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Abstract—We consider interactive, proof-based verifiable computa-
tion: how can a client machine specify a computation to a server,
receive an answer, and then engage the server in an interactive
protocol that convinces the client that the answer is correct, with
less work for the client than executing the computation in the first
place? Complexity theory and cryptography offer solutions in prin-
ciple, but if implemented naively, they are ludicrously expensive.
Recently, however, several strands of work have refined this the-
ory and implemented the resulting protocols in actual systems. This
work is promising but suffers from one of two problems: either it
relies on expensive cryptography, or else it applies to a restricted
class of computations. Worse, it is not always clear which protocol
will perform better for a given problem.

We describe a system that (a) extends optimized refinements of
the non-cryptographic protocols to a much broader class of compu-
tations, (b) uses static analysis to fail over to the cryptographic ones
when the non-cryptographic ones would be more expensive, and (c)
incorporates this core into a built system that includes a compiler
for a high-level language, a distributed server, and GPU accelera-
tion. Experimental results indicate that our system performs better
and applies more widely than the best in the literature.

1 Introduction
We are interested in verifiable computation:1 how can a client
outsource computation to a more powerful but potentially un-
reliable machine (or machines) and receive assurance that the
computation was performed correctly? This problem has re-
ceived renewed attention lately due to the rise of cloud com-
puting and other third-party computing models [1, 3]: even if
the third-party performer is not malicious, the client still has
concerns about the integrity of data and computations.

The systems community has a long tradition of work on
protocols that solve this problem but make strong assump-
tions about the usage model or focus on a restricted class of
computations. For instance, solutions assume that failures are
uncorrelated [3, 14, 34], that there is a chain of trust establish-
ing faith in the computation [40, 42], or that the computation
produces intermediate results amenable to checking [35].

It has also long been known that in principle, deep re-
sults in complexity theory [5–7, 24, 32, 48] and cryptogra-
phy [13, 19, 27–29] yield protocols that are general-purpose
and assume nothing about potential server misbehavior other
than standard cryptographic hypotheses. These protocols in-
volve a client, or verifier, that makes queries to a server, or
prover. The details differ among these protocols, but broadly,
the prover commits to a proof that the computation was ex-
ecuted correctly (usually, this proof is an execution trace of
the computation, in some model of computation). Then, the
verifier applies a randomized algorithm to ask unpredictable

1Our use of the term verifiable computation is broader than its formalization
in [19], which emphasized non-interactivity. See Section 8 for discussion.

questions of the prover, and applies efficient tests to the re-
sponses. The protocols are constructed so that if the prover is
honest, its responses pass the tests, while if the prover com-
puted incorrectly, the verifier’s tests exhibit an inconsistency,
with high probability.

Despite the theoretical promise of these protocols, there
was little attention to implementation, as performance was
believed to be infeasibly poor. For instance, verifiable com-
putation makes sense only if the cost of the protocol is less
than the cost to the client of simply executing the computa-
tion locally—and it was not clear that this is true for many of
the protocols in the literature. In fact, it turns out that naive
implementations require hundreds of trillions of CPU years
to verify matrix multiplication [45].

However, in the last few years there has been interest in
building systems using this theory [16, 43]. Also, new the-
oretical works have emerged that emphasize amenability to
potential implementation [9, 10, 20]. Moreover, several re-
search groups have produced running code and measured per-
formance [16, 44, 45, 47, 49].

The implementations follow two major approaches. The
first is an interactive protocol (without cryptography) due to
Cormode et al. [16] and derived from a protocol of Gold-
wasser et al. [23]; we will refer to this protocol as CMT and
its base as GKR. The second is an efficient argument system
(that uses cryptographic commitments) that we developed in
prior work [44, 45, 47], building on Ishai et al. [27]; in fact,
there are two protocols, Zaatar and Ginger, that will be rele-
vant for our purposes. Both lines of work (CMT and Zaatar-
Ginger) refine the original theory to make performance plau-
sible, if not truly practical.

Of the two, the CMT protocol would initially appear to
have greater long-term potential, as it does not rely on cryp-
tography (which measurements indicate is a substantial frac-
tion of the cost [44, 45, 47]). Moreover, Zaatar and Ginger
work in the batching model, which means that they assume
that the user is verifying many instances of the same compu-
tation, on different inputs. In contrast, CMT does not require
batching.

However, on closer examination, the comparison is not so
clear-cut. First, measured performance results [45, §7] are
equivocal: CMT does not appear to do much better than the
cryptographic protocols and sometimes does worse. Second,
CMT is substantially less general-purpose than one would
like—it works only for computations that can be expressed
by highly regular circuits. In fact, these restrictions are severe
enough that it is not clear how to produce compliant circuits
automatically. Third, batching is actually a very reasonable
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model for cloud computation; for instance, it matches data
parallel computations (e.g., the Map portion of MapReduce
computations).

The purpose of this paper is to reduce the restrictions on
CMT and then leverage both approaches:
1. We develop CMT-slim, a refinement of CMT (in the non-

batched model) that eliminates a source of overhead and
improves performance (Section 3).

2. We develop CMT-batching, which substantially extends
the reach of CMT (and CMT-slim) to more general com-
putations in the batching model (Section 4).

3. We build a system, Allspice (Section 5). Allspice takes
the input program and employs a static analyzer to de-
termine which protocol to use. On top of CMT-slim, we
apply novel optimizations and produce a robust imple-
mentation (the first system based on CMT and GKR that
we are aware of). For Zaatar-Ginger, we use existing in-
frastructure, which supports GPU acceleration and par-
allel hardware [47, §5]. Our combined system compiles
a high-level language (with standard features like condi-
tionals, loops, floating-point data types, and so forth) to
executables that implement the client and server.

4. We perform detailed analysis and measurements to under-
stand in depth the comparisons among the different pro-
tocols; these relationships are subtle, and we expect that
this work will be useful for understanding when to deploy
different approaches (Section 6).

The end result of all of this work is a built system for
general-purpose interactive verifiable computation that, to our
knowledge, has the best performance and applicability in the
literature: (1) Allspice (via CMT-slim) improves over CMT
by a factor of 2 or 3; (2) Allspice (via CMT-batching) applies
a non-cryptographic (and hence cheaper) protocol to a much
wider class than CMT, in some cases far outperforming the
cryptographic protocols (Zaatar and Ginger); for instance, the
break-even batch size for matrix multiplication under CMT-
batching is orders of magnitude smaller than under the next-
best protocol, Zaatar; and (3) Allspice (via Zaatar) applies to
general-purpose computations.

Serious research hurdles remain. The computational mod-
els that we use, circuits and constraints, are not well-suited to
representing general-purpose programs, notably loops. The
floating-point representation is simulated in finite fields and
so has poor performance compared to native operations and
does not handle rounding.

Nonetheless, we are encouraged by the results that we re-
port here, as they represent continued progress towards a sys-
tem that is truly practical. The current limitations are consis-
tent with certain cloud computing scenarios: batching is con-
sistent with data-parallel setups; a restriction on loops is pre-
cisely the discipline imposed by MapReduce; and an expen-
sive prover is less of a problem when there is an abundance
of CPU cycles.

Ψ, x

y
queries

prover (P) 

responses

verifier (V) 

tests

Ψ Ψ z1, z2, ...

accept/
reject

1 1 2

3
3

C C

Figure 1—Proof-based interactive verifiable computation. Step À:
V and P represent a computation Ψ as an arithmetic circuit or set of
constraints (denoted C), and P returns an answer y in response to in-
put x. Step Á: P identifies a satisfying assignment z = (z1, . . . , zn);
the existence of z implies that y = Ψ(x). Step Â: V queries P , and
the responses prove to V that a satisfying assignment exists.

2 Approach, tools, and background
This section describes the building blocks of Allspice. We
first state the problem that we are trying to solve and give
the high-level contours of the solution (§2.1). Next, we de-
scribe the CMT protocol (§2.2); this description is intended
to be self-contained (but concise) and to give context for the
refinements that we describe. Finally, we describe Zaatar and
Ginger at a high level (§2.3), as necessary context.

2.1 Problem statement and framework

The following description of our problem statement and
framework borrows heavily from our prior treatments [44,
47].

Problem statement. We wish to build a system in which one
machine, a verifier V , specifies a computation Ψ and input x
to a prover P . The prover P computes an output y and re-
turns it to V . If y = Ψ(x), then a correct P should be able
to convince V of y’s correctness; otherwise, V should reject
y with high probability. This protocol should be cheaper for
V than executing Ψ locally, though we are willing to work in
an amortized cost model (i.e., V saves work only when out-
sourcing a number of computations); this is consistent with
some cloud computing scenarios. We are also willing to ac-
cept some overhead for P , as we expect this type of assurance
to have a price.

Finally, the protocol can make standard cryptographic as-
sumptions about the limits of P’s computational power, but it
should not make other assumptions about P; for instance, we
cannot assume that P follows the protocol.

Framework. The solutions that we present below (§2.2–
§2.3) consist of three steps, depicted in Figure 1.

