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Abstract. We present a zero-knowledge argument for NP with
low communication complexity, low concrete cost for both the
prover and the verifier, and no trusted setup, based on standard
cryptographic assumptions. Communication is proportional to
d · log(G) (for d the depth and G the width of the verifying circuit)
plus the square root of the witness size. When applied to batched
or data-parallel statements, the prover’s runtime is linear and the
verifier’s is sub-linear in the verifying circuit size, both with good
constants. In addition, witness-related communication can be
reduced, at the cost of increased verifier runtime, by leveraging
a new commitment scheme for multilinear polynomials, which
may be of independent interest. These properties represent a
new point in the tradeoffs among setup, complexity assumptions,
proof size, and computational cost.

We apply the Fiat-Shamir heuristic to this argument to produce
a zero-knowledge succinct non-interactive argument of knowl-
edge (zkSNARK) in the random oracle model, based on the
discrete log assumption, which we call Hyrax. We implement
Hyrax and evaluate it against five state-of-the-art baseline sys-
tems. Our evaluation shows that, even for modest problem sizes,
Hyrax gives smaller proofs than all but the most computationally
costly baseline, and that its prover and verifier are each faster
than three of the five baselines.

1 Introduction
A zero-knowledge proof convinces a verifier of a statement while
revealing nothing but its own validity. Since they were introduced
by Goldwasser, Micali, and Rackoff [50], zero-knowledge (ZK)
proofs have found applications in domains as diverse as authenti-
cation and signature schemes [85, 90], secure encryption [40, 89],
and emerging blockchain technologies [12].

A seminal result in the theory of interactive proofs and cryp-
tography is that any problem solvable by an interactive proof
(IP) is also solvable by a computational zero-knowledge proof
or perfect zero-knowledge argument [8]. This means that, given
an interactive proof for any NP-complete problem, one can
construct zero-knowledge proofs or arguments for any NP state-
ment. But existing instantiations of this paradigm have large
overheads: early techniques [22, 48] require many repetitions
to achieve negligible soundness error, and incur polynomial
blowups in prover work and communication. More recent work
[24, 27, 28, 30, 51, 52, 55] avoids those issues, but generally
entails many expensive cryptographic operations.1

Several other recent lines of work have sought to avoid these
overheads. As detailed in Section 2, however, these works still
yield costly protocols or come with significant limitations. In
particular, state-of-the-art, general-purpose ZK protocols suffer

1Some works avoid these overheads by targeting specific problems with algebraic
structure and cryptographic significance, most notably Schnorr-style proofs [90]
for languages related to statements about discrete logarithms of group elements.

from one or more of the following problems: (a) they require proof
size that is linear or super-linear in the size of the computation
verifying an NP witness; (b) they require the prover or verifier to
perform work that is super-linear in the time to verify a witness;
(c) they require a complex parameter setup to be performed
by a trusted party; (d) they rely on non-standard cryptographic
assumptions; or (e) they have very high concrete overheads.
These issues have limited the use of such general-purpose ZK
proof systems in many contexts.

Our goal in this work is to address the limitations of existing
general-purpose ZK proofs and arguments. Specifically, we would
like to take any computation for verifying an NP statement and
turn it into a zero-knowledge proof of the statement’s validity. In
addition to concrete efficiency, our desiderata are that:
• the proof should be succinct, that is, sub-linear in the size of

the statement and the witness to the statement’s validity;
• the verifier should run in time linear in input plus proof size;
• the prover, given a witness to the statement’s validity, should

run in time linear in the cost of the NP verification procedure;
• the scheme should not require a trusted setup phase or common

reference string; and
• soundness and zero-knowledge should each be either statistical

or based on standard cryptographic assumptions. Pragmatically,
security in the random oracle model [7] suffices.

Our approach transforms a state-of-the-art interactive proof
for arithmetic circuit (AC) satisfiability into a zero-knowledge
argument by composing new ideas with existing techniques.

Ben-Or et al. [8] and Cramer and Damgård [37] show how to
transform IPs into computationally ZK proofs or perfectly ZK
arguments, using cryptographic commitment schemes. At a high
level, rather than sending its messages in the clear, the prover
sends cryptographic commitments corresponding to its messages.
These commitments are binding, ensuring that the prover cannot
cheat by equivocating about its messages. They are also hiding,
meaning that the verifier cannot learn the committed value and
thus ensuring zero-knowledge. Finally, the commitment scheme
has a homomorphism property (§3.1) that allows the verifier to
check the prover’s messages “underneath the commitments.”

Accepted wisdom is that such transformations introduce large
overheads (e.g., [33, §1.1]). In this paper, we challenge that
wisdom by constructing a protocol that meets our desiderata for
many cases of interest.

Our starting point is the Giraffe interactive proof [104] with
an optimization, adapted from Chiesa et al. [33], that reduces
communication complexity (§3.2). We transform this IP into a
ZK argument through a straightforward (but careful) applica-
tion of Cramer-Damgård techniques (§4). This argument uses
cryptographic operations (required by the commitment schemes)



only for the witness and for the prover’s messages, which are
sub-linear in the size of the AC. (In contrast, many recent works
invoke cryptographic primitives for each gate in the verifying
circuit [12, 13, 16, 24, 30, 46, 79]; §2.) But the argument is not
succinct, and it has high concrete costs, especially for the verifier.

We slash these costs with two key refinements. First, we
exploit the IP’s structure by tightly integrating the verification
procedure with a multi-commitment scheme and a Schnorr-style
proof [90] (§5); this reduces communication and computational
costs by 3–5× compared to the naive approach. Second, we
devise a new witness commitment scheme (§6), yielding a
succinct argument and asymptotically reducing the verifier’s cost
associated with the witness.

Our protocol is public coin; we compile it into Hyrax, a
zero-knowledge succinct non-interactive argument of knowledge
(zkSNARK) [20] in the random oracle model [7], via the Fiat-
Shamir heuristic [41] (§7). We evaluate Hyrax and five state-of-
the-art baselines (BCCGP-sqrt [24], Bulletproofs [30], Ligero [1],
ZKB++ [32], and libSTARK [11]; §8). For modest problem sizes,
Hyrax gives smaller proofs than all but the most computationally
costly baseline; its prover and verifier are each faster than three
of the five baselines; and its refinements yield multiple-orders-
of-magnitude savings in proof size and verifier runtime.

Contributions. We design, implement, and evaluate Hyrax,
a “doubly” (meaning for both prover and verifier) concretely
efficient zkSNARK. For input x, witness w, an AC C of width G
and depth d, and a design parameter ι ≥ 2 that controls a tradeoff
between proof length and verifier time:
• Hyrax’s proofs are succinct, i.e., sub-linear in |C| and |w |: they

require ≈10d log G + |w |1/ι group elements;
• its verifier runs in time sub-linear in |C|, if C has sufficient

parallelism:2 O(|x | + d log G + |w |(ι−1)/ι), with good constants;
• its prover runs in time linear in |C|, with good constants, if
C has sufficient parallelism (practically, a few tens of paral-
lel instances suffices), and it requires only O(d log G + |w |)
cryptographic operations, also with good constants; and

• it requires no trusted setup, and it is secure under the discrete
log assumption in the random oracle model.
We also give a new commitment scheme tailored to multilinear

polynomials (§6), which may be of independent interest. This
scheme allows the prover to commit to a multilinear polynomial
m over F, and later to reveal (a commitment to) m(r) for any r
chosen by the verifier. For ι ≥ 2, if |m| denotes the number of
monomials in m, then the commitment has size O(|m|1/ι), and
the time to verify a purported evaluation is O(|m|(ι−1)/ι).

2 Related work
ZK proofs. Over the past several years there has been significant
interest in implementing ZK proof systems. In this section, we
discuss those efforts, focusing on the theoretical underpinnings
and associated cryptographic assumptions; we compare Hyrax
with several of these works empirically in Section 8.

Gennaro et al. [46] present a linear probabilistically checkable

2Even without parallelism, the verifier runs in time sub-linear in |C | if C’s wiring
pattern satisfies a technical “regularity” condition [35, 49] (Thm. 1, §3.2).

proof (PCP)3 and ZK transform that form the basis of many
recent zkSNARK implementations [4, 5, 12, 13, 15, 16, 29, 34,
36, 39, 42–44, 64, 76, 79, 105], including systems deployed in ap-
plications like ZCash [12, 107]. These implementations build on
theoretical work by Ishai et al. [59], Groth [53], Lipmaa [69], and
Bitansky et al. [21], as well as implementations and refinements
in the non-ZK context [29, 91–93]. Such zkSNARKs give small,
constant-sized proofs (hundreds of bytes), and verifier runtime
depends only on input size. But ZK systems in this line rely on
non-standard, non-falsifiable cryptographic assumptions, require
a trusted setup, and have massive prover overhead: runtime is
quasi-linear in the verifying circuit size, including a few public
key operations per gate, and memory consumption limits the
statement sizes these systems can handle in practice [105].

A line of work by Ben-Sasson et al. builds non-interactive ZK
arguments from short PCPs, following the seminal work of Kil-
ian [62, 63] and Micali [73], the landmark result of Ben-Sasson
and Sudan [17], and recent generalizations of PCPs [9, 14, 87].
The authors reduce the concrete overheads associated with these
approaches [10] and implement zero-knowledge scalable trans-
parent arguments of knowledge (zkSTARKs) [11]. zkSTARKs
need no trusted setup and no public-key cryptography, but their
soundness rests on a non-standard conjecture related to Reed-
Solomon codes [11, Appx. B]. Further, zkSTARKs are heavily
optimized for statements whose verifying circuits are expressed
as a sequence of state-machine transitions; this captures all of NP,
but can introduce significant overhead in practice [105]. Both
proof size and verifier runtime are logarithmic in circuit size
(hundreds of kilobytes and tens of milliseconds, respectively, in
practice), and prover runtime is quasi-linear.

Another approach due to Ishai, Kushilevitz, Ostrovsky, and
Sahai [60] (IKOS) transforms a secure multi-party computation
protocol into a ZK argument. Giacomelli et al. refine this ap-
proach and construct ZKBoo [47], a ZK argument system for
Boolean circuits with no trusted setup from collision-resistant
hashes; ZKB++, by Chase et al. [32], reduces proof size by con-
stant factors. Both schemes are concretely inexpensive for small
circuits, but their costs scale linearly with circuit size. Ames et
al. [1] further refine the IKOS transform and apply it to a more
sophisticated secure computation protocol. Their scheme, Ligero,
makes similar security assumptions to ZKBoo but proves an AC
C’s satisfiability with proof size Õ(

√
|C|) and prover and verifier

work quasi-linear in |C| (where Õ ignores polylog factors).
Bootle et al. [24] give two ZK arguments for AC satisfiability

from the hardness of discrete logarithms, building on the work
of Groth [52] and of Bayer and Groth [6]. The first has proof size
O(
√
M) and quasi-linear prover and verifier runtime for an AC

withM multiplications. The second reduces this to O(logM) at
the cost of concretely longer prover and verifier runtimes. Bünz et
al. [30] reduce proof size and runtimes in the log scheme by ≈3×.
Bootle et al. [25] give a ZK argument with proof size O(

√
|C|)

whose verifier uses O(|C|) additions (which are less expensive
than multiplications), but the authors state that the constants are
large and do not recommend implementing as-is.

Most similar to our work, Zhang et al. [108] show how to com-

3The observation that the quadratic span programs of GGPR [46] can be viewed
as linear PCPs is due to Bitansky et al. [21] and Setty et al. [91].



bine an interactive proof [35, 49, 97] and a verifiable polynomial
delegation scheme [61, 78] to construct a succinct, non-ZK inter-
active argument. A follow-up work [109] (concurrent with and
independent from ours) achieves ZK using the same commit-and-
prove approach that we use, with several key differences. First,
their commitment to the witnessw has communication O(log |w |),
but has a trusted setup phase and relies on non-standard, non-
falsifiable assumptions. In contrast, our commitment protocol
(§6) has no trusted setup and is based on the discrete log as-
sumption, but has communication O(|w |1/ι), ι ≥ 2. Second, their
argument uses an IP that requires more communication than
ours (§3.2). Finally, our method of compiling the IP into a ZK
argument uses additional refinements (§5) that reduce costs. Both
our IP and our refinements apply to their work; we estimate that
they would reduce proof size by ≈3× andV runtime by ≈5×.

Polynomial commitment schemes were introduced by Kate et
al. [61], who gave a construction for univariate polynomials based
on pairing assumptions. Several follow-up works [78, 108–110]
extend this construction to multivariate polynomials; Libert et
al. [65] give a construction based on constant-size assumptions;
and Fujisaki et al. [45] give a construction for polynomial evalua-
tion based on the RSA problem that can be immediately adapted
to polynomial commitment. None of these schemes meet our
desiderata (§1) because of some combination of high cost, trusted
setup, and non-standard assumptions. Bootle et al. [25] and Boo-
tle and Groth [26] describe univariate polynomial commitment
schemes based on the discrete log assumption; our scheme is
closely related to these ideas and extends them to multilinear
polynomials. The second of these also presents a general frame-
work for proving simple relations between commitments and field
elements; exploring these ideas in our context is future work.

