
Defining and enforcing transit policies in a future Internet

Jad Naous†, Arun Seehra‡, Michael Walfish‡, David Mazières†, Antonio Nicolosi§, and Scott Shenker¶

†Stanford ‡UT Austin §Stevens Institute of Technology ¶UC Berkeley, ICSI

Abstract

Policy is now crucially important for network design: there
are many stakeholders, each with requirements that a net-
work should support. Among many examples, senders have
an interest in the paths that their packets take, providers have
analogous interests based on business relationships, and re-
ceivers want to shut off traffic from flooding senders. Un-
fortunately, it is not clear how to balance these considera-
tions in principle or what mechanism could uphold a large
union of them in practice. To bring the policy issues into fo-
cus, we (ironically) avoid predictions about which policy re-
quirements will predominate in a future Internet and instead
seek the most general policy framework we can possibly im-
plement. To that end, this paper articulates a general policy
principle; in condensed form, it is empower all stakeholders.
Upholding this principle in the context of Internet realities,
such as malicious participants, decentralized trust, and the
need for high-speed forwarding, brings many technical chal-
lenges. As an existence proof that they can be surmounted,
this paper describes the design, implementation in hardware,
and evaluation of a concrete architecture.

1 Introduction
This paper is about the future of the Internet, but we be-
gin with its past. The history of network routing began as
a topological problem: how do you find the set of shortest
paths in a network graph ([23])? However, with the advent
of domain-based routing in the Internet, policy became an
important consideration. In fact, policy concerns were em-
bedded in the 1989 requirements document (RFC 1126) that
set the groundwork for the first version of BGP:

Those resources used by (and available for) routing are
to be allowed autonomous control by those administra-
tive entities which own or operate them. Specifically,
each controlling administration should be allowed to es-
tablish and maintain policies regarding the use of a given
routing resource. [43]

Embodying this principle, BGP allows each domain to de-
cide, unilaterally, which routes it accepts and exports based
on the full AS-level path.

Provider control is no longer limited to the control plane;
providers have imposed usage limits and blocked certain
types of traffic that they believe would be injurious to their
or other networks.

Moreover, ASes are not the only stakeholders in the In-
ternet. There have been many calls to grant sources some
control over their packets’ paths (see, for example, [25, 28,
33, 39, 52, 53, 55, 65, 66]). The reasons for source control
vary from performance (letting sources find the best qual-

ity paths) to preference (letting sources avoid providers they
don’t trust) to price (letting sources find the cheapest paths).

For exactly the same reasons, receivers, too, have an in-
terest in controlling the path of their incoming packets. Re-
ceivers also care who is sending them packets and may wish
to allow only a subset of incoming flows (e.g., when under
attack, accept packets only from their known customers).

While all of the participants could legitimately be consid-
ered stakeholders, and the policy concerns discussed above
seem plausible, it is not clear how to balance the various con-
cerns. Take, for instance, the case of a user trying to send
email from her hotel room. The user would like her packets
to reach her company’s mail server via a reliable and high-
bandwidth path. The hotel would like her packets to take the
least costly path. The first-hop provider cares that the pack-
ets are coming from a paying customer but wants to block all
transiting SMTP traffic because they fear it might be spam.
The receiving mail server only wants to receive outgoing
SMTP traffic from company employees. Moreover, it wants
all of this traffic to pass through a third-party virus-scanner
service to which it has subscribed. All of these are valid pol-
icy goals, as they concern the use of the stakeholder’s re-
source or the fate of their own communication, but it is not
clear which of these policy considerations, when they are in
conflict, should prevail.

All of the preceding background leads us to the question
this paper tries to address: what policy framework should we
adopt in a future Internet architecture? This question is one
of both policy and mechanism: what policy considerations
should the architecture support, and can we build a mecha-
nism to support those considerations?

Judging by the increasing number of architectural propos-
als that support policy-oriented features such as interdomain
policies, source selection of routes, and interposition of mid-
dleboxes by endpoints, there appears to be consensus that the
various stakeholders have the right to exert some control over
their flows, and that these considerations should be reflected
in a future Internet architecture. Table 1 lists many, but by no
means all, of these proposals. As the table shows, the union
of policy considerations is large, but the intersection is small:
each proposal generally supports only a particular subset of
stakeholder control, and many of these works don’t compose.

Thus, as a community striving to design the future Inter-
net, we have two choices:
• Choose one subset of policy considerations and bet that it

will be sufficient to meet all policy needs for the foresee-
able future.

• Develop a flexible architecture to support all reasonable

1

Approach

dest. can
constrain
sender

resource
attribution

provider policy granularity

prefix suffix subsequence

src can
constrain

routes

MB∗ can
constrain

routes

rcvrs can
invoke
MBs∗

providers
can invoke

MBs∗

BGP x ∗MB = middlebox
Capabilities [63, 67] x
Filters [11, 19, 24, 34, 36, 45, 46, 61, 64] x
Intserv, RSVP [13, 14] x x
Visas [26] x
Platypus [55] x x
LSRR [6] x x
Policy routing, Nimrod [18, 21] x x
Pathlets [28] x x x
Wiser [47] x
MIRO [62] x
RBF [54] x x x x
Src routing [25, 33, 39, 65, 66] x
Byzantine routing [52, 53] x
NUTSS [32] x
i3, DOA [58, 60] x
DONA [41] x
ICING (this paper) x x x x x x x x x

Table 1—Policy controls available in many, but not all, network-layer proposals. Abstracting the details of the various proposals, each of
the listed controls (columns) can be viewed as some entity along the path of a communication constraining some portion of the path of the
communication. While many of the listed proposals (rows) cannot be implemented together, the framework in the text is intended to make
available all of the controls in the columns, and many more besides. As argued in the text, each of these controls represents a legitimate policy
interest on the part of some stakeholder.

policy considerations, allowing the Internet’s policies to
evolve as its usage and organizational structure change.

The first choice, while certainly expedient, seems risky given
how unpredictable the Internet has been so far, in both the na-
ture of its traffic and the organizational structure of its stake-
holders.1 In fact, we (as a community) have a terrible record
in predicting the future of the Internet, and opting for this
choice is a gamble that we will finally get it right this time.

Thus, on policy grounds, the second choice is more desir-
able: it would not only accommodate the many stakeholders
and desirable policy goals that have been proposed but also
avoid guesses today about what will be important tomorrow.
However, it poses two challenges: can we identify what con-
stitutes reasonable policy considerations, and can we build
a mechanism to support all such policies? In response to the
first challenge, we offer the following principle:

Policy principle: A communication should be allowed if,
and only if, all participants approve. By participants, we
mean the sender, the receiver, the carriers, and any other
intermediaries.

In the next section, we elaborate on the principle and de-
scribe the controls that it implies. Here, we just note that
the principle—though it may seem like overkill because it
apparently gives every participant veto power—in fact ap-
pears necessary to support all potential reasonable desires of
all stakeholders. Moreover, these policy concerns are real:
senders and receivers (at least some of them) do care about
which ASes their packets transit, receivers do want to block
traffic from troublesome senders, and all participants do have
business and security reasons to favor particular parts of the
network, or specific middleboxes.

1Recall that the modern ISP-oriented Internet arose in the last fifteen
years and is not at all what the Internet pioneers envisioned.

Of course, we cannot know whether the principle will ul-
timately be sufficient, but, encouragingly, the controls it im-
plies appear to encompass all prior transit policy proposals.2

Thus, it at least provides a useful minimum target for any ar-
chitecture seeking to support all potential reasonable policy
considerations of all stakeholders.

What about the second challenge: can we build an archi-
tecture that supports such a general set of policies? To answer
this, we ask a few more questions:

Can we first design such an architecture? Yes. This paper
presents ICING, a new network architecture that appears gen-
eral enough to enforce the policies of all prior transit policy
proposals. Like prior works [3, 15, 17, 30, 31], ICING sepa-
rates the control plane from the data plane: policy decisions
in ICING are expressed on commodity servers, vastly lower-
ing the barrier to realizing and enforcing new policies. How-
ever, unlike those works, which are designed for enterprise
networks, ICING targets a federated network like the Internet
that has no global root of trust.