First, V and P represent the computation Ψ as either an
arithmetic circuit (a generalization of Boolean circuits) or
constraints (a system of equations); the subsections below
give more detail on these models, but broadly, the circuit and
constraints are constructed so that they have a satisfying as-
signment if and only if Ψ executed correctly. In the circuit
context, a satisfying assignment is a labeling of the circuit
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wires for which: the input is x, the labels correspond to the
correct circuit execution on input x, and the output is 0. In the
constraint context, a satisfying assignment is a solution to the
constraints.

Second, P computes Ψ(x). In so doing, P identifies a sat-
isfying assignment.

Third, using interactive proofs (IPs) [7, 24, 32, 48] or prob-
abilistically checkable proofs (PCPs) [5, 6] (more accurately,
using machinery [23, 27–29, 49] derived from this theory), P
proves that it is holding a satisfying assignment. Of course,
the statement “there is a satisfying assignment to this cir-
cuit (or these constraints)” admits a simple classical proof:
the satisfying assignment itself, z. The trouble is that for V
to read and check all of z would require executing the circuit,
or checking the constraints, which would be as much work as
carrying out Ψ.

Surprisingly, the theory implies that, by following a ran-
domized algorithm and querying a prover P , V can “check”
z efficiently—without having to receive it! The properties of-
fered by the theory are as follows; for the sake of simplicity,
we state these properties loosely:

• Completeness. If y = Ψ(x) (in which case a satisfying
assignment to the circuit or constraints exists), then if P
follows the protocol, Pr{V accepts} = 1, where the prob-
ability is over V’s random choices.

• Soundness. If y 6= Ψ(x), (in which case no satisfying as-
signment exists and any purported proof must be spuri-
ous), then Pr{V accepts} < ε, where ε is small, and the
probability is over V’s random choices.

The nature of the soundness guarantee depends on context.
Under the machinery described next, the soundness guarantee
is unconditional: even a computationally unlimited P cannot
fool V with probability greater than ε. Under the machinery
presented in Section 2.3, the soundness guarantee is predi-
cated on the semantic security of a homomorphic cryptosys-
tem (in this case, ElGamal [17]) and thus ultimately on a stan-
dard cryptographic hardness assumption.

2.2 The CMT protocol

This section describes the CMT protocol [16, 49], which re-
fines the GKR protocol [23]. Full details of GKR are in Roth-
blum [41, §3.2–3.3]. Our description below is influenced by
these sources, though our notation sometimes diverges.

We consider computations Ψ that can have multiple inputs
and outputs, so we represent the input x and output y as vec-
tors. This protocol represents computations as arithmetic cir-
cuits, meaning a network of add and multiply gates, each with
two input “wires” and one output “wire”, where each wire can
take values in a large finite field F. CMT requires that F = Fp

(the integers mod a prime p). The CMT protocol requires that
the circuit (a) is layered;2 and (b) has a regular structure. We

2Loosely, this means that the gates can be partitioned into sets (called layers),

will discuss the implications of these requirements in Sec-
tion 4 and for now take them as givens.

The protocol numbers the circuit layers from 0 to d (for
depth) and presumes a single output gate at layer 0; the input
gates are at level d. To represent the computation y = Ψ(x),
the circuit includes−y in its input, computes Ψ(x) and adds it
to−y, and returns the sum. Thus, we say that the computation
was executed correctly (meaning P claimed the correct y) if
the circuit evaluates to 0 when given input x′ = (x,−y).

At a high level, the protocol works as follows. Based on
the structure of the circuit (which V is assumed to know),
the protocol, with P’s help, proves to V that the output gate
evaluates to 0 if and only if the gates at layer 1 satisfy a par-
ticular algebraic statement. While V could in principle verify
this statement (by executing the circuit from layer d right up
through layer 1 and then checking the statement explicitly),
that would be too expensive. Instead, the protocol, again re-
lying on P’s help and V’s knowledge of the circuit structure,
proves to V that the algebraic statement about layer 1 holds if
and only if another algebraic statement, this time about layer
2, holds. Again, this statement is too expensive for V to check
explicitly, so the protocol continues until V has in hand a par-
ticular algebraic statement about the inputs x′. At that point,
V checks the statement with no assistance from P .

The protocol provides two guarantees. (1) If the prover
computes the circuit correctly and participates in the proto-
col correctly, then V accepts. (2) If the prover computes the
circuit incorrectly (i.e., the circuit’s true output is not zero),
then with high probability, the algebraic statements that the
protocol claims to be equivalent are indeed equivalent—and
hence all false. Thus, when V checks the final statement, V
observes the falsehood, and rejects.

Details. We number the gates at each layer from 0, write
them in binary, and assume (for ease of exposition) that ev-
ery layer has the same number of gates, G. Let b = dlog2 Ge.
Define a set of evaluator functions V0, . . . , Vd, one for each
layer: Vi : Fb

2 → F. (F2 is the field consisting of {0, 1}.) Each
Vi maps the gates at layer i to their values; if ` ≥ G, then
Vi(`) = 0. Observe that each Vi implicitly depends on the
input x′, and that Vd(j) returns the jth input element itself.

Motivation and straw man. At a high level, we want to re-
duce a claim that V0(0) = 0 (i.e., that the circuit computed
correctly) to a claim about V1 and in turn to a claim about V2
and so on, until P makes a claim about the input layer that
V can check directly (since it supplies the input). Thus, we
are motivated to write V0 in terms of V1(·) and more gener-
ally Vi−1(·) in terms of Vi(·). Define two functions, called the
wiring predicates by Cormode et al. [16]: addi(g1, g2, g3) re-
turns 1 if gate g1 at layer i − 1 is the sum of the outputs of
gates g2, g3 at layer i; it returns 0 otherwise. multi(g1, g2, g3)
is analogous but returns 1 when g1 at layer i − 1 is the prod-

where the only wires in the circuit connect adjacent layers (versus skipping
over them).
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uct of the outputs of gates g2, g3 at layer i. Now, we can
write V0(0) =

∑
j1,j2∈{0,1}b add1(0, j1, j2)·(V1(j1) + V1(j2))+

mult1(0, j1, j2) · V1(j1) · V1(j2). More generally,

Vi−1(g) =
∑

j1,j2∈{0,1}b

addi(g, j1, j2) · (Vi(j1) + Vi(j2))

+ multi(g, j1, j2) · Vi(j1) · Vi(j2).

The form above (that Vi−1(g) is a collection of sums) mo-
tivates the use of sum-check protocols [32, 48]; see also [4,
§8.3.1] and [41, §3.2.3]. Such protocols are interactive, and
consist of a verifier VSC and a prover PSC. VSC begins with
some value K and a polynomial f : Fm → F of degree δ in
each of its m variables. VSC asks PSC to prove that K equals
the sum of the evaluations of f over all bit combinations:

K =
∑

t1∈{0,1}

∑
t2∈{0,1}

· · ·
∑

tm∈{0,1}

f (t1, t2, . . . , tm). (1)

As usual, if the statement is true, PSC can convince VSC; oth-
erwise, VSC is highly unlikely to be convinced. This process
is vastly more efficient for VSC than computing the sum itself.

A naive straw man would be to attempt to run one instance
of the sum-check protocol for each Vi−1(g), that is, each gate.
However, this would be more work for the verifier (to say
nothing of the prover) than simply executing the circuit. The
technical details below get around this problem and permit
the protocol to work with only d instances of the sum-check
protocol. Though we do not have space to motivate all of
the details, we nonetheless include them, to communicate the
structure and mechanics of the protocol.

The protocol. Because sum-check protocols work with
polynomials, the protocol extends the functions Vi to poly-
nomials Ṽi. Define a multilinear extension g̃ of a function
g : Fm

2 → F as follows: g̃ agrees with g everywhere that g
is defined, but g̃ is defined over Fm (instead of Fm

2 ), and g̃ is a
polynomial of degree at most one in each of the m variables.

The signature of Ṽi, then, is Ṽi : Fb → F. Notice that the
polynomial Ṽd(·) is the extension of the function Vd(j) = x′j ,
where x′j is the jth input. For i = 1, . . . , d, GKR show [23, 41]
that Ṽi−1(·) can be written as

Ṽi−1(q) =
∑

g,j1,j2∈Fb
2

Ẽ(q, g) ·
(

˜addi(g, j1, j2) ·
(
Ṽi(j1) + Ṽi(j2)

)
+ ˜multi(g, j1, j2) · Ṽi(j1) · Ṽi(j2)

)
=

∑
g,j1,j2∈Fb

2

fq(g, j1, j2), (2)

which is in a form suitable for the sum-check protocol (see
equation (1)), since fq : F3b → F is a polynomial, defined as
fq(u1, u2, u3) = Ẽ(q, u1)·( ˜addi(u1, u2, u3)·(Ṽi(u2)+Ṽi(u3))+

˜multi(u1, u2, u3) · Ṽi(u2) · Ṽi(u3)). Ẽ is a polynomial defined in
Appendix A.1, and ˜addi and ˜multi are multilinear extensions
of addi and multi.