3 Background
3.1 Definitions

We use ⟨A(za), B(zb)⟩(x) to denote the random variable represent-
ing the (local) output of machine B when interacting with machine
A on common input x, when the random tapes for each machine
are uniformly and independently chosen, and A and B has auxil-
iary inputs za and zb respectively. We use tr⟨A(za), B(zb)⟩(x) to
denote the random variable representing the entire transcript of
the interaction between A and B, and View (⟨A(za), B(zb)⟩(x)) to
denote the distribution of the transcript. The symbol ≈c denotes
that two ensembles are computationally indistinguishable.

Arithmetic circuits

Section 3.2 considers the arithmetic circuit (AC) evaluation
problem. In this problem, one fixes an arithmetic circuit C,
consisting of addition and multiplication gates over a finite field
F. We assume throughout that C is layered, with all gates having
fan-in at most 2 (any arithmetic circuit can be made layered while
increasing the number of gates by a factor of at most the circuit
depth). C has depth d and input x with length |x |. The goal is
to evaluate C on input x. In an interactive proof or argument for
this problem, the prover sends the claimed outputs y of C on
input x, and must prove that y = C(x).

Our end goal in this work is to give efficient protocols for the

arithmetic circuit satisfiability problem. Let C(·, ·) be a layered
arithmetic circuit of fan-in two. Given an input x and outputs y,
the goal is to determine whether there exists a witness w such
that C(x,w) = y. The corresponding witness relation for this
problem is the natural one: R(x,y) = {w : C(x,w) = y}.
Interactive protocols and zero-knowledge
Definition 1 (Interactive arguments and proofs). A pair of prob-
abilistic interactive machines ⟨P,V⟩ is called an interactive
argument system for a language L if there exists a negligible
function η such that the following two conditions hold:
1. Completeness: For every x ∈ L there exists a string w s.t. for

every z ∈ {0, 1}∗, Pr[⟨P(w),V(z)⟩(x)=1] ≥ 1 − η(|x |).

2. Soundness: For every x < L, every interactive PPT P∗, and
every w, z ∈ {0, 1}∗, Pr[⟨P∗(w),V(z)⟩(x)=1] ≤ η(|x |).

If soundness holds against computationally unbounded cheating
provers P∗, then ⟨P,V⟩ is called an interactive proof (IP).
Definition 2 (Zero-knowledge (ZK)). Let L ⊂ {0, 1}∗ be a
language and for each x ∈ L, let Rx ⊂ {0, 1}∗ denote a cor-
responding set of witnesses for the fact that x ∈ L. Let RL

denote the corresponding language of valid (input, witness) pairs,
i.e., RL = {(x,w) : x ∈ L and w ∈ Rx}. An interactive proof or
argument system ⟨P,V⟩ for L is computational zero-knowledge
(CZK) with respect to an auxiliary input if for every PPT inter-
active machineV∗, there exists a PPT algorithm S, called the
simulator, running in time polynomial in the length of its first
input, such that for every x ∈ L, w ∈ Rx , and z ∈ {0, 1}∗,

View (⟨P(w),V∗(z)⟩(x)) ≈c S(x, z) (1)
when the distinguishing gap is considered as a function of |x |. If
the statistical distance between the two distributions is negligible,
then the interactive proof or argument system is said to be
statistical zero-knowledge (SZK). If the simulator is allowed to
abort with probability at most 1/2, but the distribution of its
output conditioned on not aborting is identically distributed to
View (⟨P(w),V∗(z)⟩(x)), then the interactive proof or argument
system is called perfect zero-knowledge (PZK).

The left term in Equation (1) denotes the distribution of
transcripts afterV∗ interacts withP on common input x; the right
term denotes the distribution of simulator S’s output on x. For
any CZK (resp., SZK or PZK) protocol, Definition 2 requires the
simulator to produce a distribution that is computationally (resp.,
statistically or perfectly) indistinguishable from the distribution
of transcripts of the ZK proof or argument system.

Our zero-knowledge arguments also satisfy a proof of knowl-
edge property. Intuitively, this means that in order to produce a
convincing proof of a statement, the prover must know a witness
to the validity of the statement. To define this notion formally, we
follow Groth and Ishai [54] who borrow the notion of statistical
witness-extended emulation from Lindell [68]:
Definition 3 (Witness-extended emulation [54]). Let L be a lan-
guage and RL corresponding language of valid (input, witness)
pairs as in Definition 2. An interactive argument system ⟨P,V⟩
for L has witness-extended emulation if for all deterministic
polynomial time P∗ there exists an expected polynomial time
emulator E such that for all non-uniform polynomial time adver-
saries A and all zV ∈ {0, 1}∗, the following probabilities differ



by at most a negligible function in the security parameter λ:
Pr

[
(x, zP) ← A(1λ); t ← tr⟨P∗(zP),V(zV)⟩(x) : A(t) = 1

]
and Pr

[
(x, zP) ← A(1λ); (t,w) ← EP

∗(zP )(x) : A(t) = 1 ∧
if t is an accepting transcript, then (x,w) ∈ RL .

]
Here, the oracle called by E permits rewinding the prover to a
specific point and resuming with fresh randomness for the verifier
from this point onwards.
Commitment schemes
Informally, a commitment scheme allows a sender to produce
a message C = Com(m) that hides m from a receiver but binds
the sender to the value m. In particular, when the sender opens C
and reveals m, the receiver is convinced that this was indeed the
sender’s original value. We say that Compp(m; r) is a commitment
to m with opening r with respect to public parameters pp. The
sender chooses r at random; to open the commitment, the sender
reveals (m, r). We frequently leave the public parameters implicit,
and sometimes do the same for the opening, e.g., Com(m).
Definition 4 (Collection of non-interactive commitments [57]).
We say that a tuple of PPT algorithms (Gen,Com) is a collection
of non-interactive commitments if the following conditions hold:

• Computational binding: For every (non-uniform) PPT A,
there is a negligible function η such that for every n ∈ N,

Pr


pp← Gen(1n) ;
(m0, r0), (m1, r1) ← A(1n, pp) :
m0 , m1, |m0 | = |m1 | = n,
Compp(m0; r0) = Compp(m1; r1)

 ≤ η(n)
• Perfect hiding: For any pp ∈ {0, 1}∗ and m0,m1 ∈ {0, 1}∗

where |m0 | = |m1 |, the ensembles {Compp(m0)}n∈N and
{Compp(m1)}n∈N are identically distributed.

Collections of non-interactive commitments can be constructed
based on any one-way function [56, 75], but we require a ho-
momorphism property (defined below) that these commitments
do not provide. (The Pedersen commitment [80], described in
Appx. A, provides this property.)
Definition 5 (Additive homomorphism). Given Com(x; sx) and
Com(y; sy), there is an operator ⊙ such that

Com(x; sx) ⊙ Com(y; sy) = Com(x + y; sx + sy) and
Com(x; sx)k ≜ Com(x; sx) ⊙ · · · ⊙ Com(x; sx) (k times)

In a multi-commitment scheme, x and y are vectors, and this
additive homomorphism is vector-wise.

3.2 Our starting point: Gir++ (Giraffe, with a tweak)
The most efficient known IPs for the AC evaluation problem (§3.1)
follow a line of work starting with the breakthrough result of
Goldwasser, Kalai, and Rothblum (GKR) [49]. Cormode, Mitzen-
macher, and Thaler (CMT) [35] and Vu et al. [102] refine this
result, giving O(|C| log |C|) prover and O(|x | + |y | + d log |C|)
verifier runtimes, for AC C with depth d, input x, and output y.

Further refinements are possible in the case where C is data
parallel, meaning it consists of N identical sub-computations
run on different inputs. (We refer to each sub-computation as a

sub-AC of C, and we assume for simplicity that all layers of the
sub-AC have width G, so |C| = d ·N ·G.) Thaler [97] reduced the
prover’s runtime in the data-parallel case from O(|C| log |C|) to
O(|C| log G). Very recently, Wahby et al. introduced Giraffe [104],
which reduces the prover’s runtime to O(|C| + d · G · log G).
Since |C| = d · N · G, observe that when N ≥ log G, the time
reduces to O(|C| |), which is asymptotically optimal. That is, for
sufficient data parallelism, the prover’s runtime is just a constant
factor slower than evaluating the circuit gate-by-gate without
providing any proof of correctness.

Our work builds on Gir++, which reduces Giraffe’s communica-
tion via an optimization due to Chiesa et al. [33]; our description
of Gir++ borrows notation from Wahby et al. [104]. Assume for
simplicity that N and G are powers of 2, and let bN = log2 N
and bG = log2 G. Within a layer of C, each gate is labeled with a
pair (i, j) ∈ {0, 1}bN × {0, 1}bG . Number the layers of C from 0
to d in reverse execution order, so that 0 refers to the output layer,
and d refers to the input layer. Each layer i is associated with
an evaluator function Vi : {0, 1}bN × {0, 1}bG → F that maps a
gate’s label to the output of that gate when C is evaluated on
input x. For example, V0(i, j) is the j’th output of the i’th sub-AC,
and Vd(i, j) is the jth input to the ith sub-AC.

At a high level, the protocol proceeds in iterations, one for
each layer of the circuit. At the start of the protocol, the prover P
sends the claimed outputs y of C (i.e., all the claimed evaluations
of V0). The first iteration of the protocol reduces the claim about
V0 to a claim about V1, in the sense that it is safe for the verifier
V to believe the former claim as long asV is convinced of the
latter. ButV cannot directly check the claim about V1, because
doing so would require evaluating all of the gates in C other than
the outputs themselves. Instead, the second iteration reduces the
claim about V1 to a claim about V2, and so on, until P makes a
claim about Vd (i.e., the inputs to C), whichV checks itself.

To describe how the reduction from a claim about Vi to a claim
about Vi+1 is performed, we first introduce multilinear extensions,
the sum-check protocol, and wiring predicates.

Multilinear extensions. An extension of a function
f : {0, 1}ℓ → F is a ℓ-variate polynomial g over F such that
g(x) = f (x) for all x ∈ {0, 1}ℓ . Any such function f has a
unique multilinear extension (MLE)—a multilinear polynomial—
denoted f̃ . Given a vector z ∈ Fm with m = 2ℓ , we will often
view z as a function z : {0, 1}ℓ → F mapping indices to vector
entries, and use z̃ to denote the MLE of z.

The sum-check protocol. Fix an ℓ-variate polynomial g over
F, and let degi(g) denote the degree of g in variable i. The
sum-check protocol [70] is an interactive proof that allows P
to convince V of a claim about the value of

∑
x∈{0,1}ℓ g(x) by

reducing it to a claim about the value of g(r), where r ∈ Fℓ is
a point randomly chosen by V. There are ℓ rounds, and V’s
runtime is O(

∑ℓ
i=1 degi(g)) plus the cost of evaluating g(r). The

mechanics are detailed in Section 4.

Wiring predicates capture the wiring information of the sub-
ACs. Define the wiring predicate addi : {0, 1}3bG → {0, 1},
where addi(g, h0, h1) returns 1 if (a) within each sub-AC, gate g

at layer i − 1 is an add gate and (b) the left and right inputs of g
are, respectively, h0 and h1 at layer i (and 0 otherwise). multi is



defined analogously for multiplication gates. Define the equality
predicate eq : {0, 1}2bN → {0, 1} as eq(a, b) = 1 iff a = b.

