¢, j) s.t.:

— For op = A.TXL,,[/] it holds that op.optype = GET and op.opcontents = (%, i),

- (t1,1) € A.writeOrder,

- t, € Committed, and

—-h#h

These are exactly the read dependency edges of DG: from the logic of AddExternalStateEdges, ReadMap maps each

PUT operation (t;, i) to the set of GET operations (1, j) s.t. A.TXL;,[j].opcontents = (t;, i). Moreover, AddReadDependen-

cyEdges examines all (¢1, 1) and (t,, i) s.t. (t2,j) € ReadMap|[(t1,i)] and adds an read dependency edge (t1, t;) to DG iff

A.TXL,,[j].opcontents = (t1, i), (t1,1) € A.writeOrder, t, € Committed, and t; # t,. Thus, the read dependency edges of

DG are exactly the read depend edges of DSG(H), as required.

Line 20 of Figure 17: As in the previous case, we need to show that the graph DG when this line is executed is acyclic.

This line is executed only when the purported isolation level is SERIALIZABILITY. Consider the history of execution

H at the honest server (Section D). Because the server is well-behaved, H exhibits SERTALIZABILITY which implies

that H does not exhibit phenomena Glc and G2 and, thus, DSG(H) contains no cycles. We show that DG is acyclic by

showing that DG is exactly DSG(H). Specifically we show 1, 2, and 3 as in the previous case and, additionally, we show

that the anti dependency edges of DG (added at line 56 of Figure 17) are exactly the anti depend edges of DSG(H): The

anti depend edges of DSG(H) are the edges (11, t3) s.t. t; reads some version of a key and ¢, writes the next version of

key according to the H’s version order. Thus, the anti depend edges of DSG(H) are exactly the edges (11, t;) for which

there exist a transaction f3, and operations op;, op,, and op, issued by #, ¢, and t3 respectively:

- op, appears before op, in the version order of H,

- op;.key = op,.key,

- for each operation op’ that appears between op, and op, in the version order of H, the key that op” writes is not
ops.key,

- op, reads the value written by op;,

- 11 # 1, and

— t; commits

Because the server is well-behaved, it correctly logs all state operations in the A.TXLs and sets A.writeOrder to H’s

version order. Moreover, as argued above, when the server is honest Committed contains exactly the transactions that

commit during online execution. Thus, the anti depend edges of DSG(H) are the edges (t1, t2) for which there exists a

transaction t3 and operations (1, i), (t2, j), and (3, k) s.t.:

— (t3, k) appears before (t,, j) in the version order of H,

- A.TXL,,[jl.keyA. TXL,,[i].key

— for each operation (t, £) that appears between (f3, i) and (2, ) in A.writeOrder, A. TXL;[{].key! = A.TXL,,[i].key.

- A.TXL, [i].optype = GET and A.TXL, [i].opcontents = (t3, i),

bttt
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- t; € Committed
From the logic of AddExternalStateEdges, ExtractWriteOrderPerKey and AddAntiDependencyEdges, these are exactly
the anti dependency edges of DG.

]

Sub-lemma 2.3. The invocation of OOOExec(S’):

e reproduces the program state of online execution
e passes all checks

Proof. Proof outline: Induct on S”:

Base case: The first operation in S’ has no ancestors in G’. It can only be an operation (rid, 0) for some rid € Tr. OOOExec
handles this operation by allocating structures for running and reading in the inputs. This is the same behavior as online
execution. Moreover, OOOExec finds all request handlers for rid, computes their handler ids and checks that for each handler
id there is an entry in opcounts (Line 17). This check will pass because the honest server sees the same request handlers for the
request during online execution, computes their handler ids in the same way as the verifier (the computation is deterministic),
and has entries for each of them in opcounts.

Inductive step: Assume that the claim holds for the first £ — 1 operations in S’. Let op be the £-th operation in S”:

e Case I: op = (rid, 0): Same reasoning as in the base case.

o Case II: op = (rid, hid, 0) where handler (rid, hid) is a request handler (that is, hid.parent_hid = null): Because S’ obeys
program order, this operation appears after (rid, 0) and before (rid, hid, o). This means that, because this handler is a
request handler, when OOOExec executes this operation, hid has already been added to active[rid] in line 16, has not
been removed yet, and active[rid|[ hid] has been set to the request inputs. Thus, the check of line 25 passes, OOOExec
sets the handler’s inputs to the request inputs and allocates structures for running the handler. This is the same behavior
as online execution.

o Case III: op = (rid, hid, i) where i = 1 and handler (rid, hid) is a request handler (that is, hid.parent_hid = null) By the
induction hypothesis and the fact that S” obeys program order, OOOExec and online execution had the same program
state at (rid, hid, 0). Because the server is well-behaved, both online execution and OOOExec will take the same next step
in terms of handler op, handler exit event, external state op, or annotated operation. Since the server is well-behaved
and opcounts[rid][hid] > 1, the next operation is a handler op, an external state op, or an annotated operation in both
executions.

— Handler Op: Similar arguments to the ones in case III of Sub-lemma 7b of Orochi [87]. The determinism of passing
from (rid, hid, 0) to (rid, hid, 1) and the induction hypothesis imply that the program state of online execution and the
program state of OOOExec right before executing the handler operation are the same. Being well-behaved, the server
recorded this operation correctly in HL,;4 and this is the operation that the verifier checks in CheckHandlerOp. Moreover,
the contents of the log entry (optype and info) are the ones produced during online execution and consequently the
ones produced during by OOOExec. Under these conditions CheckHandlerOp passes. Moreover, if the operation is an
emit operation, the handler ids in activatedHandlers are exactly the ones that this operation activated and their inputs
in active will be set to the inputs during online execution.

— External State Op: First, observe that the operation has the same tid and txnum under both executions: If optype
is tx_start then both online execution and OOOExec compute the same tid as (hid, opnum) and set txnum = 0,
as required. Otherwise, because of the induction hypothesis, both executions have assigned the same tid to this
transaction. Meanwhile, the operations of a transaction are not concurrent meaning that the order of operations within
a transaction is consistent with program order and activation order. Because both online execution and OOOExec(S’)
follow program order and activation order, the transaction tid issues the same number of operations prior to op under
both executions. Thus, txnum is the same under both executions as required. This implies that during OOOExec(S’),
the operation is checked against the entry in the logs that the honest server records for this operation during online
execution. Moreover, the determinism of passing from (rid, hid, 0) to (rid, hid, 1) and the induction hypothesis imply
that the program state of online execution and the program state of OOOExec right before executing the state operation
are the same. This implies that the parameters of the operation (optype, opcontents, key) are the same under both
executions except in the case where optype = tx_commit: in this case the recorded operation in the logs may be
tx_abort because during online execution, the transaction could not successfully commit. Meanwhile, because the
server is well behaved, it correctly logs the operation in A.TXL(yi4, 1iq). Thus, all checks of CheckStateOp pass. Moreover,
the well behaved server correctly sets the opcontents field of a GET operation to (rid,y, tidy,, iw) s.t. A. TXL(yia,, tid,,)[iw]
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is the dictating PUT operation. This implies that the value that OOOExec reads is the one written by the dictating PUT,

which is the value read at online execution. Thus, the two executions have the same program state after executing the

state operation.

— Annotated Operation: Both online execution and OOOExec execute the operation and call the annotation with
arguments (rid, hid, i) for the same variable v. We will argue that the claim holds after executing the annotation for
any handler hid and any i.

« Initialization: In this case both executions execute the operation and then execute the annotation, which performs
no checks. Thus, the two executions result in the same program state.

* Write operation: Both executions execute the operation, assigning the same value to the v, and then execute the
annotation. If during the execution of the annotation by OOOExec the operation is found in the logs, then the
server, being well-behaved, has correctly recorded the operation in v.log. As a result, all checks of OOOExec pass.
Otherwise, the verifier does no checks.

* Read operation: We need to show that the value that OnRead returns in OOOExec is the value of v when the
annotation is executed by online execution, which is the value written by its dictating write.

If during the execution of the annotation the read operation is in v. log then the online server, being well-behaved,
has correctly logged both the read operation and its dictating write. As a result, all checks pass and OnRead sets the
value of v to its value during online execution.