Federated networks bring technical challenges. For exam-
ple, because participants may want to enforce policies based
on a communication’s inter-domain path, ICING’s data plane
must solve a longstanding problem in network architecture:
verifying that packets are actually following their approved
paths. As summarized in Table 2, previous solutions require
a central authority, limiting their scope to single domains.
ICING’s solution to this problem introduces packet authenti-
cation techniques that may be of independent interest.

2By transit policy we mean any policy that is based on the nature of
the flow rather than on individual packet contents. Our policy space cannot
accommodate policies like drop all virus-laden packets, but it can support
policies that require flows to pass through a virus-scanning middlebox.

2

Mechanism
all participants can deny

based on path
comm. held to
described path

malicious behavior
tolerated decentralized

fixed and feasible
data plane

IP+BGP (the status quo) x x
Ethane x x x
Auditing [68] x x
MPLS, virtual circuits, resource reservation [10, 14, 56] x x x
Capabilities, Platypus [55, 63, 67] x x x
Passport [44] x x x
Byzantine routing [52, 53] x x
Secure routing [8, 50] x x see caption x
Secure policy routing [27] x x see caption
PoMo Architecture [16] x x x
ICING (this paper) x x x x x

Table 2—Prior approaches to aligning control and data planes, in terms of our requirements. One reason that MPLS, for example, does not
tolerate maliciousness is that two entities on the intended path can collude to skip a third; more generally, MPLS doesn’t include cryptographic
assurance to provide proof that a packet is following its approved path. Secure routing and secure policy routing do not require a PKI, but
they do require prior coordination and pre-configuration among the hops; thus, they don’t fully meet our decentralized requirement.

Is the architecture feasible to implement? Section 6 de-
scribes a working ICING prototype, built on NetFPGA [2].

Can we avoid the architecture having to pay for unused
generality? Yes in the control plane, no in the data plane.
Though ICING’s control/data plane split allows any entity
on a communication’s path to implement arbitrarily complex
policies, participants with simple policies may want to dis-
intermediate themselves from the approval process. For in-
stance, a provider may wish to approve any traffic destined
to a customer so long as the customer also approves it. In this
case, the provider does not want to be consulted on each of
the customer’s communications. ICING lets such a provider
entirely delegate this slice of policy to the customer’s control
plane. However, the provider’s data plane must still enforce
the customer’s policy to avoid carrying unwanted traffic. In
effect, a corollary of moving policy to the control plane is
that simplifying policy does not simplify the data plane.

What is the cost of moving to such an architecture? Sec-
tion 7 reports that our prototype forwards at rates comparable
to IP, but using 86% more logic area than an IP router and
an average packet space overhead of 23%. These costs are
expensive today (though not prohibitive). However, we are
designing for the future, and technology trends often make
today’s expensive design tomorrow’s commodity.

Can the architecture scale to the Internet? Plausibly. We
obviously have not tested at scale, but the data plane looks
likely to scale (Section 7.4) and a working control plane
(Section 5) is designed to handle inter-domain routing and
authorization at Internet scale. We would be surprised to see
this specific control plane deployed Internet-wide without
substantial enhancements. Still, the working control plane
is evidence that Internet-scale deployment of some ICING
control plane is plausible. Moreover, as noted in Section 5,
ICING’s data plane can simultaneously support a wide range
of conceivable control planes, including ones that mimic the
policies of prior proposals (BGP, Pathlets [28], NIRA [65],
etc.), with the bonus that such policies can be enforced (to-
day, such policies are only advisory [48]).

The contributions of this paper are the policy principle and
the answers to the above questions.

But there is a higher-level point to this paper. In the near-
term, network architecture research does not seek to settle
debates but rather to explore the space of the possible. ICING
demonstrates that upholding the policy principle is possi-
ble. Indeed, while we cannot answer whether the benefits
will outweigh the costs (particularly as technology evolves
to diminish those costs), we can now at least ask what we
would have to pay for the generality. Of course, our notion of
abundant generality may later be seen as insufficient, which
would call for a broader policy principle. But even in this
case, we hope ICING’s ideas can serve as a stepping stone to
an even more general network architecture.

2 What are reasonable policy considerations?
This section elaborates on the policy principle. The sections
ahead describe how ICING enforces policy.

The policy principle posits that every entity along the path
of a given communication (end-hosts, providers, and other
intermediaries) must approve the communication or else the
network should deny that communication. Moreover, only
those entities along a communication’s path should be able
to deny it. The principle raises three questions:
1. Why should the power to deny be vested only in entities

along the path of a communication?
2. Why should the power to deny be vested in every entity

along the path of a communication?
3. What are reasonable inputs to these deny decisions, given

that we cannot predict the future of the Internet?
Question 1 asks why non-participants in a given commu-

nication get no say in that communication. Our answer is
that while the policies of such third-parties (governments,
etc.) might be highly relevant, they should be addressed by
non-network means, such as the legal system. Why? Our po-
sition is that the Internet architecture should empower the
Internet participants. If there are actors whose authority to
control communication derives from a source besides partic-
ipation, such as laws, then they should use that authority to
restrict the policies established by participants. For example,
if the US Congress wants to enforce network neutrality, it
should pass laws stipulating that certain participants cannot

3

deny communication. We strongly believe that one should
not embed such legally derived concerns into the network
architecture itself, as they are likely to differ from region to
region and change over time.

To Question 2, as noted in the introduction, any entity
along the path of a communication, including the two end-
points, is a legitimate stakeholder: its resources are used for
that communication, and it is likely to care a great deal about
whether and how those resources are disposed.

One concern is that this view seems to explicitly empower
all entities along the path of a communication to drop the
communication (versus the implicit power they have from
being located in the path). But note that just because the In-
ternet architecture makes a control available does not mean
that it will be exercised, as economic and social pressures
strongly constrain which policies are enacted. For instance,
under BGP today, autonomous systems can pick routes based
on the entire interdomain path, but they rarely exercise more
than first-hop preferences. And in the future, perhaps paths
will be chosen by edge providers, with carriers caring only
whether they can bill a principal [55].

Our point with these examples is that, as noted in the in-
troduction, we think it unwise to embed policy predictions
in a long-lived architecture. Instead, our approach is to strive
for an architecture that upholds all reasonable policy consid-
erations, letting the future decide which controls get “lit up”.

This brings us to the third question: what are reasonable
inputs to an entity’s decision to approve or deny a commu-
nication, and how can we design for future policy considera-
tions if we do not know what inputs will be required?

We can never answer such a question definitively. How-
ever, it helps to look at previous attempts to enforce policy by
enhancing the network architecture. After all, if our defini-
tion of reasonable cannot encompass the goals of the present,
it has no hope of addressing the future. Table 1 lists some 30
prior works; in each case, one or more participants can estab-
lish policies based on the identity (or behavior) of some of
the other participants. As examples, in capability or default-
off architectures [11, 24, 45, 63, 67], the receiver elects not
to hear from particular senders; in NIRA [65], the source
controls a prefix of the inter-domain route, and the receiver
controls the remaining suffix; in BGP, providers constrain the
prior hop and make decisions based on the downstream AS
path. One can also imagine a provider caring about who else
has carried or will carry a packet, say to uphold promises of
particular classes of service to either endpoint.

Generalizing slightly, any participant in a communica-
tion may reasonably want to approve or deny communi-
cations based on the identities of all other participants. In
other words, the sender, full inter-domain route, and receiver,
which we call the path, should be an input to each partic-
ipant’s decision function. While any given participant will
likely care only about specific parts of this input, to not pro-
vide it in its comprehensive form would potentially rule out
reasonable (perhaps unanticipated) policy considerations.

But is the path enough? A participant also cares which of
its local resources a communication consumes. Is the com-
munication long- or short-haul traffic? Is it transiting the par-
ticipant’s network or terminating there? What QoS properties
does the traffic demand? How should the traffic be shaped?

Participants may have a slew of other considerations, in-
cluding user authentication, billing status, time of day, traf-
fic type, packet contents, and whether the other participants
agree to the communication. For example, in keeping with
the policy principle, if an intermediate provider knows that
the destination does not want to receive a given flow, that
provider ought to decline to be part of that flow.