Thaler [97, 98] and Wahby et al. [104] show how to
express Ṽi−1 in terms of Ṽi: for (q′, q) ∈ FbN × FbG , let
Pq′,q,i : FbN × FbG × FbG → F denote the polynomial

Pq′,q,i(h′, hL, hR) =

ẽq(q′, h′) ·
[ ˜addi(q, hL, hR)

(
Ṽi(h′, hL) + Ṽi(h′, hR)

)
+

˜multi(q, hL, hR)
(
Ṽi(h′, hL) · Ṽi(h′, hR)

) ]
Then we have

Ṽi−1(q′, q) =
∑

h′∈{0,1}bN

∑
hL,hR ∈{0,1}bG

Pq′,q,i(h′, hL, hR). (2)

Protocol overview
Step 1. At the start of the protocol, P sends the claimed output
y, thereby specifying a function Vy : {0, 1}bG+bN → F mapping
the label of each output gate to the corresponding entry of y. The
verifier wishes to check that Vy = V0 (i.e., that the claimed outputs
equal the correct outputs of C on input x); to accomplish this, it
would be enough to check that Ṽy = Ṽ0. In principle,V could do
that by choosing a random pair (q′, q) ∈ FbN ×FbG and checking
that Ṽy(q′, q) = Ṽ0(q′, q); if that check passes, then Ṽy = Ṽ0
with high probability, by the Schwartz-Zippel lemma. On the
one hand,V can and does compute Ṽy(q′, q); this takes O(NG)
time [104, §3.3]. But on the other hand, V cannot compute
Ṽ0(q′, q) directly—this would requireV to evaluate C.
Step 2 (iterated). Instead,V outsources evaluation of Ṽ0(q′, q)
toP, via the sum-check protocol; this is motivated by Equation (2).
At the end of the sum-check protocol,V must evaluate Pq′,q,1 at a
random input (r ′, rL, rR), which requires the values Ṽ1(r ′, rL) and
Ṽ1(r ′, rR).V does not evaluate these points directly; that would
be too costly. Instead, P sends v0 and v1, which it claims are the
required values.V uses these to evaluate Pq′,q,1, then checks v0
and v1 using a mini-protocol, which we describe shortly. At a
high level, the mini-protocol transforms P’s claims about v0, v1
into a claim about Ṽ2.V checks this claim with a sum-check and
mini-protocol invocation, yielding a claim about Ṽ3. P and V
iterate, layer by layer, untilV has a claim about Ṽd .
Final step. V checks P’s final claim about Ṽd by evaluating Ṽx

(since Ṽd = Ṽx); it can do this in O(NG) time [104, §3.3].
Mini-protocols: reducing from Ṽi to Ṽi+1

Gir++ differs from Giraffe only in that they use different mini-
protocols to reduce P’s claims at the end of one sum-check
invocation (i.e., v0 = Ṽi(r ′, rL) and v1 = Ṽi(r ′, rR)) into the
expression thatV and P use for the next sum-check invocation.
Reducing from two points to one point. This approach is
used in Giraffe and prior work [35, 49, 97, 102–104]. P sends
V the restriction of Ṽi to the unique line H in FbN+bG passing
through the points (r ′, rL) and (r ′, rR) by specifying the univariate
polynomial fH (t) = Ṽi(r ′, (1−t)·rL+t ·rR), which has degree bG .
V should believe this claim as long as fH (0) = v0, fH (1) = v1,
and fH (υ) = Ṽi(r ′, rυ), where rυ = (1 − υ) · rL + υ · rR and υ is
chosen byV. By Equation (2),V can check this latter equality
by engaging P in a sum-check protocol over Pr′,rυ,i+1.

Alternative: Random linear combination. Each invocation
of the prior mini-protocol requires P to send bG + 1 field
elements specifying fH . The following technique, due to Chiesa
et al. [33], eliminates this requirement. Instead,V checks v0 and
v1 by checking a random linear combination, via a sum-check
invocation over a polynomial we define below.

In more detail,V samples two field elements µ0 and µ1, and
sends them to P. Mechanically,V next checks that

µ0 · Ṽi(r ′, rL) + µ1 · Ṽi(r ′, rR) = µ0 · v0 + µ1 · v1 (3)
since, by the Schwartz-Zippel lemma, this implies that
v0 = Ṽi(r ′, rL) and v1 = Ṽi(r ′, rR) with high probability (formal-
ized in Thm. 1, below).V checks Equation (3) by exploiting the
fact that its LHS can be written as

µ0 · Ṽi(q′, qL) + µ1 · Ṽi(q′, qR)

=
∑

hL,hR ∈{0,1}bG

∑
h′∈{0,1}bN

[
µ0 · Pq′,qL,i+1(h′, hL, hR) +

µ1 · Pq′,qR,i+1(h′, hL, hR)
]

=
∑

hL,hR ∈{0,1}bG

∑
h′∈{0,1}bN

Qq′,qL,qR,µ0,µ1,i+1(h′, hL, hR)

where Qq′,qL,qR,µ0,µ1,i : FbN × FbG × FbG → F is given by:

Qq′,qL,qR,µ0,µ1,i(h
′, hL, hR) ≜ ẽq(q′, h′) ·[ (

µ0 · ˜addi(qL, hL, hR) + µ1 · ˜addi(qR, hL, hR)
)
·(

Ṽi(h′, hL) + Ṽi(h′, hR)
)

+
(
µ0 · ˜multi(qL, hL, hR) + µ1 · ˜multi(qR, hL, hR)

)
·(

Ṽi(h′, hL) · Ṽi(h′, hR)
) ]

This means thatV can check that Equation (3) holds by engaging
P in a sum-check protocol over Qr′,rL,rR,µ0,µ1,i+1.

Giraffe vs. Gir++ Gir++ uses the Alternative above. This re-
duces communication cost in Gir++ compared to Giraffe by a
small factor that depends on the amount of data parallelism. We
are motivated to reduce communication because communication
will translate into proof size and more cryptographic cost (§4).

As an exception, Gir++ uses the “reducing from two points
to one point” technique after the final sum-check (i.e., the one
over Q...,d−1); this is to avoid increasingV’s computational costs
compared to Giraffe. Recall that in the final step of Gir++, V
checks P’s claim about Ṽd by evaluating Ṽx (which is equal to
Ṽd). Thus, to check the LHS of Equation (3),V would require
two evaluations of Ṽx ; the “reducing from two points to one point”
technique requires only one. Since evaluating Ṽx is typically a
bottleneck for the verifier [104, §3.3], eliminating the second
evaluation is worthwhile even though it slightly increases the
size of P’s final message (and thus the proof size; see §4).

We give pseudocode for Gir++ in the full version [106, Appx. E].
Gir++’s efficiency and security are formalized in the following
theorem, which can be proved via a standard analysis [49].
Theorem 1. The interactive proof Gir++ satisfies the following
properties when applied to a layered arithmetic circuit C of
fan-in two, consisting of N identical sub-computations, each
of depth d, with all layers of each sub-computation having



width at most G. It has perfect completeness, and soundness
error at most ((1 + 2 log G + 3 log N) · d + log G)/|F|. After
a pre-processing phase taking time O(dG), the verifier runs
in time O(|x | + |y | + d log NG), and the prover runs in time
O(|C| + d · G · log G). If the sub-AC has a regular wiring pattern
as defined in [35], then the pre-processing phase is unnecessary.

4 Compiling Gir++ into a ZK argument
In this section, we describe a straightforward application of
“commit-and-prove” techniques [8, 37] (§1) to Gir++ (§3.2). The
result is a public coin, perfect ZK argument “of knowledge”
for AC satisfiability (the knowledge property is formalized via
witness-extended emulation; §3.1). In Sections 5 and 6, we
develop substantial efficiency improvements; in Section 7, we
apply the Fiat-Shamir heuristic [41] to make it non-interactive.
Building blocks. This section uses abstract commitments having
a homomorphism property (§3.1). We also make black-box use
of three sub-protocols, which operate on commitments:
• proof-of-opening(C) convincesV that P can open C.

• proof-of-equality(C0,C1) convincesV that C0 and C1 commit
to the same value, and that P can open both.

• proof-of-product(C0,C1,C2) convincesV that C2 commits to
the product of the values committed in C0 and C1, and that P
can open all three.

In Appendix A, we give concrete definitions of the above protocols
in terms of Pedersen commitments [80].
Protocol overview. This protocol differs from Gir++ in three
ways. First, it adds an initial step in which P commits to w

such that C(x,w) = y. Second, P replaces all of its messages in
Gir++ with commitments to those messages. Third, P convinces
V that its committed values pass all of V’s checks in Gir++
using the homomorphism property of the commitments and the
above sub-protocols. The steps below correspond to the steps of
Gir++ (§3.2); we describe only how the protocols differ.
Step 0. (This is a new step.) P sends commitments to each
element of w ∈ Fℓ . P andV execute proof-of-opening for each.
Step 1. As in Gir++, V computes Ṽy(q′, q). Afterwards, V
computes C0 = Com(Ṽy(q′, q); 0).
Step 2. As in Gir++, this step comprises one sum-check and
one mini-protocol per layer of C. We now review the sum-check
protocol, and then describe how P andV execute the sum-check
and mini-protocols “underneath the commitments.”
Review of the sum-check protocol. We begin by describing the
first layer sum-check protocol in Gir++ (others are similar), which
reduces Ṽy(q′, q) to a claim about Ṽ1(·). In the first round of the
sum-check protocol, P sends a univariate polynomial s1(·) of
degree 3.V checks that s1(0)+ s1(1) = Ṽy(q′, q), and then sends
a random field element r1 to P. In general, in round j of the
sum-check protocol, P sends a univariate polynomial sj (which
is degree 3 in the first bN rounds and degree 2 in the remaining
rounds [97, 104]).V checks that sj(0) + sj(1) = sj−1(rj−1), then
sends a random field element rj to P.

We write the vector of all rj’s chosen by V in the jlast =

bN + 2bG rounds of the sum-check protocol as (r1, . . . , rjlast ) ∈

FbN+2bG ; let r ′ denote the first bN entries of this vector, rL
denote the next bG entries, and rR denote the final bG entries.

In the last round, P sends v0 and v1 (which it claims are equal
to Ṽ1(r ′, rL) and Ṽ1(r ′, rR); §3.2).V first checks that

sjlast (rjlast ) = ẽq(q′, r ′) ·
[ ˜add1(q, rL, rR) · (v0 + v1)+

˜mult1(q, rL, rR) · v0 · v1
]

V then checks P’s claims about v0 and v1 by invoking a mini-
protocol (§3.2) and engaging P in another sum-check at layer 2.
ZK sum-check protocol. In round j of the sum-check, P com-
mits to sj(t) = c0, j + c1, j t + c2, j t2 + c3, j t3, via δc0, j←Com(c0, j),
δc1, j←Com(c1, j), δc2, j←Com(c2, j), and δc3, j←Com(c3, j), and
P and V execute proof-of-opening for each one. Now P con-
vincesV that sj(0) + sj(1) = sj−1(rj−1). Notice that ifV holds
commitments Com(sj−1(rj−1)) and Com(sj(0)+sj(1)),P can use
proof-of-equality to convinceV that the above equation holds.
Further,V can use the homomorphism property to compute the
required commitments: for sj(0)+ sj(1) = 2c0, j +c1, j +c2, j +c3, j ,
V computes δ2

c0, j
⊙ δc1, j ⊙ δc2, j ⊙ δc3, j . Similarly, for sj−1(rj−1)

V computes δc0, j ⊙ δ
rj
c1, j ⊙ δ

r2
j

c2, j ⊙ δ
r3
j

c3, j .
The first sum-check round ( j = 1) is an exception to the above:

rather than a commitment to s0, V holds a commitment to a
value that purportedly equals s1(0) + s1(1). For the sum-check
invocation at layer 1, this value is C0, whichV computed in Step
1. For subsequent layers, the value is the result of the preceding
mini-protocol invocation, which we discuss below.

In the final round jlast, V computes a commitment W
to sjlast

(rjlast ) as described above. P then sends commit-
ments X , Y , and Z to v0, v1, and v0 · v1, and uses
proof-of-product to convince V that the committed val-
ues satisfy this product relation. Finally, V computes
Ω←(X ⊙ Y )ẽq(q′,r′)· ˜add1(q,r1,r2) ⊙ Z ẽq(q′,r′)· ˜mult1(q,r1,r2) andP uses
proof-of-equality to convince V that W and Ω commit to the
same value.
ZK mini-protocols. For random-linear-combination,V computes
Com(µ0v0+µ1v1) = Xµ0 ⊙Yµ1 ; this is the purported Com(s1(0)+
s1(1)) for the next sum-check invocation.

To execute reducing-from-two-points-to-one-point,P commits
to the coefficients of fH and invokes proof-of-opening for each;
V computes commitments to fH (0) and fH (1), and P uses
proof-of-equality to show that these commit to the same values
as X and Y ; and V samples υ and computes a commitment to
fH (υ), which it uses in the final step.
Final step. P now convincesV that Com( fH (υ)), the result of
the final mini-protocol invocation (which is a commitment to
Ṽd(r ′, rυ); §3.2), is consistent with x and w.

We let m = (x,w) denote the concatenation of the input x and
the witness w; assume for simplicity that |x | = |w | = 2ℓ ; interpret
x, w, and m as functions (§3.2, “Multilinear extensions”); and
let (r0, . . . , rℓ) = (r ′, rυ). Then by the definitions of m̃, x̃, and w̃,

m̃(r0, . . . , rℓ) = (1 − r0) · x̃(r1, . . . , rℓ) + r0 · w̃(r1, . . . , rℓ).
By analogy to Gir++’s final step, V’s task is to check that
Ṽd(r ′, rυ) is equal to m̃(r0, . . . , rℓ).V does this by first computing
Com(m̃(r0, . . . , rℓ)) using the commitments to w that P sent in
Step 0 (above), and then engaging P in proof-of-equality on
Com( fH (υ)) and Com(m̃(r0, . . . , rℓ)).