We will now argue that OnRead returns the value of v at online execution when the operation is not in v. log. If the
operation is not in v. log, then this is because when the operation is executed by the honest server, op reads the
value written by some operation op’ that is not R-concurrent with op (Definition 8). Thus, op” <r op. Meanwhile,
because OOOExec(S’) follows program order and activation order, it executes op” prior to executing op. Furthermore,
from the induction hypothesis, OOOExec(S’) and online execution have the same program state when they execute
op’, meaning that the parameters of op’ that OOOExec(S’) records in v.var_dict (at line 2 of Figure 21) are exactly
the parameters of op’ during online execution. Thus, when OOOExec(S’) executes op, there exists an entry in
v.var_dict that maps op’ to the value written during online execution. If op” is not the nearest R-preceding write
of op in v.var_dict, then there is a later ancestor, call it op”, such that op’ was re-executed before op”’, which
was re-executed before op. Since op’ and op” R-precede op and since each handler has only one parent, we must
have op’ <g op”’ <gr op. But <g never inverts online execution, so op” was also executed in between op’ and
op online, in which case op could not have observed op” without violating causality. Thus, there is no such op”.
FindNearestRPrecedingWrite therefore returns op” and reads the value written by op’ during online execution, as
required.

o CaselV:op = (rid, hid, i) where i € [2, A.opcounts[(rid, hid)]] and handler hid is a request handler (that is, hid.parent_hid =
null) Same arguments as in case IIL

e Case V: op = (rid, hid, ) where hid is a request handler (that is, hid.parent_hid = null) An argument similar to one
made elsewhere (Orochi [87], Sub-lemma 7b, Case II) establishes that the next operation is handler exit both in online
execution and in OOOExec. OOOExec handles handler exit events in the same way as online execution.

o Case VI: op = (rid, hid, 0) where hid is not a request handler. We need to show that the check of line 25 of Figure 22
accepts and that the inputs on which the handler is executed by OOOExec are the ones of online execution. Because
(rid, hid) is not a request handler it is activated by some emit operation op’ during online execution and, since the
server is well-behaved, op’ is executed before op during OOOExec. From the induction hypothesis, the program state of
OOOAudit when it executes op’ is the one of online execution. This implies that if line 49 of Figure 22 is executed for hid,
active[rid][ hid] is set to the handler’s inputs according to online execution. In order for this line to be executed for hid, it
must be that hid € activatedHandlers[op’]. This can only happen if when op’ is parsed during AddHandlerRelatedEdges
hid.functionlD is registered for op’.eventName according to GlobalHandlers or Registered. We will now argue that this is
indeed the case. Because op’ activates (rid, hid) during online execution, hid.functionID is registered for op’.eventName
when op’ is executed at the online server. hid.functionID is either a global handler, or there exists some operation op”
executed by the request rid that registers op’.eventName for hid.functionID during online execution. In the former case
per the determinism of the initialization procedure (op’.eventName, hid.functionID) € GlobalHandlers. In the latter case,
because the server is well-behaved, op’” appears before op” in HL,;y and (op’.eventName, hid.functionID) € Registered
when op is examined during AddHandlerRelatedEdges.

e Case VIL: op = (rid, hid, i) where hid is not a request handler and i € [1, A.opcounts[(rid, hid)]]. We can show this using
the same arguments as in cases Il and IV above.

o Case VIII: op = (rid, hid, o) where hid is not a request handler. We can show this using the same arguments as in case V
above.



Efficient Auditing of Event-driven Web Applications EuroSys ’24, April 22-25, 2024, Athens, Greece

e Case IX: op = (rid, ). Because S’ is well-formed,
(rid, A.responseEmittedBy|rid].hid, A.responseEmittedBy|rid].opnum)

is the last operation of (rid, A.responseEmittedBy[rid].hid) that OOOExec has executed when it encounters op. Because
the server is well-behaved, it correctly sets the contents of A.responseEmittedBy and because of the induction hypothesis,
the program state of handler (rid, A.responseEmittedBy[rid].hid) at the time when op is encountered is the one of online
execution. Under these conditions, the next operation of handler (rid, A.responseEmittedBy[rid]. hid) is the issue of the
response and the check of line 21 passes. Moreover, because execution between operations is deterministic, the produced
outputs are the ones of online execution.

Moreover, the check in line 51 passes because S’ being well-formed contains operations for all (rid, hid) in A.opcounts and,
thus, all (rid, hid) € A.opcounts are executed by OOOExec.

Last, as argued in case IX, all responses will match the ones of online execution and OOOExec accepts at line 52 of
Figure 22. O

Sub-lemma 2.4. Postprocess passes.

Proof. Postprocess rejects only when the graph G has a cycle. So our task is to show that, when the server is honest, graph G is

acyclic. We have already argued (earlier) that the events that happen during online execution have a partial order. Below, we

will show that if there exists an edge (n1, ny) in G, then n; precedes n; in that partial order. Now, if there were a cycle in G,

that would imply that some event precedes itself in the partial ordering, which contradicts the definition of partial order.
Consider the edges that are added to G during Preprocess:

e Procedure SplitNodes: An edge ((rid;, o), (rids, 0)) is added to the graph only if the response for rid; appears in the
trace before the request rid, is issued. This implies that the response for rid; was issued by the server before the request
rid, reached the server. Thus, (rid;, o) happened before (rid;, 0), as required.

e Line 7 of Figure 15: An edge ((rid, 0), (rid, hid, 0)) is added because hid is a request handler for rid. All handlers for a
request start executing after the request reaches the server, so the event (rid, 0) happened before the event (rid, hid, 0)
during online execution

e Lines 43 and 44 of Figure 14: An edge (ni, n,) is added to the graph because according to the advice, n; preceded n;
during the execution of a handler. Because the server is honest, n; indeed preceded n; during online execution.

e Lines 17,20 and 22 of Figure 15: For some rid, let hid be the handler that issued the response according to responseEmittedBy
and n be the last operation of hid prior to issuing the response according to responseEmittedBy. Because the honest
server correctly sets the contents of responseEmittedBy and send_response is a synchronous operation at the server,
these lines add edges to indicate that a response is issued after n and before the next event of hid during online execution

e Line 15 of Figure 16: such edges are added because according to the advice a handler operation preceded another handler
operation. Since the server is honest, this precedence held during online execution as well.

e Line 28 of Figure 16: such an edge ((rid, parent_hid, opnum), (rid, hid, 0)) is added only if according to the advice
the emit operation (rid, parent_hid, opnum) activates handler (rid, hid). Because the server is well-behaved the emit
operation (rid, parent_hid, opnum) activates handler (rid, hid) during online execution, and, because a handler does
not start running until the event that activates it is emitted, the handler start operation (rid, hid, 0) happens after
(rid, parent_hid, opnum) during online execution as required.

e Line 46 of Figure 16: Such an edge (nj, nz) is added only if the operation n; reads a value written by operation n;
according to the advice. Because the server is well-behaved, n, truly reads from n; during online execution and, because
an operation cannot read from the future, the operation n; executes before operation n, during online execution.
Meanwhile, during online execution, the server collects advice for PUT operations before issuing them to the database
and it collects advice for GET operations after their execution at the database completes. Thus, event n; precedes event
ny during online execution, as required.

Now consider the edges added in G during Postprocess. That is, edges added during AddInternalStateEdges.

First, we argue that if at the beginning of Postprocess for two operations ni, ny, v.write_observer{n;} = n; or n; €
v.read_observers{n;} for some variable v, then n; happens before n, during online execution. We will only argue this in the
case where v.write_observer{n;} = ny because the read_observers case is similar. v.write_observer{n;} can be set to n; at only
two locations during OOOExec(S’). First, in line 11 of Figure 21 which is executed if n; is in the logs and the server has recorded
n; as the previous write. Because the server is well-behaved, n; happens before n; during online execution. Second, in line 16
of Figure 21, which is executed if n; is identified as the nearest write by some ancestor of n,. In this case n; appears before n;
in S’. Because n; and n, operate on the same variable and we assume that variables are serializable, n; and n, are ordered
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during online execution and, because S’ follows the order of online execution on non-concurrent operations, n; happens
before n, during online execution.

Now, we argue that for each edge (ny, n;) added during AddInternalStateEdges, it holds that n; happens before n; during
online execution. For ww and wr edges, this follows immediately from our previous argument about write_observer and
read_observers: aww-edge is added iff v. write_observer{n;} = n, for some v and a wr edge is added iff n, € v.read_observers{n }.

Last, we need to argue this about rw edges. We will do this by contradiction. A rw edge (nj, n,) can be added to G only
if there exists some n ¢ {ny, ny} s.t. ny € v.read_observers{n} and v.write_observer{n} = n,. Assume toward a contradiction
that ny happens before n; during online execution. Because honest servers don’t allow reads from the future, n; either (i) reads
from n; or (ii) reads from some write that happened subsequently to n,.

In case (i), we claim that n; € v.read_observers{n,}. There are two sub-cases: either n, is an ancestor of n; during online
execution, or ny and n; are concurrent during online execution. For the first sub-case: because OOOExec(S”) follows activation
order, n, is an ancestor of n; during OOOExec and n; is added to v.read_observers{n,} at line 34 of Figure 20. For the
second sub-case: because a faithful server logs concurrent accesses for which at least one is a write, OOOExec adds n; to
v.read_observers{n,} at line 26 of Figure 20. Combining n; € v.read_observers{n,} with n; € v.read_observers{n} (from the
fact of an rw edge (n1, nz)), we have a contradiction, as an operation is only added to one v.read_observers.

In case (ii), there exist nj, .. ., n;C s.t.

v.write_observer{n,} = n}
v.write_observer{n;_,} = n},Vi € [2, k]

ny € v.read_observers{n; }

Notice that because of our previous argument about write observers, the above equations imply that n, happens before n;

during online execution. In order for the rw edge to exist, since n; can only appear in one v.read_observers it should hold
v.write_observer{n; } = n,. This implies that n; happens before n, during online execution which is a contradiction. O

]

Lemma 3 (Equivalence of OOOAudit and Audit). If the server executes the given program and advice collection procedure,
producing trace Tr and advice A, then there exists a well-formed op schedule S’ (with respect to Tr and A) such that Audit(Tr, A)
and OOOAudit(Tr, A, S’) are equivalent.