1: function VERIFYCMTGKR(Circuit c)
2: q0 ← ~0 ∈ Fb

3: a0 ← 0
4: d ← c.depth
5: for i = 1, . . . , d do
6: // reduce ai−1

?
= Ṽi−1(qi−1) to v1

?
= Ṽi(w1), v2

?
= Ṽi(w2)

7: (v1, v2, w1, w2)← SUMCHECK(i, qi−1, ai−1)
8:
9: // reduce v1

?
= Ṽi(w1), v2

?
= Ṽi(w2) to ai

?
= Ṽi(qi)

10:
11: h0, h1, . . . , hb ← GetFromProver()
12: // above, correct prover returns b + 1 field elements,
13: // specifically H(0), H(1), . . . , H(b) ∈ F, where
14: // H = Ṽi ◦ γ, for γ : F→ Fb, γ(t) = (w2 − w1)t + w1

15: if h0 6= v1 or h1 6= v2 then
16: return reject
17: τ

R←− F
18: qi ← γ(τ)
19: ai ← H∗(τ) // H∗ is poly. interpolation of h0, . . . , hb

20: SendToProver(τ )
21: if ad = Ṽd(qd) then // requires computing Ṽd(qd)
22: return accept
23: return reject

Figure 2—Pseudocode for V in the GKR and CMT protocol [16, 23,
41]. The protocol proceeds in layers, reducing the claim that ai−1 =
Ṽi−1(qi−1) to a claim that ai = Ṽi(qi). SUMCHECK is defined in
Appendix A. See Rothblum [41] for explanation of all details.

Pseudocode for the protocol is in Figure 2. V wants to be
convinced that Ṽ0(0) = 0; this equality is tantamount to es-
tablishing that the circuit evaluates to 0 and hence that Ψ
was carried out correctly. To this end, the protocol starts with
q0 = 0 and a0 = 0, and in each iteration i = 1, . . . , d, the
protocol produces some ai ∈ F and qi ∈ Fb and a statement:
“you should believe that ai−1 = Ṽi−1(qi−1) if and only if you
can establish that ai = Ṽi(qi)” (lines 7–19). The guarantees of
each iteration are: (1) If the iteration begins with a true state-
ment, i.e., if ai−1 = Ṽi−1(qi−1), then if P behaves correctly,
the protocol produces another true statement, i.e., for the ai

and qi that it returns, ai = Ṽi(qi). (2) If the iteration begins
with a false statement, i.e., if ai−1 6= Ṽi−1(qi−1), then the pro-
tocol produces another false statement with high probability,
i.e., for the ai and qi that it returns, ai 6= Ṽi(qi).

The process ends with telling V “ ... if and only if you can
establish that ad = Ṽd(qd),” at which point V performs that
check directly (line 21). By composing the iterations together,
we see that if the protocol begins with a true statement, a cor-
rect P makes V accept. On the other hand, if the protocol
begins with a false statement—an incorrect claim that the cir-
cuit evaluates to 0—then with high probability the protocol
produces an ad such that ad 6= Ṽd(qd); as a result, V rejects.

Guarantees and costs. The protocol described above satis-
fies completeness and soundness (§2.1), with ε ≤ 7 ·b ·d/|F|;
see Rothblum [41, §3.3.3] for a derivation. Since |F| is astro-
nomical (§6.1), this error can be neglected in practice.
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V incurs one of its principal costs inside the sum-check
protocol: in each iteration, V must compute ˜addi(w0, w1, w2)
and ˜multi(w0, w1, w2), for random w0, w1, w2 ∈ Fb (see Ap-
pendix A.1). Thus, for the protocol to be efficient for V , the
circuit must admit an efficient computation of ˜addi and ˜multi,
a restriction that we return to in Section 4. Assuming (as CMT
does) that computing ˜addi and ˜multi is O(polylog(G)), the
verifier’s running time is O(|x′| log |x′| + d · polylog(G)) =
O((|x|+ |y|) · log (|x|+ |y|) + d · polylog(G)).

Regarding P , the innovations of Cormode et al. [16] make
the sum-check protocol efficient for P , resulting in overall
running time for P of just O(d · G · log G): not much more
than executing the d · G gates of the computation.

2.3 Zaatar and Ginger

This section gives an overview of Zaatar [44] and Ginger [47].
We will abstract most details, as our intent is only to describe
the structure of these protocols for context.

The computational model. These protocols represent com-
putations as constraints, meaning a system of equations, over
a finite field F, with one or more distinguished input variables
(which we denote loosely as X) and one or more distinguished
output variables (denoted loosely as Y). These protocols re-
quire constraints to be total degree 2, meaning that the sum-
mands in each constraint are either variables or products of
two variables. A set of constraints is satisfiable if there is a
setting of the variables that makes all of the equations hold.
We write C(X=x, Y=y) to mean the resulting equations when
X and Y are set to respective values x and y. We say that a
set of constraints C is equivalent to a computation Ψ if: for
all x and y, we have C(X=x, Y=y) is satisfiable if and only if
y = Ψ(x). As an example, the computation multiply-by-5 is
equivalent to {5 · Z − Y = 0, Z − X = 0}.

Ginger shows how to transform standard program con-
structs (logical operations, inequality comparisons, if/else,
etc.) into this “assembly language” of degree-2 constraints;
see [47][46, Apdx. C] for details. Most of the resulting con-
straints are very concise; an exception is inequalities, which
require ≈ log2 |F| constraints per operation (intuitively, the
inequality constraints separate a number into its bits and glue
it back together for the rest of the computation). Another lim-
itation of the constraint formalism is it is necessary to unroll
loops, requiring bounds to be known at compile time.

Zaatar and Ginger incorporate compilers that perform
this transformation automatically (the two protocols require
slightly different forms). The compilers are derived from the
Fairplay compiler [33] and take as input programs expressed
in SFDL, the language of Fairplay. SFDL is a high-level lan-
guage that supports conditional control flow, logical expres-
sions, and inequality comparisons; Ginger extends the lan-
guage with a primitive floating-point data type.

In the rest of the section, we will take as a given the equiv-
alent constraints to Ψ, which we denote C.

The verification machinery. Given a set of constraints C,
input x, and output y, Zaatar and Ginger start with a prob-
abilistically checkable proof (PCP) that a satisfying assign-
ment to C(X=x, Y=y) exists. However, the “textbook” PCPs
that would admit a straightforward implementation (see [36,
§7.8] and [4, §11.5]) are too big to be sent over the network to
V . Instead, Zaatar and Ginger use an efficient argument pro-
tocol [27–29]; the idea is for P to cryptographically commit
to the contents of the PCP, after which V queries P , ensuring
that the responses are consistent with the commitment. This
is where the computational assumptions on P enter: provided
P cannot break the commitment primitive, then P is forced
to behave like an oracle, which allows V to proceed as though
the (enormous) PCP were available for inspection.

How can P commit to an enormous PCP? Ishai et al. [27]
demonstrate that if the PCP is a linear function π, then the
server can commit to the contents of the proof without ma-
terializing the entire thing. This primitive leverages addi-
tively (not fully) homomorphic encryption (for instance, Pail-
lier [37] and ElGamal [17]), as follows. Loosely, V homomor-
phically encrypts a secret, r, and sends Enc(r) to P; using
the linearity of π and the homomorphic property of Enc(·),
P returns Enc(π(r)), which V decrypts. Later, in response
to V’s PCP queries q1, . . . , qµ, V ensures that the responses
π(q1), . . . ,π(qµ) are consistent with π(r). Instead of materi-
alizing π (which is an exponentially-sized table), P can con-
cisely represent the proof as some vector u.

Ginger (and its predecessor Pepper [45]) apply a series of
refinements to make the above approach vastly more efficient
than the original theory. By default, Ginger uses the classi-
cal linear PCP of Arora et al. [5], in which the vector u is
quadratically larger than the number of variables in the satis-
fying assignment. Thus, making Ginger’s performance plau-
sible usually requires hand-tailoring the contents of u and the
query protocol.

Zaatar, however, makes the above approach plausible in
general, using a novel linear PCP based on QAPs [20]. Com-
pared to Ginger, Zaatar is more concise asymptotically—the
vector u is now linear in the size of the computation—though
there is some additional overhead. For most computations,
Zaatar is far more efficient than Ginger; when it is less effi-
cient, the difference is bounded [44, §4]. However, for both
protocols, the cryptographic operations are still a significant
expense.

Amortization and costs. To amortize the query generation
cost, V works over multiple instances of a given computa-
tion Ψ at once. Specifically, V has in hand parallel inputs
x(1), . . . , x(β). V also has values y(1), . . . , y(β) that purport
to be Ψ(x(1)), . . . , Ψ(x(β)). Then, V extracts a cryptographic
commitment to proofs π(1), . . . ,π(β) and submits the same
queries to these β proofs.

Zaatar’s costs are as follows. If the constraint set C has
|Z| variables, |C| constraints, and K additive terms, then V’s
query generation work has running time O(|Z|+ |C|+ K) for
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the batch.3 In amortized terms, V’s per-instance running time
is O(|x|+ |y|+ (|Z|+ |C|+ K)/β). The running time of P is
O(|Z| + |C| · log2 |C|). See [44] for a detailed analysis of the
constants and a Zaatar-Ginger comparison.