To compute Com(m̃(·)), V exploits the following expres-
sion [35] for the multilinear extension of w : {0, 1}ℓ → F:

w̃(r1, . . . , rℓ) =
∑

b∈{0,1}ℓ
w(b) ·

∏
k∈{1,...,ℓ }

χbk
(rk)

=
∑

b∈{0,1}ℓ
w(b) · χb (4)

where χbk
(rk) = rkbk + (1 − rk)(1 − bk), χb =

∏
k χbk

(rk), and
bk is the (1-indexed) k th bit of b. In more detail,V first evaluates
each χb in linear time [102], and then computes

F =
⊙

b∈{0,1}ℓ
Com(w(b))r0 ·χb (r1,...,rℓ )

which is Com(r0 · w̃(r1, . . . , rℓ)). It then computes, in the
clear, F ′ = (1 − r0) · x̃(r1, . . . , rℓ). Finally, V computes
Com(m̃(r0, . . . , rℓ)) = F ⊙ Com(F ′; 0). Invoking proof-of-
equality as described above completes the protocol.

The following theorem formalizes the efficiency of the argu-
ment of this section. We leave a formal statement of security
properties to the final protocol (§7).
Theorem 2. Let C(·, ·) be a layered arithmetic circuit of fan-in
two, consisting of N identical sub-computations, each of depth
d, with all layers of each sub-computation having width at most
G. Assuming the existence of computationally binding, perfectly
hiding homomorphic commitment schemes that support proof-
of-opening, proof-of-equality, and proof-of-product (Appx. A)
with running times upper-bounded by κ, there exists a PZK
argument for the NP relation “∃w such that C(x,w) = y.” The
protocol requires d log(G) rounds of communication, and has
communication complexity Θ(|y | + (|w | + d log G) · λ), where
λ is a security parameter. Given a w such that C(x,w) = y,
the prover runs in time Θ (dNG + G log G + (|w | + d log G) · κ).
Verifier runtime is Θ (|x | + |y | + dG + (|w | + d log(NG)) · κ).

The above follows from the more general Theorem 3.1 of [8].

5 Reducing the cost of sum-checks
In the PZK argument from Section 4, the prover sends a separate
commitment for every message element of Gir++ (§3.2), and
then independently proves knowledge of how to open each
commitment. This leads to long proofs and many expensive
cryptographic operations for the verifier.

In this section, we explain how to reduce this communication
and the number of cryptographic operations for the verifier by
exploiting multi-commitment schemes, in which a commitment
to a vector of elements has the same size as a commitment to
a single element. The Pedersen commitment [80] (Appx. A)
supports multi-commitments.

Dot-product proof protocol. Our starting point is an existing
protocol for multi-commitments, which we call proof-of-dot-
prod. With this protocol, a prover that knows the openings of two
commitments, one to a vector ®x = (x1, . . . , xn) ∈ Fn and one to a
scalar y ∈ F, can prove in zero-knowledge that y = ⟨®a, ®x⟩ for a
public ®a ∈ Fn. The protocol is defined in Appendix A.2.

SquashingV’s checks. To exploit proof-of-dot-prod, we first
recall from Section 4 that in each round j of each sum-
check invocation in Gir++, P sends commitments to c0, j ,

c1, j , c2, j , and (only in the first bN rounds) c3, j . Next, P
proves to V that 2c0, j + c1, j + c2, j + c3, j = sj−1(rj−1) (i.e., that
sj(0) + sj(1) = sj−1(rj−1)). Finally,V computes a commitment
to sj(rj) = c0, j + c1, jrj + c2, jr2

j + c3, jr3
j for the next round.

Combining the above equations yields c3, j+1 + c2, j+1 + c1, j+1 +

2c0, j+1 − (c3, jr3
j + c2, jr2

j + c1, jrj + c0, j) = 0. V’s final check
can likewise be expressed as a linear equation in terms of
v0, v1, c2,n, c1,n, c0,n, and wiring predicate evaluations (§3.2)
(n = bN + 2bG). We can thus write V’s checks during the
rounds of the sum-check protocol as the matrix-vector product

M1
...

MbN+2bG+1

 · ®π =


s0
0
...

 (5)

Each Mk is a row in F4bN+6bG+3 encoding one of V’s checks
and ®π is a column in F4bN+6bG+3 comprising P’s messages.
(4bN+6bG+3 accounts for bN rounds with cubic sj , 2bG rounds
with quadratic sj , and the final values v0, v1, and v0v1; §4.)

Now we can combine all of the linear equality checks encoded
in Equation (5) into a single check, namely, by multiplying each
row k by a random coefficient ρk and summing the rows.
Lemma 3. For any ®π ∈ Fℓ , and any matrix M ∈ Fn+1×ℓ with
rows M1, . . . , Mn+1 for which Eq. (5) does not hold, then

Pr
ρ

[〈(∑
ρk · Mk

)
, ®π

〉
= ρ1 · s0

]
≤ 1/|F|

Proof. Observe that ⟨(
∑
ρk · Mk) , ®π⟩ is a polynomial in

ρ1, . . . , ρn+1 of total degree 1 (i.e., a linear function in
ρ1, . . . , ρn+1). Call this linear polynomial ϕ. The coefficients
of ϕ are the entries of M · ®π. Similarly, ρ1 · s0 is a linear poly-
nomial ψ in ρ1, . . . , ρn+1, whose coefficients are the entries of
[s0, 0, . . . , 0]. Note that if Equation (5) does not hold, then ϕ and
ψ are distinct polynomials, each of total degree 1. The lemma
now follows from the Schwartz-Zippel lemma. □

Putting the pieces together. Lemma 3 implies that, once P
has committed to ®π, it can use proof-of-dot-prod to convince
V of the sum-check result in one shot. For soundness in Gir++,
however, P must commit to c3, j, c2, j, c1, j, c0, j before the Verifier
sends rj . This means that P cannot send Com( ®π) all at once.

Instead, we observe that P can send the commitment to ®π
incrementally, using one group element per round of the sum-
check. That is, in each round of the sum-check protocol, P
commits to a vector encoding the coefficients of that round’s
polynomial, and V responds with its random coin rj . After P
has committed to all of its messages for the sum-check, P andV
engage in the protocol of Figure 1, which encodesV’s checks
for all rounds of the sum-check protocol at once. This protocol
replacesV’s checks in Step 2 of the protocol of Section 4.
Lemma 4. The protocol of Figure 1 is a complete, honest-verifier
perfect ZK argument, with witness-extended emulation under the
discrete log assumption, that its inputs constitute an accepting
sum-check relation: on input a commitment C0, commitments
{αj} to polynomials {sj} in a sum-check invocation, rows {Mk} of
the matrix of Equation (5), and commitments X = Com(v0), Y =
Com(v1), and Z , where {rj} areV’s coins from the sum-check



proof-of-sum-check(C0, {αj}, {Mk}, X,Y, Z)

Inputs: C0 = Com(s0; rC0 ).
{αj} are all of P’s messages from a sum-check invocation: at
each round j of the sum-check protocol, P has sent

αj ← Com((c3, j, c2, j, c1, j, c0, j); rαj )

{Mk} is defined as in Equation (5) and Lemma 3. (These
vectors encodeV’s random coins {rj} from the sum-check.)
X = Com(v0; rX ), Y = Com(v1; rY ), Z = Com(v0v1; rZ ).
Definitions: n = bN + 2bG; ®π is defined as in Equation (5);
{ρk} are chosen byV (see below); ®J =

∑
ρk · ®Mk ; (JX, JY, JZ )

are the last 3 elements of ®J; ®π∗ and ®J∗ are all but the last three
elements of ®π and ®J, respectively.

1. P andV execute proof-of-product (§4) on X , Y , and Z .

2. P picks rδ1, . . . , rδn ∈R F and ®d ∈R F4bN+6bG where
®d = (dc3,1, dc2,1, dc1,1, dc0,1, . . . , dc0,n−1, dc2,n, dc1,n, dc0,n ).
P computes and sends
δj ← Com((dc3, j , dc2, j , dc1, j , dc0, j ); rδ j ), j ∈ {1, . . . , n}

3. V chooses and sends ρ1, . . . , ρn+1 ∈R F.

4. P picks rC ∈R F, then computes and sends
C ← Com(⟨ ®J∗, ®d⟩; rC)

5. V chooses and sends challenge c ∈R F.

6. P computes and sends ®z ← c · ®π∗ + ®d,
zδ j ← c · rαj + rδ j , j ∈ {1, . . . , n}, and
zC ← c ·

(
ρ1rC0 − JXrX − JYrY − JZrZ

)
+ rC

7. V rejects unless the following holds, where we denote
®z = (zc3,1, zc2,1, zc1,1, zc0,1, . . . , zc0,n−1, zc2,n, zc1,n, zc0,n ):

Com((zc3, j , zc2, j , zc1, j , zc0, j ); zδ j )
?
= αc

j ⊙ δj j ∈ {1, . . . , n}

(Cρ1
0 ⊙ X−JX ⊙ Y−JY ⊙ Z−JZ )c ⊙ C ?

= Com(⟨ ®J∗, ®z⟩; zC)

Figure 1—This protocol proves the statement derived by applying
Lemma 3 to Equation (5), i.e., that the sum-check whose transcript is
encoded in the protocol’s inputs is accepting. Values corresponding to
c3, j are elided for all sum-check rounds j having quadratic sj .

and n=bN +2bG , the protocol proves that C0=Com(s1(0)+s1(1));
sj(0)+sj(1)=sj−1(rj−1), j∈{2, . . . , n}; and sn(rn)=Q...,i evalu-
ated with v0, v1 (per §3.2).

Lemma 4’s proof is standard; we leave it to the full version [106,
Appx. A.4]. Relative to Step 2 of Section 4, the protocol of Figure 1
reduces sum-check communication by ≈3×. It also reduces P’s
andV’s cryptographic costs by ≈4× and ≈5×, respectively.

6 Reducing the cost of the witness
In the protocol of Section 4, P sends a separate commitment to
each element w1, . . . ,wℓ of the witness w (§4, “Step 0.”). This
means that handling a circuit relation with |w | witness elements
requires a proof whose size is at least proportional to |w |. In this
section, we describe a new commitment scheme for multilinear
polynomials that reduces witness commitment size (and thus
proof size) to sub-linear in |w |; it also reducesV’s computation

cost to sub-linear in |w | (§6.1). To begin, we require each sub-
AC to have separate input and witness elements; we relax this
restriction by introducing a redistribution layer that allows input
and witness sharing among sub-ACs (§6.2).

6.1 A commitment scheme for multilinear polynomials
In Section 4,V’s final step checks that P’s commitments to w are
consistent with its other messages by evaluating w̃ (the MLE of
w; §3.2, “Multilinear extensions”). Zhang et al. [108] show, in the
non-ZK setting, thatV can outsource this evaluation to P. We
apply their idea to the ZK setting,4 reducing communication and
saving V computation, by devising a polynomial commitment
scheme [61] tailored to multilinear polynomials. Informally, such
schemes are hiding and binding (§3.1, Def. 4); they also allow
the sender to evaluate a committed polynomial at any point and
prove that the evaluation is consistent with the commitment.

Our commitment scheme builds on a matrix commitment
idea due to Groth [52] and an inner-product argument due to
Bünz et al. [30]. We begin by describing a simplified version of
the scheme that gives O(

√
|w |) communication andV runtime;

we then generalize this to O(Sp) communication and O(Ti)
V runtime, Ti ≥

√
|w |, Sp · Ti = |w |. We assume WLOG for

notational convenience that 2ℓ = |x | = |w |.

Square-root commitment scheme. In its final check,V evalu-
ates w̃(r1, . . . , rℓ) by computing a commitment to the dot product
⟨(w0, . . . ,w2ℓ−1), (χ0, . . . , χ2ℓ−1)⟩ (Eq. (4), §4). Consider the fol-
lowing strawman protocol for computing this commitment: in
Step 0 (§4), P sends one multi-commitment to w. Later, P sends
a commitment ω, and P andV execute proof-of-dot-prod (§5)
on Com(w), ω, and (χ0, . . .). This protocol convinces V that
ω = Com(w̃(·)), but does not reduce communication: proof-of-
dot-prod requires P to send O(|w |) messages (Appx. A.2).

To reduce communication, we exploit the structure of the
polynomial w̃ and a matrix commitment due to Groth [52]. At
a high level, this works as follows (details below). In Step 0,
P encodes w as a matrix T , then sends commitments {Tk} to
the rows of T . Then, in the final step, P sends a commitment ω
that it claims is to w̃(r1, . . . , rℓ); V uses {Tk} to compute one
multi-commitment T ′; and P andV execute proof-of-dot-prod
on T ′ and ω. In total, communication cost is O(2ℓ/2).