Proof. We use the control flow groupings to create an op schedule S’ as follows: Initially S’ is empty. For each control flow
group C we add each request’s operations in layers as follows:

1. For each request id r in C, append (r, 0) to S’
. Pick some request id rid" in the group C
. Initialize a set R that contains tuples (event name, function ID).
. Initialize active to the ids of the request handlers of rid". .
. I « active.
. While active # null:
a. If I # null:
i. Pick some hid from I and remove this hid from L.
ii. If hid ¢ active, go to step 6.
Otherwise, pick some hid from active.
b. For opnum = 0. .. A.opcounts[(rid*, hid)]:
i. For all requests r in the group, append (r, hid, opnum) to S’.
ii. If A.responseEmittedBy[rid"]| = (hid, opnum), then for all requests r in C, append (r, o) to S’.
iii. (¢, rid}, i) « OpMap|(rid", hid, opnum)].
iv. if t = “handler_log” and A.HL,;;+[i].optype = register, for all eventName € A.HL,;;[i].eventNames

R.add(eventName, A.HL,;4+[i].functionID)

AU AW

v. if t = “handler_log”and A.HL,;;[i].optype = unregister,
R.remove(A.HL,;;[i].eventName, A.HL,;;[i].functionID)

vi. If (rid*, hid, opnum) is in activatedHandlers,
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A. add all hid’ in activatedHandlers[(rid", hid, opnum)] to active.

B. (t,rid}, i) « OpMap|(rid”, hid, opnum)).

C. eventName «— A.HL,;;+[i].eventName.

D. For all f s.t. (eventName, ) € R U GlobalHandlers, add (f, hid, opnum) to I
c. For all requests r in the group, append (r, hid, o) to S’.
d. Delete hid from active

Now we must argue that S’ is well-formed.
First, we need to show that S’ is a permutation of the nodes of G, that is

G.nodes = set(S") (1)

where set(A) = {a | iA[i] = a}.
We do this through two more relations (2) and (3). Specifically, we will show: that relation (2) implies (1), that relation (3)
implies relation (2), and finally that relation (3) holds. The relations are:

Vrid* € R: {n | n € G.nodes A n.rid = rid"} = {n | n € set(S") A n.rid = rid*} (2)
and
Vrid* € R : hid € active & A.opcounts|(rid*, hid)] # null (3)

where R is the set of rids picked at step 2 above.

First, we show that relation (2) implies relation (1): Because the server is well-behaved, two requests are in the same group
only if they activate the same handlers, take the same control flow path on each handler, and activate the same handlers using
corresponding emit operations. Thus, requests in the same group have the same A.opcounts and the same A.responseEmittedBy,
which implies that they have corresponding nodes in G and corresponding operations in S’. Consequently, if relation (2) holds,
then relation (1) holds, as required.

Now we show that relation (3) implies relation (2): Specifically, we show that the backward direction of relation (3) implies
that

Vrid* € R: {n | n € G.nodes A n.rid = rid*} C {n | n € set(S") A n.rid = rid"}
and that the forward direction implies that
Vrid* € R: {n| n € set(S’) An.rid = rid*} C {n | n € G.nodes A n.rid = rid"}

Consider arbitrary rid* and denote G,;;+ the set of nodes associated with rid*, that is {n | n € G.nodes A n.rid = rid*}.
Observe that from the logic of AddHandlerProgramEdges, G,;;+ contains the nodes (rid”, 0), (rid", o0) and (rid", hid, i), for
i=0,...,Aopcounts[(rid*, hid)], co for all hid s.t. A.opcounts[(rid*, hid)] # null.

First, we show that when the backward direction of relation (3) holds, then each of the nodes in G, is added to S’: First,
(rid*, 0) is added to S’ at step 1. Second, the backward direction of relation (3) implies that all handler ids that have entries in
A.opcounts are added to active. Moreover, from the logic of step 6a, steps 6b and 6¢ are executed for each hid € active. Thus,
steps 6b and 6¢ are executed for each hid s.t. A.opcounts|(rid", hid)] # null. Thus, for all hid s.t. A.opcounts|(rid*, hid)] # null
the operations (rid*, hid, i), fori = 0, ..., A.opcounts|rid*][ hid], oo are added to S’. Last, denote A.responseEmittedBy|[rid"] as
(hid,, opnum, ). Because the honest server correctly sets the contents of A.responseEmittedBy, A.opcounts[(rid", hid,)] # null.
Because the backward direction of relation (3) holds, hid, is added to active and step 6b is executed for hid,. Moreover,
because the server is well behaved, opnum, € [0, A.opcounts|(rid", hid,)] which implies that step 6(b)ii is executed for
(rid”*, hid,, opnum, ) and (rid”, o) is added to S’.

Now we show that when the forward direction of relation (3) holds, then each of the operations of S” associated with
rid* are in G,;;+. Assume that the forward direction of relation (3) holds. We will argue that in each of the steps in which
an operation is added to S’, the operation exists in G,;;~. Operations are added to S’ in steps 1, 6(b)i, 6(b)ii and 6c. Steps 1
and 6(b)ii add (rid*, 0) and (rid", ) respectively to S’ and each of these operations appears in G,;4-. Because the forward
direction of relation (3) holds, each hid that is added to active has an entry in A.opcounts. Moreover, steps 6(b)i and 6c are
only executed for hid € active and, consequently, these steps add operations (rid", hid, i) s.t. A.opcounts[(rid*, hid)] # null and
i=0,...,A.opcounts[rid"][ hid], co. Each of these operations exists in G.

Now we show that relation (3) holds. The forward direction holds because an hid is added to active if it is a request handler
or it is in activatedHandlers[rid", hid’, i] for some hid’. In the former case there is an entry in A.opcounts[rid*| because the
server is well-behaved and in the latter there is an entry in A.opcounts[rid*] because all entries in activatedHandlers are in
A.opcounts as argued in the proof of lemma 2.2. For the backwards direction of (3), notice that if hid is in A.opcounts|rid*],
then because the server faithfully sets the contents of A.opcounts[rid”], hid is activated for rid" during online execution. If
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hid is a request handler then it is added to active at the beginning of the process. Otherwise let op,, . . ., op,, be the sequence
of emit operations that led to the activation of hid during online execution. Because the server correctly logs the handler
operations to reflect what happened during online execution, activatedHandlers[op;] for each i will contain the handler that
emits op;_ ;. Moreover, op, is issued by a request handler. Under these conditions, the above process will add all handlers that
execute opy, ..., op, to active, will examine each operation, and when it encounters op,, it will add hid to active, as required.

Now, we show that S’ respects program order (Definition 10). This holds by construction: for each request r, (r, 0) appears
before any other operation of r in S’, all operations of each handler are added in ascending order of opnum and (r, o)
is added right after the last operation of the handler that emits the response prior to emitting the response according to
A.responseEmittedBy[r].

Last, we show that S’ respects activation order (Definition 10) as follows: Consider a request r of a control flow C where rid*
is the request that “drives” the construction of S’ as above. Let an activation edge {(r, hid, i), (r, hid’, 0)). We will show that
(r, hid, i) appears before (r, hid’,0) in S’. The existence of this activation edge implies that activatedHandlers[(r, hid, i)] = hid’.
Because an honest server puts in the same group requests that activate the same handlers from corresponding operations and,
thus, they have the same entries in activatedHandlers we infer that activatedHandlers|(rid", hid, i)] = hid’. This implies that
hid" is added to active after (rid", hid, i) and (r, hid, i) are added to S’. Because the first operation of hid’ is added to S’ after
hid is added in active, we conclude that (r, hid’, 0) appears after (r, hid, i) in S’ as required.

Now we need show that OOOAudit(Tr, A, S”) and Audit(Tr, A) are equivalent. The two executions are the same except for
the following differences between OOOExec and ReExec. These differences are superficial in terms of affecting the program
state of execution and the output:

1. ReExec checks that the number of operations that each handler issued matches the purported number of operations in
the advice. OOOExec has no such explicit check but it does have an (rid, hid, co) case. An argument similar to the one in
case (i) of Theorem 10 of Orochi [87] implies that the difference is superficial.

2. OOOExec executes the requests in a Round-Robin fashion whereas ReExec does SIMD-style execution. An argument
similar to the one in case (ii) of Theorem 10 of Orochi [87] implies that the difference is superficial.

3. ReExec checks that the execution of requests does not diverge inside each handler. An argument similar to the one in
case (iii) of Theorem 10 of Orochi [87] implies that the difference is superficial.

4. When OOOExec starts executing a handler, it checks that it is in active. ReExec does not do this check. The difference is
superficial because due to the fact that the server is well-behaved, the check always passes during OOOExec.

5. ReExec checks that when a group makes an emit operation, all requests in the group activate the same handlers. This
difference does not affect the execution because when the server is honest all requests in the same group activate the
same handlers from corresponding emit operations which means that requests in the same group have the same entries
in activatedHandlers and, thus, ReExec’s check passes.

6. ReExec keeps track of the number of ops that a handler has executed so far in idx. OOOExec uses the i field in the op
schedule entry as the number of ops that the handler has issued so far. The difference is superficial: i = idx at all times
because idx and i are both the running counter of operations that the handler has executed so far.

7. When a group sends back a response, ReExec checks that the contents of A.responseEmittedBy match re-execution. In
OOOExec there is no such check, but there is a (rid, co) case. This difference is superficial: both executions reject if the
contents of A.responseEmittedBy do not match the ones produced during re-execution and reject otherwise.