3 Refining CMT: CMT-slim
CMT verifies single-output circuits C; the verification pro-
cedure establishes that on input x, C(x) = 0 (§2.2). Thus, to
apply CMT to checking whether y = Ψ(x), we need a circuit
that (a) takes input x′ = (x,−y) and (b) includes machinery to
squeeze the output to one bit. This approach incurs overhead,
as we explain in the first part of this section.

The second part of this section presents CMT-slim, our
refined protocol. CMT-slim substantially changes the circuit
structure; this in turn requires a slight change in the verifi-
cation procedure. The combined result is a significant cost
reduction.

Details of CMT’s circuit structure. Under CMT, circuits
have a particular structure; they are composed of three parts:
1. The compute circuit. This part computes Ψ.
2. The output propagation circuit. This part is conceptually

next to the compute circuit, making the circuit wider.
3. The comparison circuit. This part sits atop the prior two,

making the circuit taller; its purpose is to return 0 if and
only if the purported and correct outputs are equal.

We now detail each of these parts. The compute circuit
takes as input Ψ’s inputs x = (x1, x2, . . . , x|X|) and computes
the correct output ŷ = (ŷ1, ŷ2, . . . , ŷ|Y|). The output propa-
gation circuit takes as input the additive inverses of the pur-
ported outputs y = (y1, . . . , y|Y|), as well as 0, and propagates
−y to the layer where y appears.

The purpose of the comparison circuit is to return 0 if and
only if yi = ŷi for all i ∈ [1, |Y|]. This part begins with a layer
that computes δi = yi − ŷi, for i ∈ [1, |Y|]. If |Y| = 1, we are
done: the circuit returns δ1, which equals 0 if and only if y1 =
ŷ1. However, if there are multiple outputs, the circuit cannot
simply sum the δi, since that sum could incorrectly overflow
to 0. Instead, the circuit leverages Fermat’s Little Theorem
(FLT) to turn each δi into a 0-1 value: because we are working
over a finite field Fp for some large prime p, δp−1

i evaluates to
1 if δi is non-zero and 0 otherwise. Thus, the remainder of the
circuit computes S =

∑|Y|
i=1 δ

p−1
i , which does not overflow. In

particular, S ∈ {0, 1, . . . , |Y|}, and S = 0 if and only if yi = ŷi

for all i ∈ [1, |Y|], as desired.
Overhead. As stated in Section 2.2, a circuit with depth

d and a maximum of G gates at each layer induces a run-
ning time of O(d · polylog(G)) for V and O(d · G · log G)
for P , where the polylog(G) term is the cost of evaluating
the circuit’s wiring predicates: ˜add and ˜mult. The compar-
ison circuit requires dlog2 |F|e layers to compute δp−1

i (via

3We are not explicitly charging for the cost of working in F.

repeated squaring),4 each layer requires 2|Y| gates, and its
wiring predicates require O(log2 |Y|) to compute (see [16,
Apdx. A.4.1] for details). In total, then, the comparison circuit
adds O(log2 |F| · log2 |Y|) running time for V and O(log2 |F| ·
|Y| · log2 |Y|) for P . This overhead can be significant, as ob-
served empirically in Section 6.2 and in [47, §7].

Details of the refinements. Our principal modification to
CMT is to shed two of the three circuit components described
above, so the protocol works with the compute circuit di-
rectly. This modification requires us to change the verifica-
tion algorithm slightly: it is now initialized based on the low-
degree extension of the purported output y, rather than 0.
Specifically, we change lines 2–3 in Figure 2 to initialize q0 to
a random vector in Fdlog2 |Y|e, and set a0 ← Ṽy(q0). Here, Ṽy

is the multilinear extension of Vy, where Vy(j) returns the jth
purported output, yj. As shown in Appendix A.2, this modifi-
cation preserves completeness, and soundness error increases
only minorly: from ε (which is CMT’s soundness error, quan-
tified in Section 2.2) to ε′ = ε+ dlog2 |Y|e/|F|.

Although these modifications are straightforward, they
provide substantial benefits, as depicted in Figure 3 (the fig-
ure depicts other cost savings that result from implementation
optimizations that we describe in Section 5).

4 Extending CMT’s reach: CMT-batching
CMT (and hence CMT-slim) is promising: it has the potential
to be extremely efficient for V (as it requires no cryptographic
operations and little network cost), and its mechanics are rel-
atively straightforward. However, it has three limitations that
conflict with general-purposeness (see also Section 2.2):
1. It represents computations as arithmetic circuits. Arith-

metic circuits cannot, to our knowledge, represent com-
putations with inequality comparisons (<, <=, >, >=) and
not-equal (!=) tests, except by degenerating to far more
verbose Boolean circuits.

2. These circuits must be regular, in the sense that ˜addi and
˜multi should be efficiently computable. This limits com-

putations to those where the programmer can represent
the structure of the computation with a concise mathe-
matical expression.

3. These circuits must be efficiently parallel: “wide” but not
“tall”. Of course, not all computations are this way.

The rest of the section describes refinements that partially
ease the limitations above and considers when those refine-
ments apply. First, Section 4.1 describes our modified cir-
cuits, which take auxiliary inputs (or advice), supplied by
the prover. These circuits-with-advice extend CMT’s compu-
tational model to a larger class of computations; in fact we
can automatically compile from the high-level language in
the Zaatar-Ginger framework (§2.3) to a concise circuit-with-

4This ignores some additional layers for computing S. However, these layers
induce few costs and can be neglected; see [16, §3.2] for details.
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protocol V’s running time P’s running time

CMT f · (|X|+ |Y|) · log2 (|X|+ |Y|) + dΨ · I(GΨ,prop) + 5 · f · deq · log2 Geq 24 · f ·(dΨ ·GΨ,prop · log2 GΨ,prop +deq ·Geq · log2 Geq)
CMT-slim f · (|X|+ |Y|) · 4 + dΨ · I(GΨ) 24 · f · dΨ · GΨ · log2 GΨ

|X|: number of elements (from F) in input to Ψ Geq (= 2|Y|): width of (# gates in) comparison circuit
|Y|: number of elements (from F) in output of Ψ deq (= dlog2 |F|e): depth of (# layers in) comparison circuit
GΨ: width of (max. # of gates in) each layer of compute circuit dΨ: depth of (# layers in) circuit to compute Ψ
GΨ,prop (= GΨ + |Y|): width of each layer of compute+propagate circuit f : cost of field multiplication
I(G): Cost to check P’s responses (f · log2

2 G + 27 · f · log2 G; see Fig. 2, line 19 and Fig. 11, line 14), and compute ˜add and m̃ult (Fig. 11, line 24),
assuming width G.

Figure 3—Running times of V and P in CMT and CMT-slim, when verifying a computation Ψ. The changes include replacing the factor
log2(|X| + |Y|) with 4, owing to an implementation optimization that is described in Section 5.1. The remaining improvements result from
shedding the propagation circuit (reflected in the drop from GΨ,prop to GΨ) and the comparison circuit (reflected in dropping the deq and Geq

terms). The figure leaves unspecified the cost of computing ˜add and m̃ult, but CMT and GKR require circuits for which this is efficient.

advice. While this refinement (partially) addresses the first
limitation above, it exacerbates the second one, of regularity.
However, Section 4.2 describes how we can tolerate irregular-
ity and non-parallelism, using batching in the Zaatar-Ginger
style (§2.3); we call the resulting protocol CMT-batching.5

Finally, Section 4.3 analyzes the applicability of CMT-
batching. The high-level finding is that CMT-batching is most
useful when there are not many comparisons or not-equal op-
erations, as a fraction of the total number of operations. In
particular, if the number of comparisons scales with the com-
putation’s running time (as is the case for sorting, searching,
etc.), then CMT-batching does not save work for V .

4.1 Beyond arithmetic circuits

Our goal in this subsection is to transform computations ex-
pressed in a high-level language to arithmetic circuits. (For
now, we are not trying to achieve efficiency for V relative to
local execution.) A natural attempt would be to use the com-
piler of Zaatar-Ginger (§2.3). However, its “assembly lan-
guage” is constraints, not circuits. What is involved in trans-
forming to arithmetic circuits? An analysis of the compiler in-
dicates that most of the programming constructs (if/else, etc.)
have a natural representation in constraints or circuits.

The problematic constructs are the not-equal operation
(!=) and inequality comparisons (<, <=, >, >=): no arith-
metic circuit that we are aware of directly and efficiently com-
putes these.6 The constraint representation of these constructs
sidesteps this issue by including auxiliary variables that P
sets [47, §4][46, Apdx. C].

The idea of our first refinement, then, is to have P do the
required computations “out-of-band” and to supply the out-
come to V . This requires reformulating the circuit to (a) ac-
cept as input (advice) the outcome of all inequality and not-
equal operations and (b) check that these inputs are correct.

5CMT [16] and GKR [23] suggest circumventing the protocol limitations by
moving some of the work offline. However, this does not change the total
work for V; it simply changes when the cost is incurred. By contrast, our
approach can save work for V , and we analyze when that happens.

6One could use FLT to compute not-equal, but as noted in Section 3, that
approach has undesirable overhead.