Our ICING network architecture, which we turn to in a mo-
ment, allows entities to express and enforce the above pol-
icy considerations. Specifically, an entity gets the opportu-
nity (which it might not exercise) to approve flows based on
who is participating (the path), what local resources the com-
munication will consume (including links, queuing priority,
required middleboxes, ports on end-hosts, paths through an
internal network), and arbitrary other inputs (billing status,
time of day, etc.). Then, the network ensures that flows obey
these constraints.

Note that under ICING, entities cannot enforce policies
about what other entities do internally. One reason is that
providers need the freedom to innovate and evolve their net-
works transparently. Thus, an entity under ICING cannot en-
force how the other participants handle a communication—
including whether a provider used a particular lambda,
whether it delegated its role to another provider in another
country, where a packet traveled geographically, whether a
packet was copied, etc. Customers must enforce such con-
cerns outside the architecture (e.g., through negotiated con-
tracts). However, ICING at least exposes a foundation for the
needed negotiations. This contrasts with the status quo, in
which participants have little control over the characteristics
of the flows they originate, carry, and receive.

We now delve into ICING’s details, describing how it en-
forces the policy considerations just described.

3 Data plane
ICING’s data plane is responsible for forwarding data pack-
ets and enforcing policies established by the control plane.
This section describes both the interface through which one
expresses policy to the data plane and how the data plane’s
dedicated forwarding hardware processes packets.

The data plane is intended to provide a fixed target for
hardware manufacturers while permitting a range of possible
control planes. The control plane resides off the data path in
software on commodity servers, making it easier to extend
so as to support new policy considerations. Many policy-
dependent functions traditionally handled on the data path
are thus implemented by ICING’s control plane, not its data
plane. For example, a packet’s full inter-domain path is de-
termined before it is first transmitted, not while it is en route.

4

#

〈realm, vnode〉

42 bytes

counter

6 bytes 1 byte

hop error
hop info · · ·hop 1

1 byte 42n bytes

other
fields

5 bytes

packet

hop info (conceptual)

hop n
info payload

Proof ofProof ofHop ID
Consent (PoC) Provenance (PoP)

Figure 1—Logical packet format. The hop info depicted is concep-
tual; Section 3.6 describes how the actual hop info is compressed to
42 bytes. (§7.1 and §8 discuss whether 42 bytes is still too high.)

In general, a machine needs to communicate with con-
trol plane servers before it can use the data plane. There
are two ways in which such communication takes place:
over the link layer of the local network—using a broadcast
host-configuration protocol analogous to DHCP—and over
ICING’s own data plane. The former method is used to boot-
strap the latter. Bootstrapping is a special form of delegation,
which we discuss in Section 3.3. For now, we simply assume
hosts can invoke the control plane when necessary.

3.1 Overview

The data plane enforces policy by dropping packets that are
not part of an authorized communication. Enforcement boils
down to three requirements: a forwarder must verify that a
communication has been authorized by the control plane;
authenticate a packet that claims to be part of an authorized
communication; and constrain a packet’s intra-domain route,
queuing priority, or other consumption of local resources as
stipulated by the control plane. The three requirements are
reflected in ICING’s packet format, a simplified version of
which is shown in Figure 1.

ICING divides the network into autonomous realms, each
of which is controlled by a single administrative entity.
Realms are the participants in communications and thus the
entities with policy desires. The forwarders in a particular
realm enforce the policy established by that realm’s con-
trol plane. (Cross-realm policies, such as upstream realms
dropping traffic not wanted by downstream realms, are the
purview of the control plane, and are discussed in Section 5.)
Each packet contains hop information indicating all realms
along its intended path (source, destination, and intermediary
realms). Realms are analogous to BGP ASes, but, because of
ICING’s greater flexibility, can usefully be smaller. We envi-
sion realm granularity ranging between that of today’s ASes
and that of DNS zones.

Realms can authorize communications based on arbi-
trary criteria, from traditional routing policy considerations
to credit card payments to reputation systems, but ICING
shields the data plane from these details. The data plane only
needs to know whether the control plane has authorized a
communication, not why or how. Control plane servers could
directly transmit approval of each new communication to for-
warders, but we rejected this design because the state kept

by forwarders would complicate fail-over. Instead, control
plane servers signal approval by giving senders Proofs of
Consent (PoCs), cryptographic values reminiscent of capa-
bilities [55, 67]. Senders embed PoCs in packets, making
ICING traffic self-authenticating.

When a communication is approved, the sender gains the
ability to send packets along a path for some period of time.
However, the data plane must still authenticate packets to en-
sure they are fully following the authorized path. Otherwise,
valid PoCs could be misused by unauthorized communica-
tions (for instance to impersonate an authorized sender along
a suffix of an authorized path). To prevent such abuse, pack-
ets additionally contain cryptographic Proofs of Provenance
or PoPs, through which each realm handling a packet proves
to subsequent realms that it has approved and authenticated
the specific packet.

Finally, the path additionally contains a per-realm value
called a vnode [28] that constrains the use of that realm’s
resources. The interpretation of vnode values is entirely up
to the local realm, somewhat like MPLS labels. Vnodes can
be used to restrict connectivity (e.g., deny long-haul transit),
specify quality of service, or force traffic through middle-
boxes. To prevent unauthorized use of vnodes, PoCs simul-
taneously authorize both the realms and vnodes in a path. We
elaborate on vnodes at the end of Section 3.2.

ICING is decentralized so as to scale to a federated net-
work like the Internet. Realms need not trust each other ex-
cept as required to carry traffic over a specific path. More-
over, the architecture does not require any central authority,
not even a registry for realms. (We do, however, anticipate
the need for at least one hierarchical naming scheme like
DNS on top of ICING.) As summarized in Table 2, ICING
is the first feasible network architecture to provide secure
enforcement of paths without resorting to centralized trust.

The remainder of this section expands on the packet for-
mat and packet handling of the data plane.

3.2 Hop IDs

A packet’s path consists of a list of hop IDs, each of which
has two parts: a realm ID, which is a public key, usually des-
ignated R, and a vnode, usually designated r. Using public
keys to identify network entities is by now a well-established
technique [5, 49]. The vnode abstraction was introduced
more recently by Pathlet routing [28].

vnode (r)realm ID/public key (R)
hop ID

The realm ID, R, names a realm participating in the com-
munication, much like an AS number in a BGP AS path.
Unlike AS numbers, however, which are centrally allocated,
realm IDs have an egalitarian namespace because they are
public keys; anyone can unilaterally create a new, globally-
meaningful realm ID by generating a fresh key pair. This is
crucial in light of our need to avoid centralized trust.

5

A forwarder in realm R learns of the existence of a re-
mote realm, R′, the first time it processes a packet whose
path contains R′. If R′ precedes R on the path, then the packet
should already have transited R′. In this case, to authenticate
the packet, the forwarder must check that R′ approved it; this
is done by verifying a cryptographic value in the PoP. Con-
versely, if R precedes R′ on the path, i.e., the packet should
subsequently transit R′, R’s forwarder must prove to R′’s for-
warder that R approved the packet; this is done by placing a
cryptographic value in the PoP. The specific PoP computa-
tions are described in Section 3.4, but either case requires a
shared cryptographic key between R’s forwarder and R′’s.

Realm IDs provide these shared keys, which we term PoP
keys. Every forwarder in realm Ri knows the realm’s corre-
sponding private key, R−1

i . Given another realm ID, Rj, the
forwarder uses non-interactive Diffie-Hellman key exchange
to compute two PoP keys, ki,j and kj,i. Ri’s forwarder uses ki,j
(resp. kj,i) to compute PoPs for (resp. verify PoPs from) Rj.

The use of public keys raises the question of key man-
agement. How do you know you have the right realm ID
for what you want to do? This is analogous to asking how
you know you are talking to the right computer. The Inter-
net has shown that the answer depends highly on the specific
use case. Often people don’t actually care if they are talk-
ing to the right computer. Other times they rely on a central
certificate authority (as SSL/TLS does), cache public keys
(as SSH does), or manually distribute symmetric keys (as
with TCP MD5 and sometimes IPsec). It would be a mistake
not to support all reasonable key management schemes [49].
ICING therefore leaves key management to the control plane
and the application, where, like today, multiple schemes can
be introduced and happily coexist on the same underlying
network.