8. ReExec lets the runtime pick the next handler to execute at line 16 of Figure 18, whereas OOOExec picks itself the next
handler to execute from S’. Observe that from the logic of ReExec and the way S is constructed, in both cases, the handler
that is executed is a handler whose id is in active. Moreover, the two executions pick the same handler to execute under
the condition that the activated handlers under ReExec are exactly the handlers that are in I when the operation is added
to S’ (during the construction of S’). We now show that this condition holds: Initially I contains exactly the request
handlers of the request which are exactly the handlers that the request activates under ReExec. Now, we show that the
handlers that each emit operation activates during ReExec are exactly the handlers that are added in I: The handlers that
are activated by each emit operation under ReExec are exactly the handlers registered for the event by the request and
the global handlers registered for the event. Meanwhile, from the logic of the algorithm that we use to construct S’, and
the semantics of handler operations, when each operation is executed by ReExec, the set of handlers that are registered
by the request contains exactly the entries of R when the operation is added to S’. Thus, the handlers activated by each
emit operation are the ones registered for the emitted event in GlobalHandlers and the ones in R when the operation is
added to S’. These are exactly the handlers that are added in I when the emit operation is added to S’, as required.

]

Composing Lemmas 2 and 3, we have proved:
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1: //Global Variables are the ones in Figure 14

: procedure AcTuALHANDLEROPS(op schedule S)
Preprocess()
return ActualHandlerOpsExec(S)

Tt ]
for each opin S do

2
3
4
5:
6: procedure AcTUALHANDLEROPSEXEC(op schedule S)
7
8
9 if op = (rid, 0) then

10: Read inputs in of the request from Tr

11: Allocate program structures

12: Tr’.append((REQ, rid, inputs))

13: Find the functionIDs of the request handlers

14: for all functionID in functionIDs do

15: Let hid « (functionID, null, 0)

16: Name the instance of the handler hid

17: else if op = (rid, o) then

18: Let hid « A.responseEmittedBy|rid].hid

19: Run the handler (rid, hid) up to and including the next event
20: if it is not a send response operation then REJECT

21: Tr’.append((RESP, rid, outputs))

22: else if op = (rid, hid, i) then

23: if i = 0 then

24: if (hid is not an activated handler) then REJECT

25: Read in the handler’s inputs and allocate structures for running the handler
26: else if i = co then

27: Run the handler (rid, hid) until the next event

28: if it is not a handler exit operation then REJECT

29: else

30: Run the handler (rid, hid) until the next event

31: if the next event is an external state operation then

32: optype « the type of state operation

33: opcontents, tid, txnum <« parameters from execution
34: s « CheckStateOp(rid, hid, i, optype, tid, txnum, key, opcontents)
35: if optype = GET then

36: state op result < s

37: else if the next event is an annotated operation then

38: if it is a write or initialization then

39: Execute the operation and skip the annotation

40: else

41: Return the current value of the variable

42: else if the next event is a handler operation then

43: Execute the handler operation

44: if the operation is an emit operation then

45: for all functions that the operation activates do
46 hid" « (functionID, hid, i)

47: Name the instance of the handler that is activated hid’
' returnTr

Figure 23. Pseudocode for ActualHandlerOps

Theorem 1 (Audit Completeness). If the executor executes the given program (under the concurrency model given in Section 3
of the paper) and the given advice collection procedure, producing trace Tr and advice A, then Audit(Tr, A) accepts. O

C.3.2 Soundness

In the following we assume no external state operations. To show that Definition 6 is satisfied, we will show that whenever the
verifier accepts an input trace Tr and advice A, there exists a well formed op schedule (with respect to Tr and A) that causes
OOOAudit to accept (Lemma 5) which in turn implies the existence of a request schedule RS s.t. Tr € Ogs (Lemma 4).
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Lemma 4 (OOOAudit Soundness). Given trace Tr and advice A, if there exists a well-formed op schedule S for which
OOOAudit(Tr, A, S) accepts then there exists a request schedule RS s.t. Tr € Ogs.

Proof. If OOOAudit(Tr, A, S) accepts, then there are no cycles in graph G. We consider an op schedule S’ that is a topological
sort of G in which the order of (rid, 0) and (rid, oo) events matches Tr. We show that such an op schedule exists (Lemma 4.1).
S’ is well-formed (which follows from the remark after Definition 10). Thus, by Lemma 1, OOOAudit(Tr, A, S”) accepts. Then,
we define an execution ActualHandlerOps as in Figure 23. ActualHandlerOps is the same as OOOExec of Figure 22 but:

1. It does fewer checks
2. It constructs a trace Tr’ while it is executing and outputs it
3. It executes handler operations instead of simulating them
4. Tt skips all annotations. This means that all operations on variables observe the most recently-written value.
Then, we prove that if OOOAudit(Tr, A, S’) accepts, then ActualHandlerOps(Tr, A, S’) outputs Tr (Lemma 4.2).
Subsequently, we define an execution Actual as in Figure 24 that is the same as ActualHandlerOps of Figure 23 except
that it executes external state operations against a database instead of simulating them by reading from the A.TXLs. Because
the execution at the database is non deterministic, each GET operation that Actual issues may return more than one outputs
meaning that Actual has many possible output traces.
Then, we show that if ActualHandlerOps(Tr, A, S’) outputs Tr then Tr is a possible output of Actual(Tr, A, S”) (Lemma 4.3).
Last, we show that if one of the possible outputs of Actual(Tr, A, S’) is Tr, then Tr € Ogs, where RS is the request schedule
derived from S’ by discarding the handler id and opnum components (Lemma 4.4).

Sub-lemma 4.1. If G is acyclic, then there exists a topological sort S’ of G in which the order of (rid, 0) and (rid, o) events
matches Tr.

Proof. In the following we will move between request/response nodes in G (that are also the entries of the op schedule) and
request/response events in Tr. We will say that the node of G that corresponds to a request event (REQ, rid, -) (resp., response
event (RESP, rid, -)) in the trace Tr, is the node (rid, 0) (resp., (rid, )) of G and vice versa. We sometimes abuse notation by
writing that (rid, 0) or (rid, 00) is in the trace instead of specifying that we are referring to the entries that correspond to these
nodes.

We create an ordered list S’ as in Figure 25.

If the procedure ConstructS of Figure 25 does not reject, the constructed S’ is a topological sort of G with the required
property: It is a topological sort because a node v is not added to S until after all nodes that have a path to v have been
removed from G and added to S’. Moreover, from construction, nodes that correspond to request/response events are always
added in the order that they appear in Tr.

We now prove that ConstructS of Figure 25 does not reject. Assume that it does reject. This can happen only if all nodes in
frontier correspond to request/response events (that is, items in Tr) and none of them is the node u that corresponds to Tr[i].
Claim: There exists a request or response node v such that v appears in Tr after u yet v has a directed path in to u in G. We
now justify this Claim. Denote as G; the graph G at line 3 of Figure 25 is executed for the i-th iteration. Because u is in G; but
not in frontier, u has in-degree larger than 0 in G;. Because G; is acyclic (being a subgraph of G), there exists a path in G;,
and hence also in G, to node u from some node v that has in-degree 0 in G;. By inspection of the algorithm, v is in frontier.
Because all nodes in frontier are request or response nodes, there exists a j s.t. Tr[j] corresponds to v. Meanwhile, for j < i, all
nodes that correspond to Tr[j] are not in G; (again by inspection of the algorithm). Thus, j > i, which implies that the node v
appears in Tr after u.

In the following, we use v; ,g vy to denote that there is a directed path from v; to v; in G and rid; <ty rid, to denote that
(RESP, ridy, -) appears before (REQ, rid,, -) in the trace Tr. Similar arguments as in the proof of Lemma 2 of Orochi [87] imply
that

(ridy, 00) ~> (ridy, 0) &= ridy <7, rid 4)
Now we use this observation to analyze cases:
1. u = (ridy, o), v = (ridy, 0): Because u precedes v in Tr, rid; <t ridy. The right-to-left direction of relation (4) implies
that there exists a path from u to v in G. Consequently, G has a cycle, which is a contradiction.
2. u = (ridq, ), v = (rids, 00). From the construction of G, all outgoing edges of v are to nodes (rids, 0) s.t. ridy <ty rids.
Since there exists a path from v to u, there exists a path from some node v’ = (rids, 0) to u. On the other side,
a. u = (ridq, o) appears before v = (ridy, 0) in Tr,
b. Because a request always appears before its corresponding response, (rids, 0) appears before (rid, c0) in Tr, and
c. Since ridy <ty rids, (ridz, c0) appears before (rids, 0) in Tr.
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1: //Global Variables are the ones in Figure 14

: procedure ActuaL(op schedule S)
Preprocess()
return ActualExecS)

Tr ]
for each opin S do

2
3
4
5
6: procedure AcTUALEXEC(op schedule S)
7
8
9 if op = (rid, 0) then

10: Read inputs in of the request from Tr

11: Allocate program structures

12: Tr’.append((REQ, rid, inputs))

13: Find the functionIDs of the request handlers

14: for all functionID in functionIDs do

15: Let hid « (functionID, null, 0)

16: Name the instance of the handler hid

17: else if op = (rid, o) then

18: Let hid < A.responseEmittedBy|rid].hid

19: Run the handler (rid, hid) up to and including the next event
20: if it is not a send response operation then REJECT

21: Tr’.append((RESP, rid, outputs))

22: else if op « (rid, hid, i) then

23: if i = 0 then

24: if (hid is not an activated handler) then REJECT

25: Read in the handler’s inputs and allocate structures for running the handler
26: else if i = co then