Details. Let (X(!=), X(<), M(!=), M(<)) denote a vector of ad-
vice supplied by P to V . Here, X(!=) denotes the claimed 0-1
outcome of all not-equal checks; X(<) denotes the claimed 0-1
outcome of all inequality comparisons; and M(!=) and M(<)

are, loosely speaking, witnesses that those claimed outcomes
are indeed the correct ones (more specifically, M(!=) and M(<)

are the auxiliary variables in the Zaatar-Ginger constraints).
The following circuit structure is created by our compiler; it
consists of two parts:
• The compute-advised circuit. This part computes Ψ, tak-

ing as advice the claimed outcome of all not-equal and
inequality operations. Specifically, the inputs here are
(X, X(!=), X(<)), and the output is Y , where X and Y are
the inputs to, and outputs of, Ψ. This part assumes that its
advice is correct.

• The check-advice circuit. This part checks that X(!=) and
X(<) are correct. It takes as input (X(!=), X(<), M(!=), M(<))
and returns 0 if and only if X(!=) and X(<) are correct.
The check-advice circuit essentially recapitulates the

Zaatar-Ginger constraints for not-equal and inequality com-
parisons, taking as input the values of all auxiliary variables.
For example, say that the ith not-equal operation in Ψ is

Z1 != Z2.

Then, the compute-advised circuit includes wires for Z1 and
Z2. Labeling the ith elements of the prover-supplied X(!=) and
M(!=) as X(!=)

i and M(!=)
i , the check-advice circuit computes:

(1− X(!=)
i ) · (Z1 − Z2) and (Z1 − Z2) ·M(!=)

i − X(!=)
i .

By inspection, the output of both of these operations is 0 if
and only if X(!=)

i and M(!=)
i are set correctly by P; in partic-

ular, if Z1 6=Z2, then the correct setting of M(!=)
i is the multi-

plicative inverse of Z1 and Z2.
The approach for inequality comparisons is similar: we

have an operation in the circuit for each Zaatar-Ginger con-
straint. There are blog2(F)c + 7 such constraints (see [46,
Apdx. C] for details).

Thus, the total cost of the check-advice circuit is as fol-
lows. We add Gck gates to each layer and to the output, where

7



V’s running time P’s running time

baseline f · dΨ · GΨ N/A
CMT-batching f · dΨ ·GΨ,ck · 11/β + 4 · f · (|X|+ |Y|+ 2 ·Gck) + dΨ · CheckResp(GΨ,ck) 24 · f · dΨ · GΨ,ck · log2 GΨ,ck

dΨ, GΨ depth, width of compute-advised circuit
Gck = 2 · |X(!=)|+ (blog2(F)c+ 7) · |X(<)| width of check-advice circuit
GΨ,ck = GΨ + Gck width of full circuit, under CMT-batching
CheckResp(G) = f · (log2

2 G + 27 · log2 G) per-layer cost to check P’s responses (Fig. 2, line 19 and Fig. 11, line 14), assuming width G

Figure 4—Running times of V and P in CMT-batching when verifying a computation Ψ, compared to the baseline of evaluating the com-
putation. Some of the terminology and notation is borrowed from Figure 3. The estimate of the baseline presumes that local inequality and
not-equal operations are free, which is a reasonable approximation. The computation is compiled into a compute-advised and a check-advice
circuit, which together include inputs for prover-supplied advice (of length Gck). Because the protocol applies to arbitrary layered circuits,
computing ˜add and m̃ult may be expensive, but it amortizes over the batch (see the first summand in V’s costs). By contrast, the approach to
advice does not necessarily scale; see text (§4.3).

Gck = 2 · |X(!=)| + (blog2(F)c + 7) · |X(<)|. We say “each
layer” because the outputs of the individual checks are not
necessarily at the output layer, necessitating dummy gates to
propagate these outputs to the top (this is similar to the output
preservation circuit that we shed; see Section 3).

4.2 Amortization to sidestep regularity

Although the refinement above (partially) addresses the first
limitation, it has made the regularity issue worse: it seems
difficult to build a circuit automatically and to obtain an ef-
ficiently computable ˜add and ˜mult for each layer. Moreover,
even if the compiler could produce a regular compute-advised
circuit, the check-advice circuit is unlikely to be regular.

Our solution is to give up on regularity. Instead, we will pay
for the irregularity and then amortize this cost over multiple
instances of the computation, similar to the way that Zaatar
and Ginger amortize their query generation cost. Specifically,
the cost of computing ˜add and ˜mult (see Sections 2.2 and 3)
is now permitted to be much larger. This approach also ad-
dresses the third limitation: the amortization means that V
saves work for a much larger class of circuits, allowing for
verification of circuits with smaller layers (fewer gates) and
larger depth (more layers) than under CMT-slim.

We call the resulting protocol CMT-batching. It consists
of β parallel instances of Figure 2, resulting in the following
structure:

1. V and P exchange inputs x(1), . . . , x(β) and outputs
y(1), . . . , y(β).

2. V randomly generates q0 and computes a(k)
0 = Ṽy(k)(q0)

for all instances k ∈ {1, . . . ,β}.
3. In each iteration, V uses the same randomness (for ex-

ample, τ in Figure 2, line 17) for all instances.
4. P responds separately for each instance, and V checks

each instance independently. Importantly, this means V
can compute ˜addi and ˜multi once for all instances.

5. At the end, V checks whether a(k)
d = Ṽ(k)

d (qd) for all k;
throughout, if V rejects any instance, it rejects them all.

CMT-batching satisfies completeness. Its soundness prop-
erty is that each instance, viewed individually, has the same

soundness error as CMT-slim (namely ε′ = 7 · b · d/|F| +
dlog2 |Y|e/|F|; see Section 3), a claim that is proved in Ap-
pendix A.2.

4.3 Applicability

CMT-batching mitigates the three limitations, compared to
the base protocol. We say “mitigates” instead of “eliminates”
because V does not always save work versus executing the
computation locally. We now analyze CMT-batching, focus-
ing on when it does save work for V .

Figure 4 depicts the costs of CMT-batching, comparing it
to local execution. There are two significant costs for V . The
first is computing ˜addi and ˜multi. This costs 11 · f · d · (GΨ +
Gck) because the circuit is not regular, so we must compute
from the general expression for ˜addi and ˜multi (given in Ap-
pendix A). While this task can be as or more costly than ex-
ecuting all d · GΨ gates in the computation, it amortizes over
β instances.

The second source of costs is processing the advice. These
costs correspond to work done to verify a circuit component
that does not execute “real work”; worse, these costs do not
amortize, so they could make the protocol more expensive
for V than executing locally. Notice the term Gck. The key
comparison is between 8 · f · Gck (the work done by V to
process the advice) and f ·d ·GΨ (the cost of local execution).
If Gck < d ·GΨ/8 (ignoring some constants), then V can gain
from outsourcing, and the smaller Gck, the smaller the batch
size at which V breaks even.

Thus, CMT-batching works well—in the sense of saving V
work versus computing locally—when Gck is small. Such val-
ues of Gck correspond to computations with few not-equal op-
erations and inequality comparisons. In particular, the num-
ber of such operations should scale sub-linearly in the running
time of the computation, and the actual ceiling could be very
small indeed, depending on the constants.

5 Implementation details
Allspice uses the Ginger implementation from [46]. Allspice
optimizes the Zaatar prover by constructing the proof vector
u (§2.3) using the fast Fourier transform (FFT), a suggestion
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CMT-slim removes an additive overhead that scales with the output size of the computation. For m× m matrix multiplication with
m=128 and compared to CMT, the CMT-slim verifier is 2× less expensive, the CMT-slim prover is 1.7× less expensive, and the
network costs reduce by about 30%.

§6.2

CMT-batching enhances the types of computations that can be efficiently outsourced, relative to CMT-slim. For instance, CMT-
batching applies to root finding by bisection, which has control flow and inequalities while CMT-slim does not.

§6.3

CMT-batching has far better performance compared to the cryptographic sub-protocols in Allspice (Ginger and Zaatar) for quasi-
straightline computations. For these computations, the per-instance cost to the prover in CMT-batching can be cheaper than Ginger
by 1–2 orders of magnitude and is comparable to Zaatar. The break-even batch sizes (and network costs) under CMT-batching are
1–4 orders of magnitude smaller relative to Ginger and 1–2 orders of magnitude smaller relative to Zaatar.

§6.3

Figure 5—Summary of main evaluation results.

of Gennaro et al. [20]. As a result, P’s per-instance running
time drops from O(|Z|+ |C| · log2 |C|) to O(|Z|+ |C| · log |C|).

Below, we describe the CMT portion of Allspice and the
static analyzer that decides which protocol to use.

5.1 CMT and CMT-slim

Using the CMT implementation [16] as a reference, we im-
plemented the base CMT protocol as a C++ verifier and
prover; they run as separate processes that communicate via
Open MPI [2]. Our implementation is 5533 lines of base
code, with roughly 615 lines required for each new compu-
tation (recall that CMT circuits are manually constructed). In
the process, we made a number of optimizations that have a
substantial impact on performance (see Section 6.2).