Public keys further raise the question of key revocation.
A realm’s public key is also its realm ID; should the key
or a derived PoP key be compromised, the realm will have
to change IDs. This means reconfiguring forwarders (in it-
self relatively straightforward). In the control plane, it is
tantamount to changing an organization’s AS number—all
routes through the old realm will be withdrawn and equiva-
lent ones advertised by a new realm. To minimize disruption,
forwarders can operate both realms simultaneously during a
“make-before-break” transition period.

The vnode in a hop ID is a hook with which to bind
approved communications to policy-dependent data-plane
functions. Vnodes can affect queuing priority, restrict intra-
domain routing, mandate middleboxes or traffic shaping, or
be used to trigger unanticipated future data plane features.

Vnodes are also the granularity at which realms perform
accounting and can delegate and revoke path authorization
privileges. We envisage that providers will assign different
vnodes to different customers and peers and, through dele-
gation, allow these parties to authorize their own traffic over
its network. Vnode-based restrictions on intra-domain rout-
ing can enforce a wide variety of policies [28] such as valley-

free routing even if delegation allows customers to authorize
arbitrary inter-domain paths.

3.3 PoCs

The purpose of a PoC is to prove to a realm’s data plane for-
warders that its control plane servers have authorized the par-
ticular path and vnode of a packet. Forwarders drop packets
that do not contain valid PoCs. The authorization is proved
by means of a vnode key—a symmetric key, sr, specific to
each vnode, r, and shared between all control plane servers
and data plane forwarders in a realm.

Each PoC C has two parts: C.expire, the expiry time
stamp, and C.proof, a token computed from the vnode key
sr via a pseudo-random function (PRF)—a sort of message
authentication code (MAC) with deterministic outputs:

path
〈Rn, rn〉〈R1, r1〉 〈R2, r2〉 · · ·

[R1=Sender] [Rn=Destination]

proof = PRF (sr , {path, expire})expire

PoC

To delegate path authorization for a vnode, a realm dis-
tributes the vnode’s key. A delegate uses this key to autho-
rize arbitrary paths through the realm’s vnode without further
involving the realm’s control plane servers. An important
use of delegation is bootstrapping; ICING’s host configura-
tion protocol returns vnode keys with which hosts can talk to
local control plane servers from which to obtain more PoCs.

A PoC states that a realm has authorized one of its vnodes
to appear in a particular path. This does not always mean
that connectivity actually exists along the path. If two back-
to-back realms in the path do not peer, the PoC will be of
little use for sending traffic. More interestingly, even when
connectivity between two realms R1 and R2 exists, R1 may
choose to configure only some of its vnodes to forward traffic
to R2. This is how providers can enforce valley-free routing
even after distributing vnode keys. E.g., if R1 offers peering
but not transit to R2, then R1 should give R2 a vnode that only
connects to R1’s customers, not its upstream providers.

3.4 PoPs

The Proof of Provenance, or PoP, lets a realm verify that
a packet with a valid PoC is actually following the path
authorized by that PoC. Forwarders drop packets that do
not contain valid PoPs. Suppose a path consists of hop
IDs 〈R1, r1〉, 〈R2, r2〉, . . . , 〈Rn, rn〉. When Rj receives a packet
with this path, for the packet to be valid, its jth hop info (Fig-
ure 1) must contain a proof of provenance PoPj. PoPj consists
of assertions by each realm Ri for i < j that Ri has approved
and authenticated the packet.

6

MAC (ki,j, {i, pkt hash})

PoPj

PoPj[j− 1]· · ·PoPj[1] PoPj[2]

PoPj[i]

H(counter, error hop #, path, payload)

pkt hash

PoPs are computed using the shared PoP keys discussed
in Section 3.2. Let ki,j be the PoP key for messages from Ri

to Rj. Before Ri forwards a packet, it adds a cryptographic
verifier to the PoP in every hop info from i onwards. Specif-
ically, for each hop number j (where j ≥ i), the forwarder in
realm Ri uses ki,j to compute a MAC over the current hop #
(namely i) and a collision-resistant hash of most other packet
fields (except the PoPs, which are changing). It then appends
these MAC values as PoPi[i], PoPi+1[i], ..., PoPn[i] before for-
warding the packet.

Note that Ri adds a MAC for itself under key ki,i to PoPi.
(This is not shown in the diagram above, which depicts the
state of PoPj when a packet reaches realm Rj.) This PoPi[i]
value lets Ri later verify that it actually forwarded the packet,
which in turn helps ensure the legitimacy of error packets as
described in Section 3.5.

All of the symmetric-key cryptographic algorithms were
chosen so that our forwarding hardware could process pack-
ets at line rate. Unfortunately, the public-key algorithm used
to compute PoP keys takes about 4 msec in our implementa-
tion (§7.3), far too slow to be done for every packet. The PoP
key derivation cost is mitigated by the fact that forwarders
aggressively cache PoP keys; a forwarder computes PoP keys
only the first time a new realm appears in any path. ICING
also gains a factor of two because forwarders do not derive
ki,j and kj,i separately; they are actually the same, with MAC
inputs tagged to avoid ambiguity.

3.5 Packet processing and errors

When a realm receives a packet, it does the following:
1. Verify the PoC, and drop the packet if the checks fail.

2. Use a replay cache to check if the 〈PoC, counter〉 pair is
an obvious replay, and if so drop the packet.

3. Verify the PoP, and drop the packet if the checks fail.

4. Use the current hop’s vnode and next hop’s hop ID to de-
termine an intra-domain route and output port.

5. Add MACs to the current and subsequent PoPs.

6. Increment the packet’s hop #.

7. Forward the packet out the appropriate port.
Unfortunately, step 4 can fail, particularly following net-

work topology changes—perhaps the current realm can no
longer reach the next hop, or no remaining intra-domain
routes for the next hop are permitted for the current vnode.
Because packets are source routed, such a failure must be
propagated back to the sender for it to select another route.

(The sender may already have an alternate route from the
original path negotiation, or may need to invoke the control
plane again.) Requiring all route adjustments to be made at
the sender potentially adds latency to failure recovery. On the
other hand, BGP can take tens of seconds to converge [42],
so the ability for senders to try new routes unilaterally can in
some cases allow faster recovery.

To allow error reporting, whenever a realm consents to a
forwarding path, it may (and usually does) implicitly consent
to carry error packets in the opposite direction. To create an
error packet, a forwarder sets the error hop # field in the
header to the current hop #. (The error hop # field is 0 in reg-
ular packets.) An error packet’s payload contains the original
packet’s pkt hash (§3.4), followed by optional error-specific
information (analogous to ICMP error type/code and data).

Forwarders recognize packets with non-zero error hop #
fields as error packets and handle them differently. The most
obvious difference is that these packets are routed back-
wards, to the previous hop, and that the hop # field must be
decremented rather than incremented. A forwarder that ex-
periences a failure when sending an error packet drops it at
once—error packets never generate further error packets.

The PoPs in an error packet contain all the forward-
direction MACs from the original packet that caused the er-
ror in addition to MACs for the error packet itself. Because
the error payload begins with the original packet’s pkt hash,
forwarders can verify these forward-direction MACs despite
not having the original packet. In particular, the forwarder in
realm Ri drops an error packet unless PoPi has a MAC under
ki,i. This ensures that a realm will not forward an error packet
if it did not previously forward the original packet.

3.6 Design details

Here we describe the design in more detail, along with how
the hop info is squeezed to 42 bytes.

Hop info The actual hop info used is shown below:

hop Info (actual)
hop verifier (V)

18 bytes4 bytes

vnoderealm ID

20 bytes

To make public keys small, we use elliptic curve cryptog-
raphy (ECC). Every realm ID, Ri, is a point on NIST’s B-163
binary-field elliptic curve group [4]; this affords roughly 80-
bit security, similar to 1,024-bit RSA keys [4]. We reduce the
representation of Ri from 163 to 160 bits by requiring the top
three bits to equal a hash of the lower 160; the cost is a factor
of 8 in expected key generation time. The hop ID, consisting
of the realm ID and vnode, consumes a total of 24 bytes.