27: Run the handler (rid, hid) until the next event

28: if it is not a handler exit operation then REJECT

29: else

30: Run the handler (rid, hid) until the next event

31: if the next event is an external state operation then

32: Execute the state operation against the database

33: else if the next event is an annotated operation then
34: if it is a write or initialization then

35: Execute the operation and skip the annotation
36: else

37: Return the current value of the variable

38: else if the next event is a handler operation then

39: Execute the handler operation

40: if the operation is an emit operation then

41: for all functions that the operation activates do
42: hid" « (functionID, hid, i)

43: Name the instance of the handler that is activated hid’
" return Tr’

Figure 24. Pseudocode for Actual

These imply that (rid;, o) appears before (rids, 0) in Tr and consequently rid; <t rids and, thus, from the right-to-left
direction of relation (4), there is a path in G from u to v’. Consequently, G has a cycle, which is again a contradiction.
3. u = (ridy, 0), v = (rids, o). Since there is a path from v to u in G, the left-to-right direction of relation (4) implies that
rid; <ty rid;. This implies that v appears before u in Tr, which is a contradiction.
4. u = (ridy, 0), v = (rid,, 0). From the construction of G, the only incoming edges to u are from nodes (rids, o) that appear

. G . . .
before u in Tr. Thus, v ~> v’ for some v’ = (rids, ). Meanwhile, v’ appears before v in Tr (because v’ appears before u

G . . .
and u appears before v), so v’ ~ v, hence a cycle exists between v and v’, impossible.
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1: procedure ConsTRUCTS(graph G)

2 Initialize S’ to empty, a set frontier to the set of all in-degree 0 nodes of G , and set i = 0;

3 while G is not empty do

4 while there exists a node v in frontier which is not request/response do

5; ProcessFrontier(v, G, S’, frontier);

6 Let u be the node that corresponds to Tr[i] in frontier. If u is not in frontier then REJECT
7 ProcessFrontier(u, G, S’, frontier)

8 ie—i+1

9

10: procedure PROCEsSSFRONTIER(Graph G, Node v, op Schedule S’, frontier)

11: Remove v from frontier and from G. Also remove the outgoing edges of v from G
12: Append v to §’

13: Add all nodes of G that have in-degree 0 to frontier

Figure 25. Algorithm for creating S’

Sub-lemma 4.2. If OOOAudit(Tr, A, S’) accepts, ActualHandlerOps(Tr, A, S”) outputs the trace Tr.

Proof. First, we show that the two runs have the same program state after each schedule step by inducting over the sequence S’.
Specifically, we show that the executions after processing each operation (that is, OOOAudit at line 50 and ActualHandlerOps
at line 48) preserve the following invariants:

1. they have the same program state (program state does not include the list of registered handlers, the list of activated
handlers, or the set of emitted events).
2. the set of handler ids in active under OOOExec is exactly the set of handler ids that are activated under ActualHandlerOps.

Base case: Before processing any operation, the two runs have the same program state (because we assume that initialization
is deterministic), active is empty in OOOAudit and there are no activated handlers in ActualHandlerOps. Thus, the invariants
hold before processing the first operation of S’. The first operation in S’ has the form (rid, 0). Both executions read inputs
from Tr, allocate program structures and, subsequently, perform operations that do not affect program state. Thus, since both
executions start from the same program state, the two executions have the same program state after processing op. Moreover,
because invariant 2 holds prior to processing op, it holds after processing op: both executions compute the same handler ids
for rid’s request handlers, which OOOAudit adds to active at line 16 of Figure 22 and ActualHandlerOps uses to name the new
activated handlers at line 16 of Figure 23.

Induction step: Consider the i-th operation of S” and denote it as op. Assume that the invariants hold for all operations j s.t.
Jj < i. We will show that for any type of op, after processing op the invariants hold:

o Case op = (rid, 0): A similar argument as the one used in the base case implies that the invariants hold after processing
op.

o Case op = (rid, 0): Let hid = A.responseEmittedBy[rid].hid. Since invariant 1 holds, prior to processing op, the two
executions have executed handler (rid, hid) up until the same operation op; and have the same program state. From the
logic of OOOAudit and ActualHandlerOps, the two executions resume the execution of (rid, hid) from op, until its next
special operation. Since both executions proceed deterministically between operations, the program state of OOOAudit
when it reaches line 21 of Figure 22 is the same as the program state of ActualHandlerOps when it reaches line 20 of
Figure 23. This implies that the next operation will be the same in both executions and, thus, either both checks at the
aforementioned lines pass or both fail. Because the work that the two executions perform past these checks does not
affect program state, we conclude that the two executions have the same program state after op.

Moreover, observe that invariant 2 holds prior to processing op, OOOAudit does not modify active as part of handling
op and ActualHandlerOps does not modify the activated handlers as part of handling op. These imply that invariant 2
holds after processing op.

e Case op = (rid, hid, 0): The two executions handle this operation in the same way except that OOOExec checks if hid
is in active and ActualHandlerOps checks if hid is the name of some activated handler. Because from the induction
hypothesis the ids of all activated handlers of ActualHandlerOps are exactly the handler ids in active, either both checks
pass or both fail. Thus, the two executions reach the same program state after processing op. Moreover, invariant 2 holds
prior to processing op and while processing op neither the activated handlers are modified by ActualHandlerOps nor
active is modified by OOOAudit. Thus, invariant 2 holds after processing op.
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e Case op = (rid, hid, 0): The two executions start from the same program state, pick the same handler, run it until the
next event and check that it is a handler exit event. Thus, the two executions result in the same program state. Moreover,
upon reaching the handler exit event, ActualHandlerOps truly executes the handler exit operation, and this operation
removes the handler with id hid from the activated handlers. On the other side, OOOAudit removes hid from active at
line 32. This implies that the invariant holds after processing op.

Case op = (rid, hid, i) where op is an external state operation: The result follows from the induction hypothesis, the fact
that execution proceeds deterministically between operations and the fact that both executions handle external state
operations in the same way.

Case op = (rid, hid, i) where op is a handler operation. From the induction hypothesis and the fact that execution
proceeds deterministically between operations we conclude that the two executions have the same program state right
before they process op. The processing of op in ActualHandlerOps and OOOAudit does not affect program state (which,
recall, excludes the set of registered handlers and emitted events). Thus, invariant 1 holds after processing op.

Now we argue that invariant 2 holds. From the induction hypothesis the invariant holds before processing op. If op is not
an emit operation, ActualHandlerOps does not modify the activated handlers while processing and OOOAudit does not
modify active. Thus, invariant 2 holds after processing op. On the other hand, assume op is an emit operation. We will
argue that the handler ids that are in activatedHandlers[(rid, hid, i)] (which are the ones added to active by OOOAudit
at line 49) are exactly the ones activated in ActualHandlerOps at lines 45-47 of Figure 23. Let eventName be the event
that op emits. Let C be the set of function ids ¢ s.t. (eventName, c) € Registered U GlobalHandlers when op is processed
by AddHandlerRelatedEdges and C’ the set of function ids that op activates during ActualHandlerOps. In the following
we will sometime abuse notation and refer to the handler’s function as handler.

Claim: C = C’. Denote Cy the set of function ids c s.ts. (eventName, c) € GlobalHandlers and C, the set of function ids ¢
s.t. (eventName, c) € Registered. Obviously,

C=C,UC,.

Moreover, because each function that op activates during ActualHandlerOps is either a global handler or a function

registered for eventName by rid,

C'=C,uCy,

where Cy is the set that contains the ids of all global handlers that are registered for event eventName, and C;. is the

set that contains the ids of all functions that are registered for event eventName over the course of rid. To establish the

Claim, we show that Cy = C; and C, = C;:

1. C4 = Cy: First, observe that C, is exactly the ids of the functions registered for eventName over the course of the
initialization procedure of OOOExec. Because the initialization procedure is deterministic, it registers the same
functions for eventName under both OOOExec and ActualHandlerOps. Thus, C is exactly the ids of the functions
registered for eventName over the course of the initialization procedure of ActualHandlerOps. Because requests don’t
modify global handlers, C, = Cy.

2. Cr = C;: C]. contains the ids of the functions that are registered by rid for eventName at the time when op is executed.
Because ActualHandlerOps follows S’, these are exactly the ids of the functions H s.t.

a. There exists an operation op, that registers H for eventName and appears before op in S’, and

b. For all operations op’ between op, and op in S’, op’.rid # rid or op’ does not unregister H from eventName.

Meanwhile, the induction hypothesis and the fact that execution proceeds deterministically between operations imply

that OOOExec and ActualHandlerOps have the same program state right before executing every register and unregister

operation that precedes op. This implies that the parameters of each register or unregister operation op’ (these are

the functionID and eventNames for register operations, and functionID and eventName for unregister operations) are

the same under ActualHandlerOps and under OOOExec. Moreover, OOOExec checks these parameters against the

corresponding entry in A.HL,;; (line 23 of Figure 19). The above implies that C; contains exactly the function ids ¢ s.t.:

a. There exists a register operation op, with parameters ¢ and eventNames in A.HL,;; that appears before op in S and
for which eventName € eventNames, and

b. For all operations op’ between op, and op in §’, either op’.rid # rid or the entry in A.HL,; that corresponds to op’
is not an unregister operation with parameters ¢ and eventName.