The most significant optimization applies to the prover in
the sum-check protocol, saving approximately 15-20% of the
prover’s work; Appendix A.1 gives the details.

We also reduce the cost of computing Ṽd(qd), from
O(|X| log |X|) to O(|X|). (This applies to Figure 2, line 21.)
We use memoization, as follows.7 There are |X| gates in the
input layer. Let n = dlog2(|X|)e. As in the base protocol [16,
Apdx. A.2.2], define χ0(τ) = 1− τ and χ1(τ) = τ . Then Ṽd

can be written as follows:

Ṽd(τ1, . . . , τn) =
∑

(t1,...,tn)∈Fn
2

(
n∏

i=1

χti(τi)

)
· Vd(t1, . . . , tn),

where Vd is defined in Section 2.2. Naive evaluation of this
sum requires 2n ·(n+1) multiplications. However, notice that
if we have the value of

∏k−1
i=1 χti(τi) for all (t1, . . . , tk−1) ∈

Fk−1
2 , then computing

∏k
i=1 χti(τi) for all (t1, . . . , tk) ∈ Fk

2
requires 2k multiplications. Thus, computing

∏n
i=1 χti(τi) for

all (t1, . . . , tn) ∈ Fn
2 takes

∑n
i=1 2i < 2 · 2n multiplications.

After we have computed all of these values, computing Ṽd

requires only an additional 2n multiplications, bringing us to
3 · 2n multiplications. Since |X| ≤ 2n < 2 · |X|, the total cost
to compute Ṽd is between 3 · |X| and 6 · |X|multiplications. By
skipping the computation of

∏n
i=1 χti(τi) in the cases where

Vd(t1, . . . , tn) = 0 (e.g., when (t1, . . . , tn) is not a valid input
gate label), we can bring the upper bound down to 4 · |X|.

7This optimization does not apply in the streaming context, which was the
original focus of CMT [16].

5.2 CMT-batching

Using the Zaatar compiler [44], we implemented a backend
compiler that targets the CMT-batching protocol, as described
in Section 4. Specifically, our compiler takes as input a set
of constraints generated by the Zaatar compiler and converts
them to a circuit of the required form. This compiler contains
2381 lines of C++ code.

5.3 Compiler and static analyzer

Using static analysis, Allspice selects the optimal protocol
among CMT-batching, Ginger, and Zaatar. The analysis tool
is a 300-line Python script that takes as input a program ex-
pressed in SFDL (§2.3), the size of the program’s inputs, mi-
crobenchmark information about the costs of various low-
level operations (e.g., encryption and decryption), and vari-
ous cost models (developed in [44, 47] and Section 4). It can
be configured to optimize for the prover’s overhead or for the
verifier’s costs (resulting in lower break-even batch sizes).

The tool first runs the Ginger compiler to get Ginger con-
straints, the Zaatar compiler to get Zaatar constraints, and the
CMT-batching compiler to get an arithmetic circuit (see §5.2
above). Then, it parameterizes the cost models with the mi-
crobenchmarks and applies the resulting quantified model to
the compiler’s output in order to predict the costs to the veri-
fier and prover under each sub-protocol at the requested input
size. Finally, the tool chooses the most favorable sub-protocol
for the consideration in question (e.g., break-even batch size),
and outputs executables for the verifier and the prover in the
chosen protocol.

6 Experimental evaluation and comparison
We experiment with the base CMT protocol and CMT-slim
to evaluate our refinements to CMT. Then, we experimentally
evaluate Allspice with a set of benchmark problems to under-
stand the regimes of applicability of each of the sub-protocols
(namely Ginger, Zaatar, and CMT-batching). Figure 5 sum-
marizes the results.

6.1 Method and setup

Our evaluation uses the following benchmark computations:
• m× m matrix multiplication,
• evaluation of a degree-2 polynomial in m variables,
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(b) Per-instance running time of the verifier.
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Figure 6—Per-instance running times and network costs of CMT-opt and CMT-slim, for matrix multiplication at m=64 and m=128. CMT-
slim improves the CPU and network costs versus CMT-opt. The bar heights are normalized to CMT-slim.

• the longest common subsequence problem with two
strings of length m,

• clustering a set of m data points, where each data point has
d dimensions, using PAM clustering,

• finding the roots of a degree-2 polynomial in m variables
using bisection,

• Floyd-Warshall all-pairs shortest paths in a graph with m
vertexes, and

• Hamming distance between a pair of strings of length m.
The inputs to our computations are 32-bit integers except

in polynomial evaluation, root finding by bisection, and all-
pairs shortest paths. For polynomial evaluation and all-pairs
shortest paths, we use floating-point rationals with 32-bit nu-
merators and 32-bit denominators; for root finding by bisec-
tion, we use floating-point rationals with 32-bit numerators
and 5-bit denominators (using the representation of this data
type from [47]). We use a finite field with a prime modulus
of size 128 bits for the integer computations and size 220 bits
for the floating-point computations.

For Ginger [47] and Zaatar [44], we use ElGamal encryp-
tion [17] with key size of 1024 bits. For a pseudorandom gen-
erator, we use the ChaCha stream cipher [11].

We will report the prover’s CPU costs, network costs, and
break-even batch sizes: the minimum number of instances of
a computation at which the total CPU cost to the verifier is
less than the CPU cost to execute those instances locally. Our
baseline for local computation is the GMP library. We com-
pute the break-even batch size for a computation by running
one instance locally (regarding all costs as variable) and one
instance under verification (separating its costs into fixed and
variable); we then solve for the point β at which β instances
of the latter are cheaper than β instances of the former.

Our experiments run on two machines in the same local
area network. Each has an Intel Xeon processor E5540 2.53
GHz with 48GB of RAM.8 We use getrusage to measure
the CPU time of the prover and the verifier; we also record
the count of the application-level bytes transferred between
the verifier and the prover, reporting this count as the network
costs. We report the mean of results from three experiments

8Our largest experiments require approximately 40% of the available RAM.

(standard deviations are less than 10% of the means).
An exception to the previous paragraph is that it is some-

times infeasible to run with Ginger; in those cases (we will
note them), we estimate costs using a model from [46], pa-
rameterized with microbenchmark results from [44, §5.1].

6.2 Performance of CMT and CMT-slim

Our analysis in Section 3 (see Figure 3) implies that, relative
to CMT, CMT-slim saves an additive cost. This cost is pro-
portional to the number of outputs in the computation and the
relative size of the comparison circuit that is removed.

We confirm this analysis by measuring CMT-opt (an op-
timized version of the CMT-GMP implementation that we
use in [47], which is about 30–40% faster) and CMT-slim
on the example of matrix multiplication with varying input
sizes (m=64, 128). We report the prover’s running time, the
verifier’s running time, the baseline cost of doing the compu-
tation locally, and the network costs. The running times are
CPU costs and ignore protocol latency.

Figure 6 depicts the results. At m=64, the CMT-slim
prover is about 2× less expensive compared to CMT-opt, the
verifier is about 5× less expensive, and the network costs
halve. As we increase input sizes, the gains diminish; at
m=128, the CMT-slim prover is 1.7× less expensive, the ver-
ifier is 2× less expensive, and the network costs drop by about
30%. This phenomenon occurs because the size of the com-
pute circuit (§3) grows with m3, while the size of the com-
parison circuit grows only with m2; thus, asymptotically, the
time spent checking the compute circuit dominates the time
spent checking the comparison circuit.

We also experimented with Hamming distance (at input
sizes m=32,768 and m=65,536). Because the output is a
scalar, not a vector, the comparison optimization does not
save work, so CMT-opt and CMT-slim perform the same.

6.3 Comparison

We experiment with the computations listed in Section 6.1.
We run matrix multiplication with m=128; polynomial
evaluation with m=512; root finding by bisection with
m=256, L=8; PAM clustering with m=20, d=128; longest
common subsequence (LCS) with m=300; and all-pairs
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(a) Per-instance running time of the prover under Allspice’s sub-protocols
for matrix multiplication (m=128), polynomial evaluation (m=512), and
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Figure 7—When applicable (i.e., when the verifier has a break-even batch size), the CMT-batching prover’s performance is similar to the
Zaatar prover’s and significantly better than the Ginger prover’s (except for the polynomial evaluation benchmark, in which the Ginger prover
is faster, but the CMT-batching prover is still competitive). When CMT-batching is not applicable, Zaatar’s prover dominates.
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Figure 8—Break-even batch sizes for matrix multiplication
(m=128), polynomial evaluation (m=512), and root finding by
bisection (m=256, L=8) under the three sub-protocols. The bar
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truncated at the maximum height). The y-axis is log-scaled. When-
ever CMT-batching enables breaking even, it has the lowest break-
even batch size; otherwise, Zaatar does (this is not depicted but ap-
plies to PAM clustering, LCS, and all-pairs shortest paths).

shortest paths with m=25. We report three end-to-end perfor-
mance metrics: the prover’s per-instance costs, the break-even
batch sizes, and network costs.

First, note that the verification protocols save work for the
verifier only if the computation is at least superlinear; we
therefore exclude Hamming distance here.