The remaining 18 bytes of the hop info hold a hop ver-
ifier—a combined proof of consent and provenance that
lumps the hop’s PoC and PoP values together as shown:

7

expire = 0xffff

2 bytes 12 bytes 4 bytes

hop verifier

hardener
(DoS Hardener)(Combined PoC.proof and PoPs)

proofs
& PoC.expire

Each hop verifier V has three parts: a consent time stamp,
V .expire, a 12-byte proof, V .proofs, and a 4-byte denial-
of-service hardener, V .hardener. V .expire contains the low-
order 16 bits of the PoC’s expiration time. (PoCs have a max-
imum lifetime, ensuring this value does not wrap.) V .proofs
is a 12-byte aggregate MAC [38] combining the realm’s PoPs
with a cryptographic derivative of PoC.proof.

Other packet fields Other packet fields are shown below:

other packet fields (5 bytes)
packet len protocolpath lenversion

Vnode keys and controlled delegation The vnode key sr is
used to derive PoCs for paths containing vnode r as follows:

PoCi.proof = PMAC(sr, path || PoCi.expire)

PMAC [12] is an efficient, parallelizable MAC and PRF.
It would be cumbersome for a realm to manage keys for its

232 vnodes separately. Instead, we rely on a small number of
shared prefix keys to pseudo-randomly generate many vnode
keys. Let r/p denote the p-bit prefix of vnode r. If r/p is not
explicitly bound to a shared prefix key and r/(p−1) has pre-
fix key mr/(p−1), then the prefix key for r/p is computed as
mr/p = PRF(mr/(p−1), r/p) (a generalization of a technique
suggested by [55]). The vnode key sr is just mr/32.

Given this approach to vnode key derivation, vnode pre-
fix delegation is easy to implement. To delegate a block
of vnodes with prefix r/p (i.e., 2p vnodes) to a customer,
the realm gives the customer a single prefix key, mr/p. The
customer can further sub-delegate by divulging mr/k, where
k > p. Additional optimizations are discussed in [51].

Packet construction and rewriting To initiate a flow, the
sender invokes the control plane to retrieve PoCs (§5). To
construct individual packets, it computes the initial values of
the per-realm hop verifiers, V1, . . . , Vn, where n is the path
length. Then, as the packet travels, each realm Ri follows the
steps in Section 3.5, except for the following two changes:
• The realm combines steps 1 and 3 to verify both consent

and provenance using Vi.
• The realm proves provenance (step 5) by modifying

Vi, . . . , Vn (rather than increasing the length of PoPs).
We now describe the above steps in more detail. Our de-

scription uses the following functions. PRF-96 is a keyed
pseudorandom function that maps 256-bit quantities to 128-
bit quantities using two AES-128 encryptions, then discards
the last 4 bytes to produce a 96-bit result. PRF-32 does the
same but returns only the last 4 bytes of the 128-bit quan-
tity. H-247 is a 247-bit suffix of the collision-resistant hash

function CHI [35], a SHA-3 candidate. (Details about these
functions are in our technical report [51].)

The sender initializes Vi for 1 ≤ i ≤ n, as follows:
1. Set H = H-247(counter || err hop # || path || others || payload)

2. Set Vi.proofs = PRF-96(PoCi.proof, 1 || H)

3. Set Vi.hardener = PRF-32(PoCi.proof, 1 || H)

4. Get k1,i from cache or by slow path calculation
5. Set Vi.proofs = Vi.proofs⊕ PRF-96(k1,i, 1 || H)

To verify consent and provenance, a forwarder in realm Ri,
1 < i ≤ n, checks the PoC’s expiry, reconstructs a reference
hop verifier V ′ and compares it against Vi, the hop verifier in
the ith hop ID in the packet, as follows:

1. Check Vi.expire and drop packet if PoC expired.
2. Set H = H-247(counter || err hop # || path || others || payload)

3. Set V ′.proofs = PRF-96(PoCi.proof, 1 || H)

4. Set V ′.hardener = PRF-32(PoCi.proof, 1 || H)

5. Check that V ′.hardener = Vi.hardener (and drop if not)
6. For 1 ≤ j < i:

(a) Get kj,i from cache or by slow path calculation
(b) Set V ′.proofs = V ′.proofs⊕ PRF-96(kj,i, j || H)

7. Check that V ′.proofs = Vi.proofs (and drop if not)

After the above steps, the forwarder proves provenance by
rewriting the hop verifiers as follows. For i ≤ j ≤ n:

1. Get ki,j from cache or by slow path calculation
2. Set Vj.proofs = Vj.proofs⊕ PRF-96(ki,j, i || H)

Note that the above steps might require the forwarder to
derive some ki,j or kj,i. However, the forwarder would expend
such computations only after having verified Vi.hardener.
Without this check, an attacker could invent realms and bo-
gus paths to force spurious slow path operations on for-
warders. Vi.hardener is only 32 bits, so it does not rule out
such attacks altogether, but it decreases their effectiveness by
a factor of 232, which is sufficient to avoid denial-of-service.

4 Security considerations
As discussed in Section 3.1, ICING guarantees that the data
plane will drop a packet unless the current realm has ap-
proved the path and all previous realms on the path have ap-
proved the packet. Based on the strength of the cryptography,
these guarantees should hold even in the presence of mali-
cious parties, so long as the local realm’s control plane and
forwarders have not been compromised. Nonetheless, even
with these guarantees, malicious actors can still cause unde-
sirable things to happen in the network. In some cases ICING
can help mitigate these problems through the control plane.
In other cases, the problems are future work, or must be ad-
dressed outside the network.

Unauthorized subcontracting. Customers may care
about how providers handle packets. For instance, a cus-
tomer who cares about route diversity or privacy way wish
to prevent one ISP from transparently outsourcing transit to
another. All ICING can enforce is that the ISP authenticated
and approved the packet; it cannot ensure the ISP’s failure
independence, nor prevent the ISP from disclosing the com-

8

munication to others. If the ISP is honest, the use of vnodes
to segregate traffic that may and may not be outsourced could
help avoid accidental non-compliance. If the ISP is not, then
such considerations will have to be verified and enforced out-
side the scope of the network architecture.

Unsatisfactory service. A provider may sell access to a
vnode with a particular service level agreement then fail to
uphold that agreement. In the extreme, the provider could
drop all packets, even for communications with valid PoCs.
In this regard, ICING is no worse than the status quo. How-
ever, it would be nice for a network architecture to pro-
vide some accountability framework to help place the blame
on entities violating their SLAs. One concern is that ICING
could hamper efforts at fault localization such as [9, 29].

Replay attacks. An attacker who has observed a valid
packet can attempt to flood a suffix of the packet’s path with
copies of the packet. A modest-sized replay cache will defeat
obvious, aggressive flooding with copies of a small number
of packets (§3.5). An attacker who can amass packets from
many flows in a single PoC validity window, however, may
be able to defeat a replay cache. Should such attacks prove
realistic, devising appropriate defenses will be future work.

Unwanted traffic. To avoid carrying troublesome data
plane traffic, a realm must ensure that the objectionable path
is not authorized. For this, the realm can simply neglect to
issue a PoC for the path. But what if the realm issues a PoC
and then regrets it? In this case, the realm must either wait
for the PoC to expire or immediately invalidate it by chang-
ing the vnode key for the local vnode. Note that rekeying
may cause a noticeable pause in valid communications, so is
primarily appropriate in emergencies.

Of course, an entity may care about much more than drop-
ping the traffic: it may wish to avoid receiving it in the first
place. In fact, unwanted traffic should ideally be dropped as
early as possible, to conserve all participants’ network re-
sources. Such early dropping requires that honest realms is-
sue PoCs only when they can verify that all other realms ap-
prove. Then unwanted traffic is dropped at the first honest
realm. In the next section, we describe a mechanism for such
mutual verification in the control plane, but first we ask how
to protect the control plane itself.

Control plane flooding. What if, in analogy with “denial-
of-capability” [7, 67], attackers target control plane servers,
which could be easily accessible (e.g., via a public vnode)?
This attack points to a question more general than the con-
trol plane: how, under ICING, can an entity defend against a
flooding sender that holds the permissions to reach it?