Meanwhile, because S’ is a topological sort of the graph G and G has edges between consecutive handler operations

in A.HL,;4 (line 15 of Figure 16), the order of the handler ops of rid in S’ matches their order in A.HL,;y. Thus, we

conclude that C; contains exactly the function ids ¢ s.t.

a. There exists a register operation op, with parameters c and eventNames in A.HL,;q that appears before op in A.HL,;;
and for which eventName € eventNames, and
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b. For all operations op” between op, and op in A.HL,;4, op’ is not an unregister operation with parameters ¢ and
eventName.
From the logic of AddHandlerRelatedEdges these function ids are exactly the ones in C,, as required.
Let

Ciq = {(functionID, op.hid, op.i) | functionID € C}.

By definition of C, C;4 is exactly the set of handler ids that AddHandlerRelatedEdges places in activatedHandlers[(rid, hid, i)]
at line 26 of Figure 16, and, because C = C’, also exactly the handler ids that ActualHandlerOps uses to name the handlers
that op activates at line 47 of Figure 23. So, these two sets are equal, as required.

e Case op = (rid, hid, i) where op is an annotated operation. Since in this case the activated handlers under Actual-

HandlerOps and active under OOOAudit are not modified, if invariant 2 holds prior to this step, it holds after this
step.
Now, we argue that invariant 1 holds. As argued in some of the previous cases, the induction hypothesis and the
determinism of execution between operations implies that the program state right before op is processed is the same
across executions. If the annotated operation is either a write or initialization, then both executions execute the operation,
which results in the same program state. Then, OOOAudit executes the annotation, which ActualHandlerOps skips.
However, the annotation does not affect program state on OOOAudit and, consequently, the two executions have the
same program state after executing the annotation, as required. Now, we argue that they have the same program state
when op is a read. In this case, ActualHandlerOps reads the current value of the variable whereas OOOAudit reads the
value returned by the OnRead function of Figure 20. We argue that the value of the variable under ActualHandlerOps
(which is the most recent value written) is the value returned from the OnRead annotation in OOOAudit. Let op’ the
write operation that op reads from in OOOAudit and v the variable that these operations access. We will show that op’
is the most recent write operation to v prior to op in S’. From the logic of OnRead, op € v.read_observers{op’}. This
implies that there exists a read edge (op’, op) in G. Moreover, because G contains anti-depend edges and write-depend
edges, for any other write op” to v either there exists a path from op” to op’ consisting of write-depend edges or there
exists a path from op to op”’ in which the first edge is an anti-depend edge and the rest are write-depend edges. Thus,
because S’ is a topological sort of G, the last write op to v prior to op in S’ is op’. Because ActualHandlerOps follows S’,
this implies that op” is the most recent write to v prior to op and, thus, the value of v under ActualHandlerOps is the
value written by op’ as requested.

Since every step preserves program state in the two runs and OOOExec does not reject, ActualHandlerOps also does not
reject and thus returns a trace Tr’.

Now, we show that Tr” is a permutation of Tr. First, we argue that Tr and Tr’ contain entries for the same request ids: This
follows from (1) the fact that G’s (rid, 0) and (rid, c0) nodes are exactly those for which rid € Tr (this follows from the logic of
CreateTimePrecedenceGraph and SplitNodes) (2) the fact that S’ is a topological sort of G and (3) that Tr” has exactly one
request entry for each (rid, 0) node in S” and one response entry for each (rid, c0) node in S’. Moreover, the request contents of
each request in Tr’ are those in Tr because of the logic of lines 10 and 12 of Figure 23. Last, because invariant 1 holds, for
each rid, the program state of OOOExec at line 21 of Figure 22 is the same as the program state of ActualHandlerOps when it
reaches line 20 of Figure 23. This implies that the response contents for rid that ActualHandlerOps writes in Tr” are those that
OOOExec checks against Tr at line 52 of Figure 22.

Last, from the construction of S’ (lemma 4.1, Figure 25), the order of (rid, 0) and (rid, o) operations in S’ corresponds to
their order in Tr. Moreover, the order of the operations in Tr” matches their order in S’. Consequently the order of operations
in Tr’ matches their order in Tr, and Tr” = Tr as required. ]

Sub-lemma 4.3. If ActualHandlerOps(Tr, A, S”) outputs the trace Tr, then Tr is a possible output of Actual(Tr, A, S’).

Proof. ActualHandlerOps(S’) and Actual(S’) are the same except that Actual does not simulate external state operations but,
instead, it executes them against a database that exhibits the required isolation level. Observe that the execution of the program
under Actual is identical to the execution of the program under ActualHandlerOps under the condition that each GET reads
the same value under Actual and under ActualHandlerOps. Thus, if this condition is satisfied, then Actual outputs Tr, as
required. Furthermore, observe that the executions at the database in which the dictating write of each GET is the one in
A.TXLs satisfy this condition. We pick one of these executions and show that it is a legal database execution (meaning that its
history obeys all rules of definition 11) and that it is consistent with the required isolation level (Section D). To fully specify
this execution we need to first specify what is the version order of this execution. Second, we need to specify what happens
when the server issues a tx_commit operation: upon a tx_commit operation, the database can either execute the tx_commit
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or, if the transaction cannot commit, the database can instead abort the transaction. We pick the execution whose version order
(definition 11) is consistent with A.writeOrder and whose execution of tx_commit operations is consistent with the A.TXLs.

Consider the TxOp order E in the above execution: First, because Actual follows S’, this TxOp order is consistent with
the order of external state operations in S’. Moreover, the contents of the entries in E are consistent with the A.TXLs: For
tx_commit operations, this follows from the definition of the execution. For the rest of the parameters, this follows from the
fact that the parameters of the operations under Actual and under ActualHandlerOps are the same, and ActualHandlerOps
checks that these parameters match the ones in A.TXLs. Formally, if the i-th external state operation of S is op, then for the
i-th entry of E it holds:

o if op.optype € {tx_start, tx_commit, tx_abort}, it is (op.rid, op.tid, op.optype),

e if op.optype = PUT, itis (op.rid, op.tid, PUT, op.key, m, op.opcontents), where m is the order of op among all PUT operations
in A.TXL, rigop.tid,

e if op.optype = GET, it is (op.rid, op.tid, GET, op.key, op,,.rid, op,,.tid, m), where op,, = op.opcontents and m,, is the order
of op,, among all PUT operations in A.TXL(op_.rid, op,, .tid)-

Moreover, the version order is the sequence of operations V s.t. V[i] = (op.rid, op.tid, m) where op = A.writeOrder[i], and
m is the order of op among all PUT operations in A.TXL,, riqop.tid.
We now show that the history H = (E, V) satisfies all the constraints of definition 11:

1. Constraint 1a: First, because CheckStateOp at ActualHandlerOps does not reject when called for external state operations
and ActualHandlerOps follows S’, the order of the operations of a transaction ¢ in S’ is consistent with their order in
A.TXL,. This implies that S preserves the order of all operations within the transaction. Because E is consistent with S’,
so does E, as required.

2. Constraint 1b: Because S’ is a topological sort of G and G contains read-from edges (line 46 of Figure 16), for each
GET operation op in §’, op,, = op.opcontents, precedes op in S’. Because the order of operations in E is consistent with
their order in S’, op,, precedes op in E, as required. Furthermore, because the check at line 48 of Figure 16 passes,
op,,.-key = op.key, and op,,.optype = PUT, as required.

3. Constraint 1c: From the logic of AddExternalStateEdges (Figure 16), when the i-th operation op of A.TXL, is examined,
MyWrites has an entry for each key for which there exists at least one PUT operation op’ prior to op in A.TXL, with
op’.key = key. Moreover, MyWrites maps each such key to the latest PUT operation that modifies it according to A. TXL,.
Because ActualHandlerOps passes, the check at line 51 of Figure 16 passes which implies that for each op € A.TXLs:
if op.optype = GET and op.key € MyWrites then op.opcontents = MyWrites[op.key]. Thus, the dictating write of each
operation op of transaction ¢ that reads a key that has been previously modified by t according to A.TXL;, is the
operation op’ that last writes this key according to A.TXL,;. Meanwhile, because CheckStateOp does not reject when
called for external state operations and ActualHandlerOps follows S’, the order of the operations of a transaction ¢ in
S’ is consistent with their order in A.TXL;. Thus, the dictating write of each operation op of transaction ¢ that reads a
key that has been previously modified by ¢ according to S’, is the last PUT operation op’ issued by t that modifies key
according to S’. Furthermore, from the definition of E, the order of operations is consistent with S” and the dictating
write of each operation is consistent with the A.TXLs. Thus, E is internally consistent, as required.

4. The version order V is a list of unique tuples (rid, tid, m) s.t. (rid, tid,m) € V iff (a) (rid, tid, PUT, key, m, v) in E, (b)
there exists no (rid, tid, PUT, key, m’,-) in E with m” > m, and (c (rid, tid, tx_commit) in E: First, observe that V is
consistent with A.writeOrder. Furthermore, observe that because the checks at lines 23 and 27 of Figure 17 pass, the
entries in A.writeOrder are exactly the entries (rid, tid, m) s.t. there exists a key s.t. lastModification[rid, tid, key] = m.
Meanwhile, from the logic of AddExternalStateEdges, the entries in lastModification are exactly the (rid, tid, key) s.t.
transaction (rid, tid) modifies key according to A. TXL g 1iq) and (rid, tid) € Committed. lastModification maps each such
entry (rid, tid, key) to the index of the last operation that writes key in A.TXL(yiq 1iq). Furthermore, from the logic of
AddExternalStateEdges, (rid, tid) € Committed iff it issues a tx_commit operation according to A.TXL(,iq 1iq). Thus, the
entries of lastModification (which correspond to the entries in the version order) correspond to exactly the PUT operations
op s.t. (a) there exists a transaction (rid, tid) s.t. op € A.TXL(,iq,1ia), (b) there exists no PUT operation op” to op.key that
appears after op in A.TXL(,iq,1iq), and (c) there exists a tx_commit operation in A.TXL,. Meanwhile, as argued above, the
operations in E correspond to exactly the operations in A.TXLs, and the order of operations in E is consistent with the
order of the corresponding operations in A.TXLs. Thus we conclude that the entries in the version order V are exactly
the operations (rid, tid, m) s.t. (a) (rid, tid, m) appears in E (b) there exists no (rid, tid, PUT, key, m’, -) in E with m’ > m,
and (c) (rid, tid, tx_commit) in E, as required.