For all of the remaining benchmarks, the Zaatar verifier
saves work at some batch size. The CMT-batching verifier,
however, saves work only for some of our benchmarks (ma-
trix multiplication, polynomial evaluation, and root finding
by bisection); for the others (PAM clustering, longest com-
mon subsequence, and all-pairs shortest paths), the CMT-
batching verifier does not save work, as the prover supplies
a quantity of auxiliary inputs that is proportional to the run-
ning time of the computation (see Section 4).

We experiment with all three protocols when appropriate
and exclude CMT-batching when it does not break even. In
the case of Ginger, we estimate its costs for matrix multipli-
cation and root finding by bisection, and measure its costs for
polynomial evaluation.
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Figure 9—Total network costs of each of the sub-protocols in All-
spice at the break-even batch sizes (Figure 8) for matrix multiplica-
tion (m=128), polynomial evaluation (m=512), and root finding by
bisection (m=256, L=8). The bar heights are normalized to those
of CMT-batching. The y-axis is log-scaled. When applicable (i.e.,
when the verifier has a break-even batch size), CMT-batching has
the lowest network costs; otherwise, Zaatar does (this is not depicted
but applies to PAM clustering, LCS, and all-pairs shortest paths).

For computations where CMT-batching is appropriate, Fig-
ure 7(a) depicts the per-instance running times of each sub-
protocol’s prover normalized to the running time of the CMT-
batching prover. The prover’s overhead in the CMT-batching
protocol is roughly the same (within several factors) as that
of the most optimal prover. For the remaining computations,
Figure 7(b) depicts the per-instance running times of each
prover normalized to the running time of the Zaatar prover.
In these experiments, Zaatar dominates Ginger.

Figure 8 depicts the break-even batch sizes. Whenever
CMT-batching is applicable, it has the best break-even batch
size. Again, Zaatar dominates Ginger in all cases (this is not
depicted, but see [44]).

At the break-even batch sizes, the total network costs (in-
cluding the cost of transferring inputs and outputs) follow
the same pattern as the break-even batch sizes; see Figure 9.
When CMT-batching is applicable, it has the lowest network
costs among the three sub-protocols; when it is not applica-
ble, Zaatar does (not depicted; see [44]).
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7 Discussion
Based on the estimates (which are validated by our measure-
ments), Allspice will choose CMT-batching for matrix mul-
tiplication, polynomial evaluation, and root finding; it will
choose Zaatar for everything else.

It is useful to extract the general moral here: namely, CMT-
batching is superior for quasi-straight-line computations (i.e.,
very simple control flow), while for general-purpose compu-
tations, one has to pay for cryptography and use Zaatar.

Of course, the term “general-purpose” should be taken with
a grain of salt. Although SFDL is a high-level language, the
underlying constraint and circuit formalisms impose a num-
ber of unattractive limitations. Loop bounds need to be known
at compile time (as loops are unrolled), both branches of con-
ditionals are executed, and dynamic array access is expensive.
Moreover, since the base protocols operate over finite fields,
floating-point operations are expensive and do not implement
IEEE rounding. These problems are pervasive in the area, as
finite fields and circuit models of computation are standard in
interactive and cryptographic protocols.

Finally, we note that the compilation process in Allspice
is quite expensive; the examples we reported on took hours
to compile. Although some of this is intrinsic, we believe
that much of the cost is a function of an unoptimized im-
plementation; optimization plus techniques described else-
where [26, 30] should lead to significant improvements.

8 Other related work
We now review recent cryptographic and complexity-
theoretic work on verifiable computation that we have not yet
discussed. Some work targets particular classes of computa-
tions [18, 38], including matrix operations and polynomial
evaluation; for a survey, see [45]. While special-purpose pro-
tocols may be more efficient for particular computations, we
are interested in mechanisms that apply generally (§1). More-
over, special-purpose protocols that admit highly efficient im-
plementations and are amenable to automatic compilation can
be incorporated into our sub-protocol selection logic (§5.3).

The general-purpose protocols can be roughly classified
into three groups: fully-homomorphic encryption (FHE),
short PCPs, and succinct arguments. Using FHE [21] as
a building block, GGP [19] formalized verifiable computa-
tion (VC) as non-interactive protocols (P sends its output
and a proof to V) that are permitted a one-time setup cost.
FHE itself was woefully impractical (and unfortunately still
is, despite massive improvements [22]), a characteristic in-
herited by GGP and other noninteractive VC protocols based
on FHE [15]. In this paper, we adopt a broader notion of veri-
fiable computation that includes interactive protocols, consis-
tent with informal motivation in the complexity theory litera-
ture (e.g., [8]).

Indeed, complexity theory has long used “checking com-
putations” as a motivation for PCPs, and recent theoreti-

Zaatar Pinocchio [20, 39]

P’s overhead (2e + 500f ) · |C| 8e · |C|
V’s per-instance costs e + 3f · (|x|+ |y|) 12e + e · (|x|+ |y|)

Setup costs (2e + 500f ) · |C| 8e · |C|
Setup amortizes over batch all instances of Ψ
Setup flexibility V must incur anyone can incur

Non-interactivity no yes
Zero-knowledge no yes
Public verifiability no yes
Assumptions DDH (and R.O. to

save network costs)
q-PKE, q-PDH, q-SDH

Soundness error < 1/220 < 1/2128

Figure 10—Comparison of Zaatar and Pinocchio [20, 39] for a com-
putation Ψ with |C| constraints. The comparison is meant to be
illustrative not definitive: e stands in for any ciphertext operation
in the respective protocol (e.g., exponentiation in a bilinear group,
scalar multiplication in an ElGamal group), and f stands in for any
plaintext operation (e.g., field multiplication). In the protocols that
we have examined, e is several orders of magnitude larger than f .
Broadly, Pinocchio has higher cryptographic overhead, in return for
more properties.

cal work aims to make PCPs and related constructs efficient
enough to be used in practice [9, 10]. However, it is not clear
from the analysis how this work will actually perform, and to
date there are no experimental results, so it is not yet possible
to perform a meaningful comparison.

The final strand of general-purpose work is succinct non-
interactive arguments [25, 31]. A major advance in this area
was recently achieved by GGPR [20], who give an efficient
circuit encoding (QAPs) that induces roughly linear overhead
for the prover and couple it with sophisticated cryptography.
Although GGPR does not explore the connection between
QAPs and PCPs, the relationship is explored in [12] and [44].
Zaatar exploits this connection by incorporating QAPs (as
noted in Section 2.3) but not GGPR’s cryptography.

Thus, a natural question is how Allspice (via Zaatar) com-
pares to GGPR. We now compare Zaatar to a recent refine-
ment and implementation of GGPR, called Pinocchio [39].
To simplify a bit, whereas most Zaatar queries are formu-
lated and responded to in the clear, Pinocchio uses carefully
wrought cryptography to allow a similar query procedure
to take place over encrypted values. On the one hand, this
brings some expense (small constant factors), in terms of the
prover’s costs and the verifier’s per-instance costs (although
heroic optimizations have resulted in surprisingly small over-
head for the cryptography in Pinocchio). On the other hand,
the cryptography buys public verifiability, zero-knowledge
proofs, and unlimited query reuse. This latter property allows
Pinocchio to amortize its per-computation setup costs over all
instances of the computation; by contrast, Zaatar amortizes its
per-computation costs only over a batch. We give more details
in Figure 10.
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9 Conclusion
This paper describes Allspice, a system for verifiable com-
putation. Allspice incorporates substantial improvements to
CMT [16, 24, 41]. Optimizations to the basic CMT protocol
coupled with an extension to a broader class of computations
(in the batched model) result in a version of CMT that applies
to many realistic computations and requires break-even batch
sizes several orders of magnitude smaller than other measured
implementations of verifiable computation.

The batched version of CMT does not require expensive
cryptography. Furthermore, the batched model and the class
of computations to which CMT-batching apply are very plau-
sible in the cloud computing scenario—the MapReduce id-
iom in effect forces programmers to express computations in
a form that is well-suited for this protocol!

Further, using the careful cost analysis that accompanied
the optimization of CMT, we were able to build a static an-
alyzer that allows Allspice to select the best protocol among
the implemented protocols in the literature (Ginger, Zaatar,
and CMT). The resulting system brings us a step closer to
practical and usable system for verifiable computation in the
data-parallel cloud computing model.

A CMT: Details and refinements
This appendix provides further details of CMT and proves
the correctness of our refinements. We also provide general
expressions for ˜addi and ˜multi, for use in CMT-batching (§4).

A.1 Original CMT

In this section, we fill in details of the CMT protocol that
were left out of Section 2.2. We give the verifier’s sum-check
pseudocode and provide the missing definition of Ẽ.