If clients can be identified at a useful granularity (e.g.,
“employees”, “paying customers”, “unknown clients who
solved a CAPTCHA”), then the victim can assign each cat-
egory to a different vnode. When overloaded, the victim de-
prioritizes categories by not renewing expired PoCs for their
vnodes; downgrading service to them; or, in an emergency,
changing vnode keys. An organization may also disclose a
vnode key to its employees. If the organization’s providers

fair queue by vnode, then employees are guaranteed to be
able to reach their employer, even in the face of massive
packet floods. If clients cannot be assigned to categories, we
(blatantly) borrow a mechanism from TVA [67]: a victimized
realm or its providers can apply Hierarchical Fair Queuing
based on the packet’s path, to ensure roughly fair bandwidth
consumption among senders. Note that while an attacker can
weaken this defense under TVA by faking path identifiers,
ICING’s properties prevent this weakening.

5 Control plane flexibility
To explore ICING’s generality, this section describes how
lighting up different controls (who exercises approve/deny?
based on what?) can cause ICING’s data plane to enforce the
policy considerations of different policy proposals. We con-
sider BGP, Pathlets [28], TVA [67], NIRA [65], and a new
proposal, sink routing, and show how routes are disseminated
and controls enabled via data plane primitives. In actually
enforcing the policies expressed by the participants, ICING
often provides a bonus relative to the original. For example,
today, a BGP advertisement is just. . . an advertisement: noth-
ing constrains packet flow to obey policy [48].

The section also introduces control plane components and
concepts—path servers, public vnodes, consent certificates,
and consent servers—that would be more generally useful
for other possible ICING control planes.

For lack of space, this section is highly abridged; our tech-
nical report [51] has more detail. One nagging question that
we do not have space to fully answer is how, if communica-
tion requires approval, one gets approval to request approval.
One (but not the only) answer is that entities can delegate (by
publicly disclosing) particular vnodes, the result being that
all network entities de facto have permission to use those
vnodes. We explain in our technical report how this process
is bootstrapped when an end-host attaches to a network. For
now, though, it may be useful to regard control plane traffic
as traveling over a separate network infrastructure, like the
legacy Internet—even though in both our design and imple-
mentation, the control traffic travels over ICING itself.

BGP. ICING permits a path dissemination and path re-
trieval protocol that chooses the same paths through the net-
work that BGP would. At a high level, realms run BGP be-
tween themselves, distributing the equivalent of the adver-
tisements that they would today, except using a flat names-
pace with signed messages. This approach to route dissem-
ination is shown to be feasible by the authors of AIP [5],
and needs small modifications in our environment. First,
providers cannot filter routes to customers because the con-
cept of default route does not exist in this design: every realm
must know how to reach every destination. Second, adver-
tisements come with a required vnode and vnode key, which
allows any entity to mint a PoC to use the advertised realm
as a hop but allows the realm to enforce local transit poli-
cies [28], such as valley-free routing, as explained in §3.2.
Because anyone on the network can mint a PoC for this

9

vnode, we call it a public vnode.
How do senders determine the path to a destination? End-

hosts contact a local path server. When a sender makes a
request to its local path server, the server uses the state col-
lected from BGP advertisements to identify the AS path and
to mint the PoCs needed to use the path. The state required
in path servers is only a linear factor more than what AIP [5]
requires, but AIP requires this state in routers, so commodity
servers should have no trouble.

TVA [67] and default-off. ICING supports a control plane
in which, for a sender to send packets to a receiver, it needs
authorization from the receiver. If a sender lacks this autho-
rization, the intermediate realms drop its packets. At a high
level, this policy—receiver exercises approve/deny based on
sender, intermediates apply approve/deny based on receiver’s
preferences—is what capabilities and other default-off pro-
posals [11, 24, 34, 63, 67] provide. As above, realms run
BGP among themselves. Here, advertisements contain two
vnodes: a public and a private. The sender gets a path (from
its path server) and sends a message along the public vnodes
requesting the receiver’s permission. If the receiver approves,
it signs3 a statement agreeing to the private vnode path. This
statement is called a consent certificate and proves the re-
ceiver’s authorization to the other participants. The receiver
sends the consent certificate back along the path. In each
realm, a consent server checks the consent certificate, gener-
ates a PoC for the private vnode path, appends this PoC to a
log, and forwards back to the sender. This process allows the
sender to reach the receiver on private vnodes. Effectively,
the public vnodes implement TVA’s capability request chan-
nel; the private vnodes, its data plane.

Sink routing. A slight modification to the above enables
what we call sink routing, where the receiver picks a packet’s
path. When a capability request reaches the receiver, it uses
its path server to pick a (possibly new) path for the sender
to use. The receiver then signs a consent certificate for this
path, and sends it back through the consent servers, as above.

NIRA [65]. We have built a control plane similar to
NIRA [65], where a valid path adheres to the policies of
both senders and receivers and is valley-free. We begin by
describing the routing protocol sIRP .

sIRP (simple ICING Routing Protocol) is a link-state pro-
tocol that propagates consent certificates as link state adver-
tisements, which declare that the issuing realm is willing
to carry traffic between two neighbors, perhaps on particu-
lar vnodes. The exact format, together with proposed exten-
sions, is in [51]. A provider R sends its customers the consent
certificates that it received along with one expressing that the
customer can transit R’s network. As a result, each edge cus-
tomer gets a set of consent certificates that validate paths to
well-connected providers (e.g., the Internet core) and to in-
termediate realms (e.g., its provider’s peers). These certifi-

3Realms also use their private keys to generate the ki,j (§3.2). Such “dual
purposing” of key material is wisely discouraged by folklore. However, an
analysis, which is outside of our scope, indicates that our protocols are safe.

cates are installed in path servers.
Path servers arrange themselves in a hierarchy similar to

DNS. To reach a destination, a sender queries its local path
server, which then takes over. That path server, X, contacts
another path server in the hierarchy, Y , supplying sets of
consent certificates that prove the sender has permission to
reach well-connected intermediate realms. Y looks for an in-
termediate realm that the sender can reach, and that the re-
ceiver can hear from, and then constructs a full path (as in
NIRA). If Y does not know how to reach the destination,
it responds with a path and consent certificates to reach the
next path server in the hierarchy. The required number of
round-trips is equivalent to DNS (assuming, loosely speak-
ing, that path servers know paths to subordinates and superi-
ors in the hierarchy), and the result is that the sender gets a
path to the destination. But where do the needed PoCs come
from? The answer is that PoC issuance has been delegated to
the path servers, so the messages above actually contain the
needed PoCs as well. The above process, though tedious to
read about, boils down to this: paths are constructed based on
senders’ and receivers’ preferences, but they obey the poli-
cies of the intermediate realms, with PoC issuance delegated
from the core to the edges (that is, to the sender’s local path
server, and to the receiver’s path server).

We now briefly describe one extension to sIRP consent
certificates that allows additional controls to be enabled.

Pathlets. Using a similar approach to the one above,
ICING can provide the equivalent of Pathlet routing [28].
Consent certificates are extended to specify a pathlet (this ex-
tension is described in [51]). Indeed, ICING borrowed vnodes
from Pathlet routing in the first place.

6 Implementation
This section describes our implementation of the hardware
and software data plane, the control plane, and endpoint soft-
ware. All of our software runs on Linux 2.6.25.

Data plane. Our prototype forwarder accepts ICING pack-
ets carried in Ethernet frames and implements the protocol
described in §3.6. The fast path runs on the NetFPGA pro-
grammable hardware platform [2], which has 4 GigE ports.
When an ICING packet enters the fast path, if the packet’s
path contains one or more realms Rj for which the forwarder,
representing realm Ri, does not have ki,j cached in hardware,
the hardware sends the packet to a software slow path over
the PCI bus to the processor. The slow path, implemented in
Click [40], calculates the needed keys and installs them in
the hardware’s key cache. The Diffie-Hellman key exchange
is implemented with the MIRACL cryptographic library [57].
We have not yet implemented PoC expiry via the expiration
field, handling error packets, or replay prevention. Adding
PoC expiry or error handling should not change our evalu-
ation significantly in the next section, nor should simple re-
play prevention.