We now need to show that H = (E, V) exhibits the required isolation level.
First, observe that:
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1. when the isolation level is READ COMMITTED or SERIALIZABILITY, H does not exhibit phenomena Gla and G1b:
Phenomena Gla and G1b require that each read of a committed transaction in E should read from an operation in V. As
argued above, the entries of E correspond to the entries of A.TXLs and the operations in V correspond exactly to the
entries in lastModification. Thus, we need to show that each GET operation in A.TXL; s.t. t’s last operation is tx_commit,
reads from an entry in lastModification. This is exactly the check that IsolationLvIVer performs in the case of READ
COMMITTED or SERIALIZABILITY in line 27 of Figure 17.

2. DSG(H) and DG have the same nodes: DSG(H) contains exactly the transactions that commit according to H. Meanwhile,
from the construction of H, these transactions are exactly the transactions ¢ s.t. there exists a tx_commit operation in
A.TXL,. From the logic of AddExternalStateEdges these are exactly the transactions in Committed which IsolationLvIVer
adds to G. Thus, DSG(H) and DG have the same nodes as required.

3. the edges that AddWriteDependencyEdges adds to DG are exactly the write depend edges of DSG(H): the write depend
edges of DSG(H) are exactly the edges between T; and T; s.t. T; installs a version of some key and T, installs the next
version according to V. On the other side, from the logic of ExtractWriteOrderPerKey and AddWriteDependencyEdges,
the white dependency edges of DG are exactly the edges (T1, T3) s.t. Ty installs a version of some key and T, installs
the next version according to A.writeOrder. Because V exactly matches the A.writeOrder, we conclude that the write
depend edges of DSG(H) are exactly the write dependency edges of DG.

4. the edges that AddReadDependencyEdges adds to DG are exactly the read depend edges of DSG(H) when the isolation
level is READ COMMITTED or SERIALIZABILITY: Observe that for these isolation levels, because the history does not
exhibit phenomena Gla and G1b, the dictating write of each GET of a committed transaction is an operation in V. This
implies that the read depend edges of DSG(H) are exactly the edges (T3, T,) for which there exist operations op, € Ty
and op, € T; s.t. op, reads from op, according to E, op; € V and T, commits according to E. Meanwhile, V matches
A.writeOrder and the dictating writes of operations in E match A.TXLs from construction. Moreover, the committed
transactions according to E are exactly those in Committed: from the logic of AddExternalStateEdges, Committed contains
exactly the committed transactions according to A.TXLs and, from the definition of the execution above, these are exactly
the transactions that commit according to E. Thus, the read depend edges of DSG(H) are exactly the edges (T3, T,) for
which there exist op; € A.TXL, and op, € A.TXL7, s.t. op,.opcontents = op,, op, € A.writeOrder and T, € Committed.
From the logic of AddExternalStateEdges and AddReadDependencyEdges, these are exactly the read dependency edges
of DG as required.

5. the edges that AddAntiDependencyEdges adds to DG are exactly the anti depend edges of DSG(H): The anti depend
edges of DSG(H) are exactly the edges (Ty, T;) for which there exists a transaction T3 and operations op; € Ty, op, € Ta,
op; € Ts s.t. the dictating write of op, is op; according to E, T; commits according to E, and op, installs a version of a key
and op, installs the next version according to V. Meanwhile V exactly matches A.writeOrder, and the dictating writes of
GET operations in E exactly match their dictating writes according to A.TXLs. Last, as argued above Committed contains
exactly the committed transactions according to E. Thus we conclude that the anti depend edges of DSG(H) are exactly
the edges (T3, T,) for which there exists a transaction T3 and operations op; € A.TXLry,, op, € A.TXLt,, op; € A.TXLy,
s.t. the dictating op,.opcontents = op;, Ty € Committed, and op; installs a version of a key and op, installs the next
version according to A.writeOrder. These are exactly the anti dependency edges of DG as required.

When the required isolation level is READ UNCOMMITTED, H exhibits the isolation level because it does not exhibit
phenomenon GO: First, the results 2 and 3 imply that the subgraph of DSG(H) that contains only write depend edges is exactly
DG. Moreover, DG is acyclic because the check at line 11 of Figure 17 accepts. This implies that DSG(H) does not exhibit
phenomenon GO as required.

When the required isolation level is READ COMMITTED, H exhibits the isolation level because it does not exhibit
phenomenon G1: First, result 1 implies that H does not exhibit phenomena Gla and G1b. Moreover, the results 2, 3, and 4 imply
that the subgraph of DSG(H) that contains only write depend and read depend edges is exactly DG. Moreover, DG is acyclic
because the check at line 15 of Figure 17 accepts. This implies that DSG(H) does not exhibit phenomenon Glc, as required.

When the required isolation level is SERIALIZABILITY, H exhibits the isolation level because it does not exhibit phenomena
G1 and G2: First, result 1 implies that H does not exhibit phenomena Gla and G1b. Moreover, the results 2, 3, 4, and 5 imply
that DSG(H) is DG. Moreover, DG is acyclic because the check at line 20 of Figure 17 accepts. This implies that DSG(H) is
acyclic and, thus, does not exhibit phenomena G1c and G2, as required. m]

Sub-lemma 4.4. If Tr is a possible output of Actual(Tr, A, S’), then Tr is a possible output of Operation-wise execution on
input Tr by following RS.

Proof. Observe that Operation-wise execution is the same as Actual except for the following differences:
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e Operation-wise executes the program P whereas Actual executes the annotated program P,.

o All checks in Actual are discarded in Operation-wise.

e Operation-wise is only presented with rids. The most important consequence of this is that whenever Operation-wise
executes a request, it is free to pick which handler to execute from the activated handlers.

First, observe that P, differs from P only in that it contains annotations (Section C.1.1). Actual skips all these annotations
which implies that both executions effectively execute P.

Second, observe that since Actual passes all checks, eliminating these checks from Operation-wise does not affect the flow
of execution.

Denote Actualy, the execution of Actual that outputs Tr on input Tr and S’. Actualr, captures both the execution at the
server and the execution at the database. To show that Tr is a possible output of Operation-wise, we will show that there exists
an execution of Operation-wise on input Tr and RS that is identical to Actualy,. We do the proof by induction: we show that if
Actualt, and Operation-wise have proceeded in the same way up until the (i — 1) step, the next step of Actualr, is a step that
Operation-wise can take that will result in the two executions having the same program state and database state after step i.

Induction Base. Because initialization is deterministic, Actualy, and Operation-wise have the same program state prior to
executing any operation. Moreover, Actualr, and Operation-wise issue the same operations to the database during initialization.
Thus, there exists an execution of these operations in the database of Operation-wise that leads to the database state of Actualr;.

Induction Step. Assume that up until the (i — 1) step, the two executions have taken identical steps, they have the same
program state, and the same database state. Let the i-th operation of RS be rid.

If this is the first occurrence of rid in RS, then because RS is constructed from S’ and the first operation of rid in S’ is (rid, 0)
(S is a topological sort of G and G contains boundary edges) the ith operation of S’ is (rid, 0). Because Actualr, handles (rid, 0)
operations in the same way that Operation-wise handles the first occurrence of rid in RS, the two executions will result in the
same state.

Now assume that this is not the first occurrence of rid in RS. Because RS is constructed from the well formed S’ by dropping
all fields other than rid, the corresponding operation in S’ is either of the form (rid, hid, i) or (rid, c0). In either case, Actualr,
“resumes” the execution of a handler that is activated. Because the two executions are identical up to step i — 1, the activated
handlers are the same. This implies that the activated handler that Actualy, picks to execute is an activated handler in
Operation-wise. Thus, Operation-wise can take the same next step as Actualr, executing the same handler up until its next
special operation. Because execution between special operations is deterministic and does not modify the database state, both
executions have the same program state and database state up until they execute the next special operation. Moreover, the
handling of all special operations other than external state operations is the same in Actualr, and Operation-wise and such
operations don’t modify database state. Thus, both executions reach the same program state and database state after step i
when the special operation at step i is not a state operation. It remains to show that Actualy, and Operation-wise reach the
same program state and database state after step i, when the special operation at step i is an external state operation: Because
the two executions have the same program state up until executing the i-th special operation, the parameters of the state
operation are the same across executions and, thus, both executions issue the same operation to the database. Because two
databases that start from the same state and receive the same operation can execute this operation identically, we conclude
that the i-th state operation can be executed by Operation-wise in the same way that it was executed by Actualy,. In this case,
the database returns the same result under Operation-wise that it returns under Actualry, and the two executions have the
same program state and database state after executing the i-th operation as required. O

]

Lemma 5. Given trace Tr and advice A, if Audit(Tr, A) accepts, then there exists a well-formed op schedule S that causes
OOOAudit(Tr, A, S) to accept.