In more detail: T is the 2ℓ/2 × 2ℓ/2 matrix whose column-major
order is w, i.e., Ti+1, j+1 = wi+2ℓ/2 · j . Before defining T ′ and the
proof-of-dot-prod invocation, we define

χ̌b =

ℓ/2∏
k=1

χbk
(rk) χ̂b =

ℓ∏
k=ℓ/2+1

χbk
(rk)

L = ( χ̌0, χ̌1, . . . , χ̌2ℓ/2−1) R = ( χ̂0, χ̂2ℓ/2, . . . , χ̂2ℓ/2 ·(2ℓ/2−1))

To compute T ′ from commitments {Tk} to the rows of T ,V
evaluates L (in time O(2ℓ/2) [104, §3.3]) and uses it to compute

T ′ =
2ℓ/2−1⊙
k=0

T χ̌k
k+1 = Com(L · T) (6)

Finally, P sends a commitment ω and uses proof-of-dot-prod to
convinceV that the dot product of R with the vector committed
in T ′ equals the value committed in ω.

4In concurrent and independent work, Zhang et al. extend to ZK [109]; see §2.



The above proves to V that ω = Com(w̃(r0, . . . , rℓ)), as we
now argue. For 1-indexed L and R, we have

Li+1 · Rj+1 = χ̌i · χ̂2ℓ/2 · j = χi+2ℓ/2 · j

This is true because χ̌b comprehends the lower ℓ/2 bits of b, and
χ̂b the upper ℓ/2 bits. Then by the definition of T , we have

L · T · RT =

2ℓ/2−1∑
i=0

2ℓ/2−1∑
j=0

Ti+1, j+1 · Li+1 · Rj+1

=

2ℓ/2−1∑
i=0

2ℓ/2−1∑
j=0

wi+2ℓ/2 · j · χi+2ℓ/2 · j =

2ℓ−1∑
k=0

wk · χk

If V accepts P’s proof-of-dot-prod on T ′, ω, and R, then by
Equation (6), ω = Com(L ·T · RT) = Com(

∑2ℓ−1
k=0 wk · χk), which

equals Com(w̃(r0, . . . , rℓ)) (Eq. (4), §4) as claimed.
In total, communication is O(2ℓ/2) (for {Tk} plus the proof-of-

dot-prod invocation), andV’s computational cost is O(2ℓ/2) (for
computing L, R, and T ′, and executing proof-of-dot-prod).

Reducing the cost of proof-of-dot-prod. In the above protocol,
proof-of-dot-prod establishes a lower bound on communication
cost. To reduce proof-of-dot-prod’s cost, we use an idea due to
Bünz et al. [30], who give a dot-product protocol that has cost
logarithmic in the length of the vectors. Their protocol works
over two committed vectors; we require one that works over one
committed and one public vector. In Appendix A.3, we adapt their
protocol to the syntax of proof-of-dot-prod; we refer to the result
as prooflog-of-dot-prod. Whereas proof-of-dot-prod requires P to
send 4+n elements for vectors of length n, prooflog-of-dot-prod
requires only 4+2 log n. In both protocols, V’s computational
cost is dominated by a multi-exponentiation [83] of length n.

The full commitment scheme differs from the square-root one
in that P andV invoke prooflog-of-dot-prod (rather than proof-
of-dot-prod) on T ′, R, and ω. For T, L, R, χ̌b, χ̂b as defined
above, P sends 4+2ℓ/2+2 log 2ℓ/2 elements, andV’s runtime is
dominated by two multi-exponentiations of length 2ℓ/2, one to
compute T ′ and the other to execute prooflog-of-dot-prod. This
gives the same asymptotics as the square-root scheme with ≈2×
less communication (but with ≈3× more computation for P).

More importantly, prooflog-of-dot-prod gives the freedom to
reduce communication in exchange for increasedV runtime. For
a parameter ι, we redefine T to be the 2ℓ/ι × 2ℓ−ℓ/ι matrix whose
column-major order is w; redefine χ̌b to comprehend the lower
ℓ/ι bits of b, and χ̂b the upper ℓ − ℓ/ι bits; and redefine

L = ( χ̌0, χ̌1, . . . , χ̌2ℓ/ι−1) R = ( χ̂0, χ̂2ℓ/ι, . . . , χ̂2ℓ/ι ·(2ℓ−ℓ/ι−1))

T has 2ℓ/ι rows and T ′ is a vector of 2ℓ−ℓ/ι elements, so P sends
2ℓ/ι commitments in Step 0 and 4+ log 2ℓ−ℓ/ι elements for prooflog-
of-dot-prod, which is O(2ℓ/ι) in total. Computing T ′ costs V
one multi-exponentiation of length 2ℓ/ι , and executing prooflog-
of-dot-prod costs one of length 2ℓ−ℓ/ι , which is O(2ℓ/ι+2ℓ−ℓ/ι)
in total. Since this is at least O(2ℓ/2), V’s runtime is at least
O(

√
|w |). We formalize immediately below.

Lemma 5. Suppose WLOG that w ∈ F2ι·ℓ′ for ι ≥ 2, and that P
commits to w as described above using 2ℓ′ = |w |1/ι multi-com-
mitments. Then for any (r1, . . . , rι ·ℓ′), P can send a commitment
ω and argue that it commits to w̃(r1, . . . , rι ·ℓ′) in communication

O(|w |1/ι), whereV runs in O(|w |(ι−1)/ι) steps. This is a complete,
honest-verifier perfect zero-knowledge argument with witness-
extended emulation under the discrete log assumption.

Completeness and ZK follow from the analysis in Ap-
pendix A.3. We leave analysis of witness-extended emulation
to the full version [106, Appx. A.5] for space reasons. We have
described this protocol in terms of the multilinear extension of
w, but it generalizes to any multilinear polynomial f using the
fact that T comprises the evaluations of f at all binary inputs.

6.2 Sharing witness elements in the data-parallel setting

We have thus far regarded the computation as having one large
input and one large witness. When evaluating a data-parallel
computation, this means that the sub-ACs’ inputs must be disjoint
slices of the full input (and similarly for the witness). However,
this is not sufficient in many cases of interest.

Consider a case where P wants to convinceV that it knows
leaves of a Merkle tree corresponding to a supplied root. Verifying
a witness with M leaves requires 2M−1 invocations of a hash
function. We encode this as a computation with 2M−1 sub-ACs
laid side-by-side, each encoding the hash function.5 Then, for
sub-ACb processing sub-ACa’s output, P supplies the purported
output to both, and sub-ACa just checks that value and outputs a bit
indicating correctness. This is necessary for zero-knowledge: all
AC outputs are public, whereas sub-ACa’s output (an intermediate
value in the computation) must not be revealed toV.

This arrangement requires sub-ACs to share witness elements—
but duplicating entries in the matrix T (§6.1) is not a solution,
becauseV cannot detect if a cheating P produces T that gives
different values to different sub-ACs. One possibility is a hybrid
vector-scalar scheme: P supplies scalar commitments for each
shared witness element and matrix commitment {Tk} for the rest.
Then, for a scalar commitment δ, V “injects” the committed
value into input index b by multiplying the commitment to
Ṽd(r ′, rυ) (§4, “Final step”) by δ−r0 ·χb .6 (In contrast, the protocol
of Section 6.1 maps each entry of T to a fixed input index.)

This approach works when the number of shared witness
elements is small, but it is inefficient when there are many shared
elements: each shared element requires a separate commitment
and proof-of-opening invocation. For such cases, we enable
sharing of witness elements by modifying the arithmetic circuit
encoding the NP relation. Specifically, after constructing a data-
parallel AC corresponding to the computation, we add one
non-data-parallel redistribution layer (RDL) whose inputs are
the full input and witness, and whose outputs feed the input layers
of each sub-AC. Since the RDL is not data parallel, there are
no restrictions on how its inputs connect to its outputs, meaning

5The sub-ACs could instead be arranged sequentially. This would avoid the issues
described in this subsection, but would dramatically increase circuit depth, and
thus the proof length and associated costs when applying our argument.
6In fact, this approach works generally for computations over values to which
V holds a commitment whose opening P knows. It also applies to committed
vectors: if V holds a commitment ξ = Com( ®x), it can inject the committed
values into a list of indices (b1, . . .) as follows: P produces a commitment δ and
proves to V that it commits to Com(⟨(x1, . . .), (χb1, . . .)⟩) with prooflog-of-
dot-prod; then V multiplies Com(Ṽd (r

′, rυ )) by δ−r0 . This approach requires
more communication and V computation than the protocol of Section 6.1,
because it does not assume any particular structure for (b1, . . .).



thatV can use it to ensure that the same witness element feeds
multiple sub-ACs: the sum-check protocol forces P to respect
the wiring of the RDL, so P cannot equivocate about w.

Moreover, since the RDL only “re-wires” its inputs, the sum-
check invocation corresponding to this layer of the AC can be
optimized to require fewer rounds and a simplified final check.
Observe that the redistribution layer only requires one-input
“pass” gates that copy their input to their output. Thus, following
a simplification of the CMT protocol [35, 98], we have that

Ṽd−1(q′, q) =
∑

h∈{0,1}log(|m |)

˜pass((q′, q), h) · Ṽd(h)

where ˜pass((q′, q), h) is the MLE of a wiring predicate (§3.2)
that is 1 when the RDL connects from the AC input with index h
to input q in sub-AC q′, and 0 otherwise. A sum-check over

RDL(q′,q)(h) = ˜pass((q′, q), h) · Ṽd(h)
requires log(|m|) = log(|x | + |w |) rounds, at the end of whichV
evaluates RDL(q′,q) at a random point. This requiresV to evaluate

˜pass, but in contrast to P...,i or Q...,i (§3.2), it only requires one
evaluation of Ṽd, whichV can check (via the protocol of §6.1)
without invoking a mini-protocol (§3.2).

By a standard analysis [35], P’s costs are O(NG log |m|);V’s
primary cost related to the RDL is evaluating ˜pass at one point,
which costs O(|m| + NG) via known techniques [104, §3.3]. We
formalize in Theorem 6 (§7).

7 Hyrax: a zkSNARK based on Gir++

We refer to the honest-verifier PZK argument obtained by ap-
plying the refinements of Sections 5 and 6 to the protocol of
Section 4 as Hyrax-I; pseudocode is given in Appendix B. Since
Hyrax-I is a public-coin protocol, we apply the Fiat-Shamir
heuristic [41] to produce a zkSNARK that we call Hyrax whose
properties we now formalize:
Theorem 6. LetC(·, ·) be a layered AC of fan-in two, consisting of
N identical sub-computations, each having d layers whose width
is at most G. Under the discrete log assumption in the random
oracle model, for every Sp,Ti with Ti ≥

√
|w | and Sp · Ti =

|w |, there exists a perfectly complete, perfect zero-knowledge,
non-interactive argument with witness-extended emulation for
the NP relation “∃w such that C(x,w) = y.” V runs in time
O(|x | + |y | + dG + (Ti + d log(NG)) · κ) for κ a bound on the
time to compute a commitment; when using an RDL (§6.2),V
incurs an additional O(|x | + |w | + NG) cost. P’s messages have
size O((Sp + d log(NG)) · λ) for λ a security parameter.
We leave proof to the full version [106, Appx. B].
Implementation. Our implementation of Hyrax is based on
Giraffe’s code [81, 104]. It uses Pedersen commitments (Appx. A)
in an elliptic curve group of order qG and works with ACs over
FqG . We instantiate the random oracle with SHA-256.

The prover takes as input a high-level description of an AC (in
the format produced by Giraffe’s C compiler), the public inputs,
and an auxiliary executable that generates the witness from the
public inputs; the prover’s output is a proof. The verifier takes as
input the same computation description and public inputs plus
the proof, and outputs “accept” or “reject.”

We implement Gir++, the techniques of Sections 5 and 6,
the random oracle, and proof serialization and deserialization

by adding 2800 lines of Python and 300 lines of C to the
Giraffe code. We also implemented a library for fast multi-
exponentiation comprising 750 lines of C that uses the MIRACL
Crypto SDK [74] for elliptic curve operations and selects between
Straus’s [95] and Pippenger’s [19, 83] methods, depending on
the problem size. Our library supports Curve25519 [18], M221,
M191, and M159 [2]. Python code calls this library via CFFI [31].
We produce random group elements by hashing, implemented in
200 lines of Sage [88] adapted from a script by Samuel Neves [2].

We have released full source code [58].

8 Evaluation
In this section we ask:
• How does Hyrax compare to several baseline systems, con-

sidering proof size andV and P execution time?
• How do Hyrax’s refinements (§5–6) improve its costs?
• What is the overall effect of trading greater witness-related
V computation for smaller witness commitments (§6.1)?

A careful comparison of built systems shows that, even for modest
problem sizes, Hyrax’s proofs are smaller than all but the most
computationally costly of the baselines; and that its V and P
execution times are each faster than three of five baselines. We also
find that Hyrax’s refinements yield multiple-orders-of-magnitude
savings in proof size andV time, and a small constant savings
in P time. Finally, we find that tuning the witness commitment
costs gives much smaller proofs, with little effect on totalV time
for a computation using an RDL (§6.2).

8.1 Comparison with prior work
Baselines. We compare Hyrax with five state-of-the-art zero-
knowledge argument systems with similar properties, detailed
below. We also consider Hyrax-naive, which implements the
protocol of Section 4 without our refinements (§5–6). We do not
compare to systems that require trusted setup (see §2, second
paragraph), but we discuss them briefly in Section 8.3.