The hardware image uses support modules from the
NetFPGA project. We implemented the ICING-specific logic,

10

Machine type CPU RAM OS

slow Intel Core 2 Duo 1.86 GHz 2 GB Linux 2.6.25
medium Intel Core 2 Quad 2.40 GHz 4 GB Linux 2.6.25
fast Intel quad Xeon 3.0 GHz 2 GB Linux 2.6.18

Table 3—Machines for measuring ICING overhead.

Varied
parameter Range

Fixed parameters

Pkt size Path len Path idx

Packet size {311, 567, 823, 1335, 1514} — 7 3
Path length {3, 7, 10, 20, 30, 35} 1514 — 1
Path index {1, 5, 10, 15, 18} 831 20 —

Table 4—Parameters used throughout experiments. Packet size in-
cludes header.

including cryptographic modules. The forwarder has a total
equivalent gate count of 13.4M and uses 89% of the total
FPGA logic area. By comparison, the NetFPGA reference
IP router has an equivalent gate count of 8.7M and uses 50%
of the total FPGA logic area.

Control plane and endpoints. Our combined consent and
path server is embedded in a DNS-like naming hierarchy
and exposes a getpath() call over XDR RPC (which re-
turns a path to a destination or to another such server). These
servers participate in sIRP. The control plane modules are
1500 semicolons of C++, not including cryptographic li-
braries. To send an ICING packet, an endpoint application
calls getpath(). This function returns an opaque handle
that the application uses as the destination IP address, which
a local Click instance then translates into an ICING header.

7 Evaluation
ICING introduces space and time overhead from per-packet
cryptographic objects and operations. Our principal question
in this section is whether these overheads are practical on
Internet backbone links. We begin by estimating ICING’s to-
tal space overhead (§7.1). In §7.2 and §7.3 we present mi-
crobenchmarks that evaluate the performance of our proto-
type forwarder and the supporting software, respectively. In
§7.4, we extrapolate from our results to assess ICING’s future
feasibility in the Internet core. Finally, in §7.5, we consider
the overhead of ICING’s control plane.

Setup and parameters Table 3 lists the three machines
that we used to evaluate ICING. Different experiments
use different machine classes to simulate real usage. The
NetFPGA used in the experiments is in the slow machine.

Our experiments often vary packets’ path lengths, path in-
dices or sizes. Table 4 gives the fixed and variable parame-
ters used for the forwarding throughput and software perfor-
mance measurements.

7.1 Packet overhead

Relative to IP, ICING requires larger packet headers; here we
elaborate on its projected effect on bandwidth consumption.
Because we cannot predict future traffic patterns (to do so
requires a separate study), our analysis uses current estimates
of AS path lengths and current estimates of packet sizes.

The fields in an ICING header that do not depend on the

0 500 1000 1500
3

3.5

4

Packet Size (bytes)

T
hr

ou
gh

pu
t

(G
bi

t/s
)

5 10 15 20 25 30 35
3

3.5

4

Path Length (realms)

T
hr

ou
gh

pu
t

(G
bi

t/s
)

5 10 15
3

3.5

4

Path Index

T
hr

ou
gh

pu
t

(G
bi

t/s
)

T
hr

ou
gh

pu
t

(%
 o

f
lin

er
at

e)

75

87.5

100

T
hr

ou
gh

pu
t

(%
 o

f
lin

er
at

e)

75

87.5

100

T
hr

ou
gh

pu
t

(%
 o

f
lin

er
at

e)

75

87.5

100

Figure 2—Avg throughput as a function of packet size (Table 4 row
1), path length (Table 4 row 2), and path index (Table 4 row 3). Per-
centages relative to max throughput possible on NetFPGA. Stan-
dard deviation is less than 0.02% of the mean at each measurement
point. The forwarder’s throughput is lowest for packets with large
payloads but small path lengths, when the most bits must be hashed.

packet’s path length use 13 bytes (see Figure 1). For each
realm in the path, the hop info requires 42 bytes: 24 bytes
for the hop ID (Ri, ri), and 18 bytes for the hop verifier V
(see §3.6). For a packet whose path length is 7—the average
AS-level path length in [37] but a high estimate, according
to [5]—the header is 307 bytes, or 20.3% of a 1514-byte
packet. For small packets, ICING’s overhead would be far
larger, but note that most bytes travel in large packets: the
average packet size reported by [59] is 1370 bytes.

Thus, on average, ICING would add overhead of
307/1370, meaning that ICING would increase total band-
width consumption by 22.4% relative to IP, assuming today’s
packet size distributions. This amount is sizable, but it may
be a fair price for ICING’s properties, as discussed in §8.

7.2 ICING forwarder

We now measure the throughput of our prototype forwarder.
From §3.6, one might expect the cost of processing a

packet to depend on the path length because the work of “ver-
ifying” and “proving” seems proportional to the path length.
However, the results of the various PRF-96 operations are
XORed, so they can be parallelized and thus removed from
the critical path. The only other heavily serialized function in
the design is the hash function (H-247), so we expect it to be
the bottleneck; i.e., throughput should depend on the number
of bits that must be hashed. Since the only fields that are not
hashed are the hop # and the verifiers Vi, we expect through-
put to be lower when the Vi represent a smaller fraction of the
total packet bits. In other words, for a constant path length,
we expect throughput to decrease as packet size increases.
And for a constant packet size, we expect the throughput to
increase as the path length increases.

To validate, we measure our prototype’s fast path through-
put by connecting the four ports of an ICING forwarder to a

11

Action Processing time Throughput (1/Proc. time)

Calculate ki,j 4 ms (σ = .043 ms) 250 keys/s
Calculate path 87 µs 11505.6 path/s
Generate PoC 0.4l + 1.3 µs 2.6 · 106/(l + 3.5) PoC/s
Create packet (w/cache) 2.6l + 40.1 µs 3.9 · 105/(l + 15.4) pkt/s
Verify packet (w/cache) 2.6l + 24.4 µs 3.9 · 105/(l + 9.5) pkt/s
Create packet (no cache) 33796.1l− 32758.4 µs 29.6/(l− 0.9) pkt/s
Verify packet (no cache) 34875.1l− 33647.1 µs 28.6/(l− 0.9) pkt/s

Table 5—Processing time and throughput for software operations,
where l is the path length. Packet creation and verification costs are
measured both with and without the use of cached shared keys. For
the last five rows, processing time is derived by linear regression,
and R2 > 0.99 in all three cases.

NetFPGA packet generator that sends ICING packets at line
rate. We measure throughput over 5 10-second samples, us-
ing the measurement points in Table 4. The ICING forwarder
loops ingress packets back to the packet generator, which
measures the average bit rate.

Figure 2 plots the measured throughput. Note that we do
not report goodput; instead we acknowledge that ICING has
a 22.4% overhead, as analyzed in §7.1. The minimum aggre-
gate throughput is 3.3 Gbit/s. By comparison, IP itself only
runs at 4 Gbit/s on this hardware platform. The path index
has no effect on performance because it doesn’t affect the
number of PRF-96 applications or the number of bits hashed.

7.3 Data plane software performance

We now measure the performance of ICING’s data plane soft-
ware. We focus on the forwarder’s slow path, the main cost of
which is calculating shared keys (§3.4), and end-host packet
operations. Table 5 summarizes.

Shared key (ki,j) calculation. We measure the cost of the
shared key derivation by running 3000 iterations of the cal-
culation function in a tight loop on the slow machine. On
average, a single calculation takes 4 ms. However, a shared
key cache for all realms can fit into SRAM (see §7.4), so on
a real forwarder, this calculation would take place rarely.

End-host. An end-host must also perform cryptographic
operations: senders initialize all hop verifier entries, and re-
ceivers validate and modify some of these entries. To under-
stand these costs, we seek a linear function from path length
to processing time. To infer such a function, we vary path
length per Table 4, take packet size to be 1514 bytes, and
collect 1000 samples per path length on the medium ma-
chine. We record total processing cost (of either packet gen-
eration or verification, depending on sender or receiver; in
both cases, we record the cost when the ki,j keys are and
are not cached), and then use ordinary least squares linear
regression. The inferred coefficients (R2 > 0.99) are in Ta-
ble 5. Each entry in the path increases packet creation and
verification times by 2.6 µs, the cost of two AES encryp-
tions. For an average path length of 7 (from [37]), packet
verification can be performed at 21K pkt/s.