Proof. Use the control flow groupings A.C to construct op schedule S as follows: Initialize S to empty. Then run Audit(Tr, A)
and

o Every time Audit begins re-executing a control flow group t, add to S entries (rid, 0) for each rid in t

e Every time Audit begins re-executing a handler hid for control flow group ¢, add to S entries (rid, hid, 0) for all rid in ¢

e Every time a group t does an operation from inside a handler hid (all requests in the group issue operations together
because execution does not diverge), add (rid, hid, opnum) to S for all rid in t where opnum is the running tally of
operations for the handler hid

e Every time Audit finishes executing a handler hid for requests in group ¢ (all requests finish executing hid together), add
(rid, hid, c0) to S for all rid in ¢
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e Every time the requests in a group ¢ write their outputs (all requests in the group send responses together because
execution does not diverge), add (rid, o) to S for all rid in t

We now argue that S is well-formed. First, S contains exactly the nodes of G:

e It contains all nodes (rid, 0) and (rid, o) s.t. rid € Tr otherwise the produced outputs are not exactly the outputs in the
trace and ReExec rejects in line 62 of Figure 18.

e S contains nodes (rid, hid, 0), (rid, hid, o) for each (rid, hid) € A.opcounts: Notice that S contains nodes (rid, hid, 0) and
(rid, hid, co) for each (rid, hid) that is executed by ReExec. To show that these nodes are exactly the handler start and
handler end nodes of G (lines 39 and 40 of Figure 14) we need to prove that for each rid, the set H of all hid s.t. (rid, hid)
in A.opcounts and the set H’ of all hid that are executed by ReExec are equal. We show that H' C H and that H C H'.
H’ C H: Notice that from the logic of ReExec, H’ is exactly the hids that are in active during the execution of
the group in which rid belongs to. We will show that for each hid that is added in active during the execution of rid,
opcounts[(rid, hid)] # 0. active is initially empty and entries are added to it in line 12 of Figure 18 and in ActivateHandlers.
In the former case, ReExec rejects if (rid, hid) is not in opcounts (line 13 of Figure 18). In the latter case, hid is added to active
from activatedHandlers(rid, -, -). Notice that hid can only be added to activatedHandlers(rid, -, -) at line 26 of Figure 16
after the check at line 25 of Figure 16 passes. Thus, for any hid € activatedHandlers(rid, -, -), A.opcounts[rid][hid] # 0
as required.

H C H’: This follows from the fact that ReExec does not reject at line 64 of Figure 18.

e For each (rid, hid) in A.opcounts it contains all nodes (rid, hid, j) s.t. j € [0, A.opcounts[(rid, hid)]]. This follows from
the previous bullet and the fact that for each (rid, hid) the value of j in S prior to the insertion of (rid, hid, co) is
A.opcounts[(rid, hid)]: ReExec does not reject at line 60 of Figure 18 and, thus j > A.opcounts[(rid, hid)]. Moreover,
J < A.opcounts[(rid, hid)] because otherwise ReExec rejects in line 43 of Figure 18, in CheckStateOp or CheckHandlerOp.

Moreover S respects program order and activation order (Definition 10) because Audit executes operations according to this
order.

Now, we prove that OOOAudit(Tr, A, S) accepts. OOOAudit(Tr, A, S) (Figure 22) is the same as Audit(Tr, A) (Figure 18)
except the differences that we describe below. For each of them, we show that they do not result in different program state or
OOOAudit rejecting.

1. ReExec executes the requests in SIMD style whereas OOOExec round-robins the execution from operation to operation
for a group of requests. This does not affect program state; the flow and ordering is the same across both executions.
Thus, the produced output is the same.

2. When ReExec executes a group, it picks the next handler to run from active whereas OOOExec picks the next handler to
run from S. This difference is superficial because S is derived from ReExec.

3. There is a difference in how handler end events are processed. In OOOExec there is an (rid, hid, o) case that checks that
the next event is a handler exit operation. In ReExec handler exit events are processed in case 2c where the number of
operations issued by the handler is checked against A.opcounts (line 60 of Figure 18). Similar arguments to those made
elsewhere (Orochi [87], lemma 8) establish that this difference is superficial.

4. When OOOQExec starts executing a handler, it checks that it is in active. ReExec does not do this check but picks which
handler to run from active. The difference does not result in different program state because both executions just require
that when a handler starts executing, it must be in active.

5. ReExec keeps track of the number of ops that a handler hid has executed so far in idx[ hid]. OOOExec uses the i field in
the op schedule entry as the number of ops that the handler has issued so far. The difference does not result in different
program state because both i and idx[hid] correspond to the running counter of operations that the handler issues and
thus i = idx[hid] at all times.

6. When a group sends back a response, ReExec checks that the contents of A.responseEmittedBy match re-execution. In
OOOExec there is no such check, but there is a (rid, o) case. The difference is superficial; both executions reject if
A.responseEmittedBy does not match re-execution.

]

D Definitions of isolation levels according to Adya

In this section we briefly present Adya’s definitions for consistency models [7]. We should note that we modify these definitions
to make them consistent with our terminology. Additionally, we modify them to make them suitable for transactional key-value
stores; for instance, we erase the parts of the definitions that refer to predicates.

In order to define the isolation levels, we need the notion of history:
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Definition 11. History: A history H captures what happens in the execution of the system. It consists of:

1. An ordered list of operations (TxOp order E). Each such operation can be:

o (rid, tid, tx_start): transaction start operation for transaction T4 g

o (rid, tid, tx_abort) (resp. (rid, tid, tx_commit) ): transaction abort (resp. commit) operation for transaction T,q tiq

o (rid, tid, PUT, key, m, v): The m-th PUT operation of transaction T}4 1ig on key that writes value v.

o (rid, tid, GET, key, rid’, tid’, m): GET operation of transaction Ty;4 14 to a data item key that reads the value that was
written by the m-th PUT operation of transaction T,y ) (i.e. ke, sia'.m)

The TxOp order must obey the following constraints:

a. It preserves the order of all operations within a transaction including its commit and abort operations

b. A transaction T,q ;¢ cannot read version key,;y ;i before it has been produced by T,;y ,;s. Formally, if an operation
(rid, tid, GET, key, rid’, tid’, m) exists in H, it is preceded by (rid’, tid’, PUT, key, m, - - - ) in H.

c. If a transaction modifies a key and later reads it, it will observe its last update to the key. Formally, if an operation
(rid, tid, PUT, key, m, - - - ) is followed by an operation (rid, tid, GET, key, rid’, tid’, m’) in H without the interleaving
of an operation (rid, tid, PUT, key, m”, - - - ), it should be rid = rid’ and tid = tid’ and m = m’. We call this property
internal consistency

2. An order all key versions (version order) V created by committed transactions in E i.e. a list of unique tuples (rid, tid, m)

s.t. (rid, tid, m) € V iff (a) (rid, tid, PUT, key, m, v) in E, (b) there exists no (rid, tid, PUT, key, m’, -) in E with m" > m, and

(c (rid, tid, tx_commit) in E.

Adya defines the following types of conflicts between different committed transactions:

e Read Depends: A transaction T read depends on transaction T’ if T reads an object version that T” writes

e Anti Depends: A transaction T anti depends on transaction T’ if T’ reads a version of an object and T writes its next
version

o Write Depends: A transaction T write depends on transaction T’ if T’ writes a version of an object and T writes its next
version

Given a history H, the Direct Serialization Graph (DSG) arising from H is as follows: Each node in DSG(H) corresponds to
a committed top-level transaction in H and directed edges correspond to read, anti or write conflicts. There is a read/anti/write
depend edge from the node that corresponds to T to the node that corresponds to T’ if T’ read/anti/write depends on T.
With the above definitions in mind we define the following phenomena:
e Phenomenon GO (Write Cycles). The history H exhibits phenomenon GO if DSG(H) contains a directed cycle consisting
entirely of write-depend edges.
e Phenomenon Gla (Aborted Reads). The history H exhibits phenomenon Gla if it contains an aborted transaction T; and a
committed transaction T, s.t. T; has read some object modified by T;.
e Phenomenon G1b (Intermediate Reads). The history H exhibits phenomenon G1b if it contains a committed transaction Ty
that has read a version of an object written by transaction T, that was not T;’s final modification of the object.
o Phenomenon GIc (Circular Information Flow). The history H exhibits phenomenon Glc if DSG(H) contains a directed
cycle formed without anti-dependency edges.
o Phenomenon G1. The history H exhibits phenomenon G1 if it exhibits phenomenon Gla or G1b or Glc
e Phenomenon G2 (Anti-depend cycles). The history H exhibits phenomenon G2 if DSG(H) contains a directed formed from
at least one anti-dependency edge. Note that G1c and G2 are separate: neither implies the other.

Now we define when a history H exhibits each of the isolation levels we support:

o Serializability: H does not exhibit phenomena G1 and G2.
e Read Committed: H does not exhibit phenomenon G1
e Read Uncommitted: H does not exhibit phenomenon G0

In order for an execution of a key value store to be consistent with Isolation Level I, there should exist a version order s.t.
the TxOp order along with this version order define a history H that exhibits isolation level I.
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