Like Hyrax (and Hyrax-naive), two of the baselines rely on
elliptic curve primitives; but their existing implementations use a
different elliptic curve than Hyrax. To evaluate like-for-like, we re-
implemented them using the Python scaffolding, C cryptographic
library, and elliptic curves that Hyrax uses (§7).

The other three baselines do not use elliptic curves, so some
mismatch in implementations is unavoidable. For those systems,
we used existing implementations written in C or C++.
• BCCGP-sqrt is the square-root-communication argument due
to Bootle et al. [24]. We implemented this protocol using Hyrax’s
libraries, as described above. In addition, this protocol uses poly-
nomial multiplication, for which we used NTL [94]. Finally, we
wrote a compiler that converts from Hyrax’s AC description
format to the required constraint format, with rudimentary op-
timizations like constant folding and common subexpression
elimination. Our implementation comprises 1200 lines of Python
and 160 lines of C, which we include in our released code [58].
• Bulletproofs is the argument due to Bünz et al. [30] (we also
adapted the inner-product argument from this work in §6). We
implemented this protocol in 300 lines of Python on top of our
BCCGP-sqrt code, which we also include in our release.



2 4 6 8
log2 N , number of copies

1

10

100

103

104

105
pr

oo
f

si
ze

,
ki

B
(l

ow
er

is
b

et
te

r)

(a) Proof size: 64×64 matrix multiplication.
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(b) P time: 64×64 matrix multiplication
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(c)V time: 64×64 matrix multiplication
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(d) Proof size: 16× Lanczos scaling
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(e) P time: 16× Lanczos scaling
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(f)V time: 16× Lanczos scaling
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(g) Proof size: SHA-256 Merkle tree
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(h) P time: SHA-256 Merkle tree
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(i)V time: SHA-256 Merkle tree
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Figure 2—Comparison of concrete costs between the baseline systems and Hyrax (§8.1). Hyrax-1/2 is Hyrax where P’s witness commitments have
size |w |1/2, and likewise Hyrax-1/3 has commitments of size |w |1/3 (§6.1). Hyrax-naive is Hyrax without our refinements (§5–6). BCCGP-sqrt [24],
Bulletproofs [30], ZKB++ [32], Ligero [1], and libSTARK [11] are prior work. Where the BCCGP-sqrt, Bulletproofs, and libSTARK data are
truncated, their provers exceeded available RAM (§8.1). We evaluate ZKB++, Ligero, and libSTARK only on Merkle trees (we discuss in §8.3).

• Ligero [1]: we report on the authors’ C++ implementation.
• ZKB++ [32]: we report runtime of the C implementation of
ZKBoo [47, 111]; per the ZKB++ authors, these systems have
similar performance [32, §3.2].7 We report extrapolated proof
sizes (which are linear with AC size) from ZKB++ [32, §3.2.1].
• libSTARK [11]: we report on the authors’ C++ implementa-
tion [67] and SHA-256 primitive [11, Fig. 4], which we adapt to
the Merkle tree benchmark (described below).

This implementation supports multi-threading, but we restrict
it to a single thread for consistency with the other baselines and
to focus on total prover work; we discuss in Section 8.3.

Benchmarks. We evaluate Hyrax, Hyrax-naive, BCCGP-sqrt,
and Bulletproofs on all benchmarks below, but Ligero, ZKB++,
and libSTARK only on Merkle trees; we discuss in Section 8.3.
• Matrix factoring (i.e., matrix multiplication) proves toV that
P knows two matrices whose product equals the public input.
We evaluate on 16×16, 32×32, 64×64, and 128×128 matrices,
and for each we vary N , the number of parallel executions.

7We run ZKBoo because there is no standalone ZKB++ implementation that can
run our benchmarks, only one tailored to the Picnic signature scheme [82].

• Image scaling establishes that V’s input, a low-resolution
image, is a scaled version of a high-resolution image that P
knows. For scaling, we use Lanczos resampling [100], a standard
image transformation in which each output pixel is the result of
convolving a two-dimensional windowed sinc function [77] with
the input image. We evaluate on 4×, 16×, 64×, and 256× scaling,
varying the number of pixels.

This is a data-parallel computation where each sub-AC eval-
uates one pixel of the low-resolution image, but because of the
windowed sinc function, sub-ACs for adjacent pixels must share
inputs from the high-resolution image. To accommodate this, we
use a redistribution layer (RDL; §6.2).
• Merkle tree proves to V that P knows an assignment to
the leaves of a Merkle tree [72] corresponding to a root thatV
provides [23].8 We use SHA-256 for the hash, varying the number
of leaves in the tree; we implement a data-parallel computation
in which each sub-computation is one invocation of SHA-256;

8In related applications (e.g., [107]), P convinces V that it knows a path from a
supplied Merkle root to a leaf. For these systems, a path of length 2M−1 has
essentially the same cost as an M-leaf Merkle tree. We evaluate the full-tree
benchmark because it demonstrates a wider range of computation sizes.



and we connect outputs at one level of the tree to inputs at the
next level using an RDL. For M leaves, the benchmark comprises
2M−1 sub-computations.

To implement SHA-256 efficiently in an arithmetic circuit,
we use an approach from prior work [12] for efficient addition
modulo 232. We describe the approach, and an optimization that
may be of independent interest, in the full version [106, Appx. C].
Testbed. We run experiments on Amazon EC2 [3]. For Hyrax,
Hyrax-naive, Ligero, and ZKB++, we use c3.4xlarge instances
(30 GiB of RAM, 8 Xeon E5-2680v2 cores, 2 threads per core,
2.8 GHz). The BCCGP-sqrt, Bulletproofs, and libSTARK provers
are memory intensive (“P cost,” below), so for these we use
c3.8xlarge instances (60 GiB of RAM, 16 cores at 2.8 GHz).
Only RAM is relevant because we run all tests single threaded.

All testbed machines run Debian GNU/Linux 9 [38]. We run
all Python code using PyPy [86], a fast JIT-compiling interpreter.
Security parameters. For Hyrax, Hyrax-naive, BCCGP-sqrt,
and Bulletproofs,G is M191 [2], an elliptic curve over a base field
modulo 2191−19 with a subgroup of order qG = 2188+293+ . . .,
giving ≈90-bit security. We run Ligero, ZKB++, and libSTARK
at 2−80 soundness error.9 ACs are over FqG and group elements
and scalars are 24 bytes, except that Ligero and libSTARK work
over smaller fields and ZKB++ works over Boolean circuits.
Method. For each benchmark, we construct a set of arithmetic
circuits (and, for image scaling and Merkle trees, RDLs) for a
range of computation sizes. We then run each system’s prover,
feeding the resulting proof into its verifier. We record proof size,
and measure time using the high-resolution system clock.

For matrix factoring and image scaling, we set Hyrax’s com-
munication andV runtime to |w |1/2 (§6.1). For Merkle trees, we
optimize proof size versusV runtime by setting witness-related
communication to |w |1/3 andV runtime to |w |2/3; we explore the
effect of this setting in Section 8.2.
Results. Figure 2 compares costs for the benchmarks. For matrix
factoring and image scaling we show only 64×64 matrices and
16× scaling, respectively; other values give similar results. For
an AC C,M denotes the number of multiplication gates.
Proof size (Figs. 2a, 2d, 2g):
• Hyrax has much larger proofs than Bulletproofs, both asymp-
totically and concretely.
• Hyrax’s proofs are smaller than BCCGP-sqrt’s when the cost
of the witness commitment dominates the cost of P’s mes-
sages in Gir++ (i.e., for large enough computations). Specifically,
Hyrax’s cost tracks |w |1/2 (|w |1/3 for Merkle trees; Fig. 2g), while
BCCGP-sqrt’s tracks M1/2. Thus, on matrix factoring (where
|w | ≪M) Hyrax has much smaller proofs.
• Hyrax’s Merkle tree proofs are asymptotically and concretely
smaller than Ligero’s: the latter’s cost tracks |C|1/2.
• libSTARK’s proof size is asymptotically smaller than Hyrax’s,
but its proofs are concretely ≈5× larger at these problem sizes.
• ZKB++’s cost is linear in the number of AND gates, and
Hyrax-naive’s cost tracks |w |; both are large.

9ZKB++, Ligero, and libSTARK give statistical security in the random oracle
model, while the other systems make computational assumptions; this makes
direct comparison difficult. We have chosen security parameters to give all
systems roughly equivalent cost to prove a false statement.

P cost (Figs. 2b, 2e, 2h):
• BCCGP-sqrt and Bulletproofs require a number of crypto-
graphic operations proportional toM. Hyrax has lower P time
than these systems because it uses cryptographic operations only
for P’s messages in Gir++ and for w (§4–§6).
• The provers in both BCCGP-sqrt and Bulletproofs ran out of
memory for the largest benchmarks (Figs. 2b and 2h) despite
having twice as much RAM as Hyrax (“Testbed,” above). This is
because they operate, roughly speaking, over all wire values in the
AC at once. In contrast, Hyrax’s P works layer-by-layer (§3.2).10
• Hyrax’s P is more expensive than either ZKB++’s or Ligero’s,
because those systems do not use any public-key cryptography.
• While Ligero’s P is asymptotically more costly than Hyrax’s
P, this is not apparent at the problem sizes we consider.
• libSTARK’s P is 12–40× more expensive than Hyrax’s for
these problem sizes. It is also memory intensive: for the largest
problem, it exceeded available RAM despite having twice as
much as Hyrax (“Testbed,” above).
• Hyrax’s refinements compared to Hyrax-naive (§5–6) yield a
constant factor lower P cost, at most ≈3×.
V time (Fig. 2c, 2f, 2i):
• For matrix factoring, Hyrax’s V bottleneck is sum-check
invocations for small N , and Ṽy evaluation for large N (§3.2). The
RDL (§6.2) dominatesV’s costs in the other two benchmarks.
• Hyrax’s V cost is lower than BCCGP-sqrt for large enough
problems: the latter requires O(M) field operations.
• Hyrax’s V cost is much less than Bulletproofs’s: the latter
requires a multi-exponentiation of length 2M (which can be
computed using O(M/logM) cryptographic operations [83]).
• ZKB++ has verification cost linear in the problem size, so
Hyrax wins on large enough problems.
• Ligero’sV amortizes its bottleneck computation over repeated
SHA-256 instances [1, §5.4], so over this range of problem sizes
it has sublinear scaling and concretely fast verification time.
• libSTARK’s V has the best asymptotics among all systems
and extremely low concrete costs.
• Hyrax-naive requires cryptographic operations proportional
to |w |; Hyrax’s refinements give more than 100× savings.

8.2 Effect of tradingV runtime for smaller proofs
Method. We run the Merkle tree benchmark using the same
setup as in Section 8.1, except that we vary the size of P’s witness
commitment (§6.1). We experiment with commitments of size
log |w |, |w |1/3, and |w |1/2.V’s witness-related work at these three
settings is O(|w |), O(|w |2/3), and O(|w |1/2), respectively.

Results. Figure 3 shows proof size and runtime for the specified
commitment sizes. For Hyrax-1/2, proof sizes are large but P and
V runtimes are small; Hyrax-log is the opposite. Hyrax-1/3 has
similar runtimes to Hyrax-1/2: P’s costs are dominated by Gir++,
V’s by the RDL (§6.2). Meanwhile, its proof sizes are not much
larger than Hyrax-log, because the Gir++-related proof costs are
the same in both cases, and because the constants hidden in the
asymptotic notation mean that the log and cube-root protocols

10It is probably possible to engineer the BCCGP-sqrt and Bulletproofs provers
to reduce memory requirements, e.g., by streaming from disk. We attempted a
standard approach—paging memory to an array of fast SSDs—but this caused
thrashing and dramatically worsened runtimes.
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Figure 3—Proof size and P and V runtime for different sizes of P’s witness commitment (§6.1; §8.2). Hyrax-1/2 has commitment size |w |1/2,
Hyrax-1/3 has commitment size |w |1/3, and Hyrax-log has commitment size log |w |. Hyrax-1/2 gives the largest proofs but has the fastest runtimes.
Hyrax-log gives the smallest proofs but has the longest runtimes. Hyrax-1/3 gets essentially the best of both for this application.

have similar concrete costs at these problem sizes. In other words,
Hyrax-1/3 gets very nearly the best of both worlds.

8.3 Discussion

Our results show that Hyrax is competitive with the baselines,
and that the refinements of Sections 5 and 6 give substantial im-
provements. Hyrax gives smaller proofs than all but Bulletproofs,
which pays for its smaller proofs with very high computational
costs. Meanwhile, for problem sizes of practical interest, only
Ligero is faster for both P andV; ZKB++ has faster P but often
slowerV; libSTARK has fasterV but much slower P; and all
three systems produce larger proofs than Hyrax.