The Sum-Check Verifier. Recall that in each round of
CMT, V uses a sum-check protocol to verify that ai−1 =
Ṽi−1(qi−1). Figure 11 depicts the verifier’s pseudocode for
doing so. There is one major difference between this proto-
col and a standard sum-check protocol [4, §8.3.1]. A stan-
dard sum-check protocol requires V to evaluate fqi−1 at a sin-
gle point (w0, w1, w2), randomly chosen from F3b. However,
that would require evaluating Ṽi(w1) and Ṽi(w2), which V
cannot do because it does not know the values of the gates
at layer i. Instead, V “cheats” and asks P for the values of
Ṽi(w1) and Ṽi(w2). This “hint”—together with V’s computa-
tion of ˜add(w0, w1, w2), ˜mult(w0, w1, w2), and Ẽ(qi−1, w0)—
is enough for V to compute fqi−1(w0, w1, w2) = Ẽ(qi−1, w0) ·
( ˜addi(w0, w1, w2) · (Ṽi(w1) + Ṽi(w2)) + ˜multi(w0, w1, w2) ·
Ṽi(w1) · Ṽi(w2)).

We defined ˜addi and ˜multi in Section 2.2; we now define Ẽ.
The polynomial Ẽ : F2b → F is the multilinear extension of
the function E : F2b

2 → F, where

E(q, g) =

{
1, if q = g
0, otherwise

1: function SUMCHECK(i, qi−1, ai−1)
2: r R←− F3b

3: SendToProver(“layer i”)
4: e← ai−1

5: for j = 1, 2, . . . , 3b do
6: Fj(·)← GetFromProver()
7: // P returns Fj(·) as {Fj(0), Fj(1), Fj(2)}, which
8: // is sufficient to reconstruct Fj because Fj is degree-2
9:

10: if Fj(0) + Fj(1) 6= e then
11: return reject
12:
13: SendToProver(rj)
14: e = Fj(rj)

15:
16: // notation
17: w0 ← (r1, . . . , rb)
18: w1 ← (rb+1, . . . , r2b)
19: w2 ← (r2b+1, . . . , r3b)
20:
21: // P is supposed to set v1 = Ṽi(w1) and v2 = Ṽi(w2)
22: v1, v2 ← GetFromProver()
23: a′ ← Ẽ(qi−1, w0)( ˜add(w0, w1, w2) · (v1 + v2)+
24: m̃ult(w0, w1, w2) · v1 · v2)
25: if a′ 6= e then
26: return reject
27: return (v1, v2, w1, w2)

Figure 11—V’s side of the sum-check protocol in CMT [16] and
GKR [23, 41], for Ṽi−1(qi−1)=

∑
g,j1 ,j2∈Fb

2
fqi−1 (g, j1, j2); see equa-

tion (2) in Section 2.2. b=dlog2 Ge is the number of bits needed to
represent a gate label. The inputs are i (the current layer number),
ai−1, and qi−1; the protocol returns (v1, v2, w1, w2). The protocol’s
guarantee is that, with high probability, ai−1=Ṽi−1(qi−1) if and only
if v1=Ṽi(w1) and v2=Ṽi(w2).

We can write a closed-form expression for Ẽ:

Ẽ(q1, . . . , qb, g1, . . . , gb) =

b∏
j=1

((1− qj) · (1− gj) + qj · gj) .

To see that this is the expression for Ẽ, note that all of the
2b variables in this expression have degree 1. Also, assume
q, g ∈ Fb

2. Then the expression equals 1 if and only if qj = gj

for all j ∈ {1, . . . , b} (i.e., if and only if q = g); otherwise,
the expression equals 0. Since the expression is of appropri-
ate degree, and since it agrees with E on E’s domain, it must
equal Ẽ.

The Sum-Check Prover. In the sum-check protocol, P’s
fundamental job is to compute evaluations of Fj(·) at points
in {0, 1, 2} (Figure 11, line 6), and to do so efficiently. Cor-
mode et al. [16, Apdx. A.2] describe how to make P run in
time O(G · log G).

We further improve their scheme. Notice that in it-
eration j of the sum-check protocol, P must return
(Fj(0), Fj(1), Fj(2)). However, P knows that Fj(0)+Fj(1) =
Fj−1(rj−1). Thus, P computes Fj(1) and Fj(2); it also com-
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putes Fj−1(rj−1) by interpolating a degree-2 polynomial from
the values Fj−1(0), Fj−1(1), Fj−1(2), which it has computed
in iteration j − 1. Finally, P computes Fj(0) = Fj−1(rj−1) −
Fj(1). This process, including the interpolation, is much more
efficient than computing Fj(0) directly.

A.2 Correctness of the refinements

In this section, we prove the correctness (soundness and com-
pleteness) of CMT-slim (§3) and CMT-batching (§4).

Lemma A.1. CMT-slim is complete and has soundness error
ε+b0/|F|, where b0 = dlog2 |Y|e and ε is the soundness error
of CMT (which is quantified in Section 2.2).

Proof. Let Ṽ0(·) represent the extension of V0 for the circuit,
if the circuit were computed correctly.

Completeness: If y = C(x), then Ṽy = Ṽ0 (by definition).
Thus, a0 = Ṽy(q0) = Ṽ0(q0) for all q0 ∈ Fb0 . Since a0 =
Ṽ0(q0) is a true statement, P need only follow the protocol
to ensure that V accepts. The protocol thus satisfies (perfect)
completeness.

Soundness: If y 6= C(x), then Vy 6= V0 (they differ on
at least one point in their domains). Thus, Ṽy and Ṽ0 are
not the same polynomial, and in fact Ṽy(q) = Ṽ0(q) for at
most a b0/|F| fraction of the values of q ∈ Fb0 . (This is
because Ṽ0 and Ṽy are polynomials in b0 variables, where
each variable has degree at most 1 in any term; thus, we
can apply the Schwartz-Zippel lemma.) If V chooses a q0
for which Ṽy(q0) = Ṽ0(q0), then the protocol incorrectly ac-
cepts. If V chooses a q0 for which Ṽy(q0) 6= Ṽ0(q0), then
the protocol is attempting to prove a false statement, namely
that a0 = Ṽ0(q0). By the soundness of CMT, this succeeds
with probability ≤ ε. A standard union bound establishes the
claimed error.

The completeness of CMT-batching follows from
CMT-slim’s completeness: if the prover returns the correct
answers for all instances in the batch, the verifier (which can
be seen as β instances of the CMT-slim verifier that all make
the same random choices) will always accept. We now prove
the soundness of CMT-batching.

Lemma A.2. Fix a circuit C, batch size β, inputs
x(1), . . . , x(β), and purported outputs y(1), . . . , y(β). For any
instance i, if y(i) 6= C(x(i)), then the probability of the verifier
accepting that instance is ≤ ε′, where ε′ is the soundness of
CMT-slim.

Proof. We prove this lemma by reducing CMT-batching to
CMT-slim.

Suppose toward a contradiction that CMT-batching has
soundness error > ε′. This means that there exists some cir-
cuit C, some set of inputs x(1), . . . , x(β), and a prover P∗ for
CMT-batching such that, when given x(1), . . . , x(β) as inputs,
P∗ returns y(i) 6= C(x(i)), yet the verifier V ′ still accepts with
probability > ε′. Assume WLOG that i = 1.

We construct a CMT-slim prover, P , for the circuit C as
follows:

1. At the beginning, P receives x from V , the CMT-slim
verifier. It sends (x, x(2), . . . , x(β)) to P∗, getting back
(y, y(2), . . . , y(β)). It sends y to V .

2. In each round, P receives a message from V . It forwards
the message to P∗ and receives β responses. It sends the
response from P∗ for instance 1 to V .

We want to show that when y 6= C(x), P can get V to accept
with probability > ε′ (thus contradicting the soundness of
CMT-slim).

Recall that, while the CMT-batching verifier V ′ shares the
same randomness between instances, it otherwise treats all
instances independently when verifying. Thus, we can think
of V ′ as a collection of β CMT-slim verifiers that all generate
the same randomness. V ′ accepts for iteration i if and only if
the ith CMT-slim verifier accepts. Since P∗ can get the 1st
CMT-slim verifier in V ′ to accept with probability more than
> ε′ (by our assumption),P can get V to accept with the same
probability, and we get the desired contradiction.

A.3 General expressions for ˜mult and ˜add

This section describes general expressions for ˜mult and ˜add
that can be applied to every layer.

Let Saddi = {(g1, . . . , g3b) ∈ F3b
2 | addi(g1, . . . , g3b) = 1}

and similarly for Smulti . Furthermore, let χ0(τ) = 1 − τ and
χ1(τ) = τ . The general expressions for ˜addi and ˜multi are

˜addi(τ1, . . . , τ3b) =
∑

(g1,...,g3b)∈Saddi

3b∏
j=1

χgj(τj), and

˜multi(τ1, . . . , τ3b) =
∑

(g1,...,g3b)∈Smulti

3b∏
j=1

χgj(τj).

Note that if (τ1, . . . , τ3b) ∈ F3b
2 , then

∏3b
j=1 χgj(τj) = 1 if

(τ1, . . . , τ3b) = (g1, . . . , g3b) and equals 0 otherwise. Thus,
˜addi(τ1, . . . , τ3b) = 1 if (τ1, . . . , τ3b) ∈ Saddi and equals 0

otherwise (similarly for ˜multi and Smulti ). These expressions
agree with addi and multi wherever addi and multi are de-
fined, and they are polynomials of appropriate degree. Thus,
they must equal ˜addi and ˜multi.
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