On the other hand, there are several limitations to this analysis.
First, because Gir++ is geared to data-parallel computations (§3.2;
Thm. 1), Hyrax is competitive with prior work primarily when
computations contain sufficient parallelism or are amenable to
batching; this is evident in the way Hyrax’s performance relative
to the baselines improves as parallelism increases in Figure 2.
While an RDL (§6.2) lets Hyrax take advantage of parallelism
within one computation (as it did in the Merkle tree and image
scaling benchmarks), not all applications fit these paradigms.
Moreover, the RDL is asymptotically and concretely costly for
V; eliminating this bottleneck is future work.

Second, we compare ZKB++, Ligero, and libSTARK only
on the SHA-256 Merkle tree benchmark. This makes sense for
ZKB++ because it is geared to Boolean circuits, where SHA-256
is a natural benchmark; similarly, Ligero’s primary evaluation is
on SHA-256 [1, §6]. For libSTARK, however, a hash function
that is more efficient in F264 would improve performance [11,
Fig. 4]; future work is to compare Hyrax and all baselines on
Merkle trees using hash functions tailored to each system (e.g.,
[11, Appx. E; 15, §5.2; 29, §3.2]). Furthermore, Ligero and
libSTARK can in principle work over large fields, but the current
implementations do not [11, 101], so we could not evaluate on
matrix factoring or image scaling; future work is to do so.11

Third, our comparison does not consider multi-threaded per-
formance because, to our knowledge, libSTARK is the only
baseline with a multi-threaded implementation [11, 67]. Prior
work [99, 103, 104] suggests that Gir++ is highly parallelizable;
exploring this in Hyrax is future work.

11We note that, since Hyrax’s proof size is primarily due to witness size |w |
rather than arithmetic circuit size |C |, we expect it to outperform Ligero on
applications like matrix factoring where |w | ≪ |C |.

Finally, our comparison does not consider argument systems
like libsnark [16, 66] that require trusted setup and non-standard,
non-falsifiable assumptions (§2, paragraph 2); Hyrax’s goal is
to avoid these requirements. Ignoring this, Hyrax’s proofs are
bigger: libsnark’s proofs are a constant ≈300-bytes, independent
of the AC C. Hyrax’s P cost is concretely and asymptotically
smaller: libsnark has a logarithmic overhead in |C|, and it re-
quires cryptographic operations per AC gate, while Hyrax’s P is
essentially linear in computation size and requires cryptographic
operations only for P’s Gir++ messages and for w (§4–§6). For
V, libsnark’s offline setup is very expensive [105, §5.4], and it
must be performed by V or someone V trusts; but libsnark’s
onlineV costs are essentially always cheaper than Hyrax’s (and
roughly comparable to libSTARK’s, in practice).

9 Conclusion
We have described a succinct zero-knowledge argument for NP
with no trusted setup and low concrete cost for both the prover and
the verifier, based on standard cryptographic assumptions. This
scheme is practical because it tightly integrates three components:
a state-of-the-art interactive proof (IP), which we tweak to reduce
communication complexity; a highly optimized transformation
from IPs to zero-knowledge arguments following the approach
of Ben-Or et al. [8] and Cramer and Damgård [37]; and a
new cryptographic commitment scheme tailored to multilinear
polynomials that adapts prior work [30, 52] to allow a sender
to commit to a log G-variate multilinear polynomial and later
to open it at one point, with O(G1/ι) total communication and
O(G(ι−1)/ι) receiver runtime for any ι ≥ 2. A careful comparison
with prior work shows that our argument system is competitive
on both proof size and computational costs. Key future work is
to further reduce proof size without increasing verifier runtime.

More broadly, ours and other recent work [108–110] suggest
that the applicability of the GKR interactive proof [49] has
been underestimated. In particular, GKR seemingly requires
deterministic arithmetic circuits, and saves work for the verifier
(relative to computing the circuit) only when those circuits have
low depth. Zhang et al. sidestep these issues, extending GKR
to non-deterministic, low-depth computations [108] and more
recently to arbitrary RAM programs [110], in both cases saving
work asymptotically for the verifier. But even those enhanced
protocols fall short of state-of-the-art work-saving zkSNARKs [4,
5, 12, 13, 15, 16, 29, 34, 36, 39, 42–44, 64, 76, 79, 105], because



they fail to address zero-knowledge applications. This work (and
concurrent work by Zhang et al. [109]) closes that gap—and, in
our view, attests to the power and versatility of the GKR protocol.

We have released Hyrax’s source code and our BCCGP-sqrt and
Bulletproofs implementations as open-source software [58].
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In this section, we review the Pedersen commitment scheme [80]
(Fig. 4) and related protocols.
Theorem 7 ([80]). The Pedersen commitment scheme is a non-
interactive commitment scheme assuming the hardness of the
discrete logarithm problem in G.
Knowledge of opening. Schnorr [90] shows how P can give a
ZK proof that it knows an x, r such that C0 = Com(x; r).
Theorem 8 ([90]). proof-of-opening is complete, honest-verifier
perfect ZK, and special sound under the discrete log assumption.
Commitment to the same value. Using similar ideas, P can
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Pedersen Commitment Scheme

Definitions: Let G be a (multiplicative) cyclic group of prime
order qG with group operation ⊙ and inverse ⊘.V publishes
generators g, h ∈ G.

Com(m): P picks s $← {1, . . . , qG} and sends gm ⊙ hs .

Open(α): P sends (m, s).V checks α ?
= gm ⊙ hs .

Multi-commitments: For commitments to vectors,V publishes
generators g1, . . . , gn, h ∈ G and P sends

Com((m1, . . . ,mn)) = hs ⊙
⊙
i

gmi

i

Figure 4—The Pedersen commitment scheme.

proof-of-product(X,Y, Z)

Inputs: X = gx ⊙ hrX , Y = gy ⊙ hrY , and Z = gx ·y ⊙ hrZ .
P knows x,y,rX ,rY , and rZ .

1. P picks b1, . . . , b5
$← {1, . . . , qG} and sends

α← gb1 ⊙ hb2 β← gb3 ⊙ hb4 δ← Xb3 ⊙ hb5

2. V sends a challenge c $← {1, . . . , qG}

3. P sends
z1 ← b1 + c · x z2 ← b2 + c · rx z3 ← b3 + c · y

z4 ← b4 + c · ry z5← b5 + c(rz − rx y)

4. V checks that
α ⊙ Xc ?

= gz1 ⊙ hz2 (7)

β ⊙ Y c ?
= gz3 ⊙ hz4 (8)

δ ⊙ Zc ?
= Xz3 ⊙ hz5 (9)

Figure 5—ZK proof of knowledge for a product relationship (§A.1).

commitments to the same value, i.e., v1 = v2. Given Cu =

Com(u; su) and a value v, P can also convinceV that u = v.

Theorem 9 (Folklore). proof-of-equality is complete, honest-
verifier perfect zero-knowledge, and special sound under the
discrete log assumption.

A.1 Proving a product relationship

Figure 5 gives a protocol in which P convinces V that it has
openings to three Pedersen commitments having a product rela-
tionship. This is folklore; for example, we know that Maurer [71]
describes a very similar protocol.

Theorem 10. Given commitments X , Y , and Z , proof-of-product
proves that Z is a commitment to the product of the values
committed in X and Y . This protocol is complete, honest-verifier
perfect zero-knowledge, and special sound under the discrete log
assumption.

The proof of Theorem 10 is standard; we leave it to the full
version [106] because of space constraints.

proof-of-dot-prod(ξ, τ, ®a)
Inputs: Commitments ξ = Com(®x; rξ ), τ = Com(y; rτ), and a
vector ®a, where ®x, ®a ∈ ZnqG and y = ⟨®x, ®a⟩ ∈ ZqG .
P knows ®x, rξ , y, and rτ .

1. P samples the vector ®d $← {1, . . . , qG}n and the values
rβ, rδ $← {1, . . . , qG} and sends

δ← Com( ®d; rδ) = hrδ ⊙
⊙
i

gdii (10)

β← Com(⟨®a, ®d⟩; rβ) = g ⟨ ®a,
®d⟩ ⊙ hrβ (11)

2. V sends a challenge c $← {1, . . . , qG}.

3. P sends
®z ← c · ®x + ®d, zδ ← c · rξ + rδ, zβ ← c · rτ + rβ

4. V checks that
ξc ⊙ δ

?
= Com(®z; zδ) = hzδ ⊙

⊙
i

gzii (12)

τc ⊙ β
?
= Com(⟨®z, ®a⟩; zβ) = g ⟨®z, ®a⟩ ⊙ hzβ (13)

Figure 6—ZK vector dot-product proof (§A.2).

A.2 Proving a dot-product relationship
In the protocol of Figure 6, P convincesV that it has openings to
one multi-commitment ξ = Com(®x; rξ ) and one scalar commit-
ment τ = Com(y; rτ) such that, for a supplied vector ®a it holds
that y = ⟨®x, ®a⟩. Intuitively, this protocol works because

⟨®z, ®a⟩ = ⟨c®x + ®d, ®a⟩ = c⟨®x, ®a⟩ + ⟨ ®d, ®a⟩ = cy + ⟨ ®d, ®a⟩
The above identity is verified in the exponent in Equation (13).
Theorem 11. The protocol of Figure 6 is complete, honest-
verifier perfect zero-knowledge, and special sound under the
discrete log assumption.
The proof of Theorem 11 is standard; we leave it to the full
version [106] because of space constraints.

A.3 Dot-product argument from Bulletproofs
The dot-product argument of Appendix A.2 has communication
4+n elements for a vector of length n. By adapting the Bulletproof
recursive reduction of Bünz et al. [30], we reduce this to 4+2 log n.
Figures 7 and 8 detail this protocol.

As in Appendix A.2, we have ®x, ®a, and y = ⟨®x, ®a⟩, where n =
| ®x | = | ®a|. Given ®a and Υ = Com®g(®x) ⊙ Com(y), each recursive
call to bullet-reduce produces ®a′ and Υ′ = Com®g′(®x ′) ⊙ Com(y′)
such that y′ = ⟨®x ′, ®a′⟩.

After log n such recursive calls, we are left with a scalar â and
a commitment Υ̂ = ĝ x̂gŷhr̂Υ . P can now use a Schnorr proof to
convinceV that ŷ = x̂ · â. Expanding Equation (14) (Fig. 8),(
Υ̂
c ⊙ β

) â
⊙ δ =

(
ĝc ·x̂ ⊙ gc ·ŷ ⊙ hc ·r̂Υ ⊙ gd ⊙ hrβ

) ®a
⊙ δ

=
(
ĝc ·x̂ ⊙ gc ·ŷ+d ⊙ hc ·r̂Υ+rβ

) ®a
⊙ ĝd ⊙ hrδ

= ĝc ·x̂ ·â+d ⊙ gâ(c ·ŷ+d) ⊙ hâ(c ·rΥ+rβ )+rδ

= ĝc ·ŷ+d ⊙ gâ(c ·ŷ+d) ⊙ hz2

=
(
ĝ ⊙ gâ

)z1
⊙ hz2



bullet-reduce(Υ, ®a, ®g)
Inputs: Υ = hrΥ ⊙ gy ⊙

⊙n
i=1 g

xi
i , ®x, ®a ∈ ZnqG , y, rΥ ∈ ZqG .

P knows ®x,y, and rΥ.
Define ®x1 = (x1, . . . , xn/2), ®x2 = (x1+n/2, . . . , xn) and similarly
for ®a1, ®a2, ®g1, and ®g2; and define

(g1, g2 . . .)
k◦(g1+n/2, g2+n/2 . . .)

ℓ = (gk1 ⊙g
ℓ
1+n/2, g

k
2 ⊙g

ℓ
2+n/2, . . .)

1. If n = 1, return (Υ, a1, g1).

2. P samples rΥ−1, rΥ1
$← {1, . . . , qG} and sends

Υ−1 ← hrΥ−1 ⊙ g ⟨ ®x1, ®a2 ⟩ ⊙

n/2⊙
i=1

gxi
i+n/2

Υ1 ← hrΥ1 ⊙ g ⟨ ®x2, ®a1 ⟩ ⊙

n/2⊙
i=1

g
xi+n/2
i

3. V chooses and sends c $← {1, . . . , qG}.

4. P andV both compute

Υ
′← Υc2

−1 ⊙ Υ ⊙ Υ
c−2

1

®a′← c−1 · ®a1 + c · ®a2

®g′← ®g1
c−1
◦ ®g2

c
= (g1, . . . , gn/2)

c−1
◦ (g1+n/2, . . . , gn)

c

P computes
®x ′← c · ®x1 + c−1 · ®x2

y′← c2 · ⟨ ®x1, ®a2⟩ + y + c−2 · ⟨ ®x2, ®a1⟩

r ′
Υ
← rΥ−1 · c2 + rΥ + rΥ1 · c

−2

5. Return bullet-reduce(Υ′, ®a′, ®g′).
If y = ⟨®x, ®a⟩, then y′ = ⟨®x ′, ®a′⟩, and P knows ®x ′, y′, r ′

Υ
.

Figure 7—Reduction step for the protocol of Figure 8.

In total,P sends 2 log n elements during the bullet-reduce calls
and 4 elements for the final Schnorr proof. Adapting suggestions
by Poelstra [84],V’s work computing ĝ can be reduced to one
multi-exponentiation of length n and one field inversion, and
computing Υ̂ costs one multi-exponentiation of length 1+2 log n.
Lemma 12. The protocol of Figures 7–8 is complete, honest-
verifier perfect ZK, and has witness-extended emulation under
the discrete log assumption.

Completeness follows from the derivation of Equation (14)
above and the completeness of bullet-reduce [30, Thm. 2,
Appx. A], and ZK follows from standard reverse-ordering tech-
niques. Witness-extended emulation follows from the properties
of Schnorr protocols and an argument similar to the proof of [30,
Thm. 2, Appx. A]. In total, the extractor requires n+2 transcripts.

B Hyrax-I pseudocode
In this section, we provide pseudocode for Hyrax-I. Figure 10
detailsV’s work; Figures 9 and 11 detail P’s. Our presentation
borrows from Wahby et al. [104].

prooflog-of-dot-prod(ξ, τ, ®a)
Inputs: ξ = Com®g(®x; rξ ) = hrξ ⊙

⊙n
i=1 g

xi
i ,

τ = Com(y; rτ) = gy ⊙ hrτ . ®x, ®a ∈ ZnqG , y, rξ, rτ ∈ ZqG .
P knows ®x, y, rξ , and rτ .

1. Let Υ = ξ ⊙ τ = hrΥ ⊙ gy ⊙
⊙n

i=1 g
xi
i where rΥ = rτ + rξ .

(Υ̂, â, ĝ) ← bullet-reduce(Υ, ®a, ®g) (see Fig. 7).

At this point, n = 1 and Υ̂ = ĝ x̂ ⊙ gŷ ⊙ hr̂Υ where ŷ = x̂ · â.

2. P samples d, rδ, rβ $← {1, . . . , qG} and sends
δ← Comĝ(d; rδ) = ĝd ⊙ hrδ

β← Comg(d; rβ) = gd ⊙ hrβ

3. V chooses and sends c $← {1, . . . , qG}.

4. P sends z1 ← d + c · ŷ and z2 ← â
(
c · r̂Υ + rβ

)
+ rδ .

5. V checks that(
Υ̂
c ⊙ β

) â
⊙ δ

?
=
(
ĝ ⊙ gâ

)z1
⊙ hz2 (14)

Figure 8—Protocol for dot-product relation based on Bulletproofs [30].
Com®g indicates a multi-commitment over generators ®g.

1: function Hyrax-Prove(ArithCircuit c, input x, witness w, parameter ι)
2: // Commit to the rows of T via commitments T1, . . . , T|w |1/k

3: SendToVerifier(T0, . . . , T|w |1/k−1) // see Line 3 of Figure 10
4: bN ← log N , bG ← logG
5: (q′0, q0,L ) ← ReceiveFromVerifier() // see Line 8 of Figure 10
6: µ0,0 ← 1, µ0,1 ← 0, q0,R ← q0,L

7: a0 ← Com(Ṽy (q
′
0, q0,L ); 0)

8: d ← c.depth
9:
10: for i=1,. . . ,d do
11: (X,Y, q′i, qi,L, qi,R ) ← ZK-SumCheckP(c, i, ai−1, µi−1,0, µi−1,1,

12: q′
i−1, qi−1,L, qi−1,R )

13: if i<d then
14: (µi,0, µi,1) ← ReceiveFromVerifier() // see Line 21 of Figure 10
15: ai ← Xµi,0 ⊙ Yµi,1

16:
17: // Compute Coefficients of the degree bG polynomial H: H0, . . . , Hlog G

18: SendToVerifier(Com(H0), . . . , Com(HbG
)) // see Line 21 of Figure 10

19: for i = 0, . . . , bG do
20: proof-of-opening (Com(Hi ))

21: proof-of-equality (Com(H0), X)
22: proof-of-equality (Com(HbG

) ⊙ . . . ⊙ Com(H0),Y)

23: τ ← ReceiveFromVerifier() // see Line 30 of Figure 10
24: qd ← (q

′
d
, (1 − τ) · qd,L + τ · qd,R )

25: ζ = Com(HbG
)τ

log G
⊙ Com(HbG−1)

τ log G−1
⊙ . . . ⊙ Com(H0)

26: T ′ ←
⊙|w |1/k−1

i=0 T
χ̌i
i // χ̂b is defined in Section 6

27: R ← (χ̂0, χ̂|w |1/ι , . . . , χ̂|w |1/ι ·(|w |1/ι−1)) // χ̂b is defined in Section 6

28: prooflog-of-dot-prod (T ′qd [0], ζ ⊘ g(1−qd [0])Ṽx (qd [1, . . .,bN +bG−1]), R)

Figure 9—Pseudocode for P in Hyrax-I (§7). The ZK-SumCheckP
subroutine is defined in Figure 11.V’s work is described in Figure 10.
For notational convenience, we assume |x | = |w |, as in Section 6.1.



1: function Hyrax-Verify(ArithCircuit c, input x, output y, parameter ι)
2: // Receive commitments to the rows of the matrix T
3: (T0, . . . , T|w |1/ι ) ← ReceiveFromProver() // see Line 3 of Figure 9
4: bN ← log N , bG ← logG
5: (q′0, q0,L )

R
←− FbN × FbG

6: µ0,0 ← 1, µ0,1 ← 0, q0,R ← q0,L

7: a0 ← Com(Ṽy (q
′
0, q0,0); 0)

8: SendToProver((q′0, q0,0)) // see Line 5 of Figure 9
9: d ← c.depth
10:
11: for i=1,. . . ,d do
12: (X,Y, r′, rL, rR ) ← ZK-SumCheckV(i, ai−1, q

′
i−1, qi−1,L, qi−1,R )

13: // X = Com(v0),Y = Com(v1)

14:
15: if i<d then
16: // Pick the next random µi,0, µi,1 and
17: // compute random linear combination (§3.2)
18: µi,0, µi,1

R
←− F

19: ai ← Xµi,0 ⊙ Yµi,1

20: (q′i, qi,L, qi,R ) ← (r
′, rL, rR )

21: SendToProver(µi,0, µi,1) // see Line 14 of Figure 9

22:
23: // For the final check, reduce from two points to one point (§3.2)
24: (Com(H0), . . . , Com(HbG

)) ← ReceiveFromProver() // see Line 18 of Figure 9
25: for i = 0, . . . , bG do
26: proof-of-opening (Com(Hi ))

27: proof-of-equality (Com(H0), X)
28: proof-of-equality (Com(HbG

) ⊙ . . . ⊙ Com(H0),Y)

29: τ
R
←− F

30: SendToProver(τ) // see Line 23 of Figure 9
31: qd ← (r

′, (1 − τ) · rL + τ · rR )
32: ζ = Com(HbG

)τ
log G

⊙ Com(HbG−1)
τ log G−1

⊙ . . . ⊙ Com(H0)

33: T ′ ←
⊙|w |1/ι−1

i=0 T
χ̌i
i // χ̌b is defined in Section 6

34: R ← (χ̂0, χ̂|w |1/ι , . . . , χ̂|w |1/ι ·(|w |1/ι−1)) // χ̂b is defined in Section 6

35: prooflog-of-dot-prod (T ′qd [0], ζ ⊘ g(1−qd [0])Ṽx (qd [1, . . .,bN +bG−1]), R)
36: return accept

37:
38: function ZK-SumCheckV(layer i,ai−1, q

′
i−1, qi−1,L, qi−1,R )

39: (r′, rL, rR )
R
←− Flog N × Flog G × Flog G

40: r ← (r′, rL, rR )

41: for j = 1, . . . , log N + 2 logG do
42: αj ← ReceiveFromProver() // αj is Com(sj ); see Lines 19,47 of Figure 11
43: SendToProver(r[j]) // see Lines 20,48 of Figure 11

44: (X,Y, Z) ← ReceiveFromProver() // see Line 52 of Figure 11
45: // X = Com(v0),Y = Com(v1), Z = Com(v0v1)

46: // V computes {Mj } as defined in Equation (5)
47: proof-of-sum-check (ai−1, {αj }, {Mj }, X,Y , Z) // see Figure 1
48: return (Com(v0), Com(v1), r

′, rL, rR )

Figure 10—Pseudocode forV in Hyrax-I (§7). P’s work is described
in Figures 9 and 11. For notational convenience, we assume |x | = |w |,
as in Section 6.1.

1: function ZK-SumcheckP(ArithCircuit c, layer i, ai−1,)
2: µi−1,0, µi−1,1, q

′
i−1, qi−1,L, qi−1,R

3: for j = 1, . . . , bN do
4: // In these rounds, prover sends commitment to degree-3 polynomial sj
5: for all σ ∈ {0, 1}bN − j and g ∈ {0, 1}bG and k ∈ {−1, 0, 1, 2} do
6: s ← (g, gL, gR ) // gL, gR are labels of g’s layer-i inputs in sub-circuit.
7: termP← ẽq(q′

i−1, r
′[1], . . . , r′[j − 1], k, σ[1], . . . , σ[bN − j]) ·

8:
(
µi−1,0 · χg (qi−1,L ) + µi−1,1 · χg (qi−1,R )

)
9: termL← Ṽi (r

′[1], . . . , r′[j − 1], k, σ[1], . . . , σ[bN − j], gL )

10: termR← Ṽi (r
′[1], . . . , r′[j − 1], k, σ[1], . . . , σ[bN − j], gR )

11:
12: if g is an add gate then sj [σ, g][k] ← termP · (termL + termR)
13: else if g is a mult gate then sj [σ, g][k] ← termP · termL · termR

14:
15: for k ∈ {−1, 0, 1, 2} do
16: sj [k] ←

∑
σ∈{0,1}bN − j

∑
g∈{0,1}bG

sj [σ, g][k]

17:
18: // Compute coefficients of sj and create a multi-commitment (§5)
19: SendToVerifier(Com(sj )) // see Line 42 of Figure 10
20: r′[j] ← ReceiveFromVerifier() // see Line 43 of Figure 10

21:
22: r′ ← (r′[1], . . . , r′[bN ]) // notation
23:
24: for j = 1, . . . , 2bG do
25: // In these rounds, prover sends commitment to degree-2 polynomial sbN + j

.
26: for all gates g ∈ {0, 1}bG and k ∈ {−1, 0, 1} do
27: s ← (g, gL, gR ) // gL, gR are labels of g’s layer-i inputs in subcircuit
28: uk,0 ← (qi−1,L [1], . . . , qi−1,L [bG ], r[1], . . . , r[j−1], k)
29: uk,1 ← (qi−1,R [1], . . . , qi−1,R [bG ], r[1], . . . , r[j−1], k)
30: termP← ẽq(q′

i−1, r
′) ·

(
µi,0 ·

∏bG+ j

ℓ=1 χs[ℓ](uk,0[ℓ]) +

31: µi,1 ·
∏bG+ j

ℓ=1 χs[ℓ](uk,1[ℓ])
)

32:
33: if j ≤ bG then
34: termL← Ṽi (r

′, r[1], . . . , r[j − 1], k, gL [j+1], . . . , gL [bG ])

35: termR← Ṽi (r
′, gR )

36: else // bG < j ≤ 2bG

37: termL← Ṽi (r
′, r[1], . . . , r[bG ])

38: termR← Ṽi (r
′, r[bG+1], . . . , r[j−1], k, gR [j−bG+1], . . . , gR [bG ])

39:
40: if g is an add gate then sbN + j

[g][k] ← termP · (termL + termR)
41: else if g is a mult gate then sbN + j

[g][k] ← termP · termL · termR

42:
43: for k ∈ {−1, 0, 1} do
44: sbN + j

[k] ←
∑

g∈{0,1}bG
sbN + j

[g][k]

45:
46: // Compute coefficients of sbN + j

and create a multi-commitment (§5)
47: SendToVerifier(Com(sbN + j

)) // see Line 42 of Figure 10
48: r[j] ← ReceiveFromVerifier() // see Line 43 of Figure 10

49:
50: r0 ← (r[1], . . . , r[bG ]) r1 ← (r[bG + 1], . . . , r[2bG ]) // notation
51: v0 ← Ṽi (r

′, r0) v1 ← Ṽi (r
′, r1) // X = Com(v0),Y = Com(v1), Z = Com(v0v1)

52: SendToVerifier(X,Y , Z) // see Line 44 of Figure 10
53: // P computes {Mk } as defined in Equation (5).
54: proof-of-sum-check (ai−1, {Com(sj )}, {Mk }, X,Y , Z) // see Figure 1
55:
56: return (Com(v0), Com(v1), r

′, r0, r1)

Figure 11—P’s side of the zero-knowledge sum-check protocol in
Hyrax-I (§7).