Note that an end-host takes longer to generate a packet
than to verify one. This is because senders are so far un-
optimized and compute H(P, M) twice. Were the endpoints
optimized, receiving would likely be more expensive than

NetFPGA NetFPGA Commercial
ICING IP IP (est.)

Min Throughput (Gbits/s) 3.3 (from §7.2) 4 1
(Eq.) Gate Count (Gates) 13.4M 8.7M 5M
Normalized Cost (Gates/(Gbits/s)) 4.1M 2.2M 5M

Table 6—Normalized costs of the NetFPGA ICING forwarder, the
NetFPGA IP router, and an estimate of a commercial IP router.

sending: the receiver also hashes the packet (to verify V) and
has an additional cost, namely re-computing the local PoC.

7.4 Scaling

Here, we present an extremely brief assessment of whether
a production implementation of ICING could meet the de-
mands of the Internet backbone. We elaborate in [51].

Throughput. To assess whether ICING could scale to
backbone speeds, we compare ICING to IP in terms of nor-
malized cost, which measures the hardware cost, reported as
equivalent gate count, per unit of throughput. We consider
two IP implementations: the NetFPGA reference IP router
and an informal estimate of a commercial IP router. We ob-
tain gate counts for the NetFPGA implementations from the
synthesis produced by Xilinux’s ISE software, and we esti-
mate the cost of an enterprise-grade commercial IP router’s
forwarding engine and switch fabric (i.e., excluding queues
and management hardware) at around 5M gates per port.

Table 6 summarizes the comparison. The NetFPGA ICING
forwarder is ∼86% more expensive than the NetFPGA IP
router—but a little cheaper than the commercial router. Since
commercial IP routers can scale to backbone speeds (around
100 Gbits/s) and since almost all of ICING’s processing can
be parallelized, it seems that there is no fundamental obstacle
to scaling ICING to such speeds.

Symmetric key cache. An ICING forwarder stores a table
of (Ri, ki,j) pairs. Even under the (conservative) assumption
that a forwarder caches a ki,j for every other realm in the
Internet, the memory requirements are not likely to be oner-
ous: today’s routers already hold on the order of hundreds
of thousands of prefixes in hardware for forwarding [20].
Meanwhile, there are fewer than 33k AS numbers, and the
total is growing at less than 3.2k/year [1]. Under a rough
equivalence between realms and ASes, the symmetric key
cache would thus fit easily into a current IP router’s memory.
For further analysis of a nearly identical question, see [5, §4].

Vnode key cache. An ICING forwarder also caches precal-
culated vnode keys or prefix keys (§3.6). While an extended
analysis is outside of our scope, we just note the following
two use cases. Viable SRAMs already exist that could fit 220

vnode keys, sufficient to give 1 million customers a vnode
each. The cache could also be used to store prefix keys. So
if delegation occurs at, say, 12-bit boundaries, the forwarder
can cache the keys for all of its 20-bit prefixes, deriving the
needed vnode key per-packet. Each derivation requires one
AES invocation so would not affect throughput.

12

7.5 Control plane overhead

Here, we explore the computation costs associated with the
ICING control plane that is based on NIRA, described in §5.
The results are summarized in Table 5.

Path negotiation. To measure the cost of building paths,
we run the path building function in a tight loop on a fast ma-
chine. We configure the server with paths to 100 destinations.
Our results show that our prototype path server’s throughput
is approximately 11K paths/s. While this is an order of mag-
nitude fewer than the number of DNS requests a fast server
could handle, our current implementation is unoptimized.

PoC retrieval. To measure the cost of generating a PoC,
we run the calculation function in a tight loop, varying the
path length per Table 4. To represent the hardware that runs
ICING control plane servers, we use the fast machine. Our
results show that the cost is proportional to the path length,
as expected from the definition of PoC.proof (§3.3).

8 Discussion
Expressiveness. While we obviously cannot prove that
ICING’s controls are sufficient, they appear, as mentioned
earlier, to encompass those of prior transit policy propos-
als. By making the inter-domain path available to entities
in their approval decisions, ICING permits the expression of
the works in Table 1. By allowing entities to associate an
opaque tag (the vnode) to a path, ICING permits a slew of
local resource policies. Some of these were enumerated in
§3.1–§3.3. Others are as follows: an ICING entity can force
a packet through an internal middlebox by approving only
flows that transit vnode v, where v internally maps to an intra-
domain route that travels through the middlebox. An ICING
entity can use the vnode to specify policies about time of day,
rekeying the vnode as the time changes. Etc. And by allow-
ing entities’ authorization decisions to take arbitrary input
prior to packet flow, ICING permits an entity to express arbi-
trary policies, including that the sender has paid its bill, that
the user is authenticated, etc.

Note that an ideal definition of enforcement has the net-
work dropping packets at the source, not at the disapproving
entity. ICING upholds this notion but requires control plane
coordination for it (§5). To do so without such coordination
(e.g., a packet contains signed statements from each realm
specifying its policies, allowing the first hop to drop if the
last hop did not approve) seemed infeasible at high speeds.

Non-goals and limitations. We note that while ICING
does enable many new functions, there are some it is not de-
signed to accommodate. As mentioned in §2 and §4, ICING is
not designed to prevent realms from transparently delegating
or collaborating with each other. What it can do is bring the
various policy decisions into the open, so that, for instance,
a sender can at least choose which providers to trust.

ICING’s limitations derive from its reliance on source rout-
ing: entities cannot hide topology or route information from
those who carry and receive traffic, forward packets dif-
ferently based on their payloads (unlike [54]), or modify a

packet’s payload during transit.
Overhead. As described in §7, ICING introduces logic

area cost and packet space overhead. These may seem high,
but we must weigh them against the benefits of ICING’s addi-
tional properties. We are not in a position to assess this trade-
off today, but we just note that technology trends ought to
continue to reduce these costs (under jumbo frames, ICING’s
packet space overhead would be trivial). Indeed, one way to
look at ICING is that it spends some of our ever-increasing
bandwidth and processing resources to get properties cur-
rently unavailable today.

Deployment. ICING can be deployed incrementally in a
manner similar to Platypus [55]: ICING forwarders can treat
IP as the link layer, rewriting IP source and destination ad-
dresses at each ICING hop. Realms that do deploy ICING
gain incremental benefits: ICING-enabled providers are able
to establish identities of ICING-enabled senders (for account-
ing purposes, for example), ICING-enabled senders can se-
lect different levels of service from ICING-enabled providers
by choosing vnodes, and receivers whose policy requires it
can check that traffic has passed through an ICING-enabled
virus-scanning service.

9 Related work
ICING borrows much from many. Its data plane mechanisms
individually resemble prior mechanisms: realm IDs are like
AIP’s ADs [5]; PoCs are similar to capabilities [55, 67] and
Visas [26]; vnodes were introduced in Pathlet routing [28];
and PoPs rely on a construction like the one in [8]. ICING’s
control/data split was inspired by [15, 17, 30, 31], and sIRP
was inspired by NIRA [65]. The novelty of ICING is in
its overall architecture, which composes these and our own
mechanisms into a coherent design. In doing so, ICING ex-
presses a larger set of policy considerations than prior work,
and enforces a stronger set of properties. We attempt to make
this point in Tables 1 and 2, which contain lists of proposals
that motivated our work.

10 Summary
Solutions that are less efficient from a technical perspec-
tive may do a better job of isolating the collateral dam-
age of tussle [22].

We began by asking what a general policy framework for
the future Internet might look like: what policies should be
supported, and can they be enforced? We then proposed a
policy principle: any entity along the path of a communica-
tion, including the endpoints, gets to approve or deny com-
munications. The entity may take into account (1) the inter-
domain path; (2) what internal resources it would allocate to
the communication; and (3) arbitrary factors. These arbitrary
factors could include other realms’ preferences (but not their
internal packet handling). None of this was to say that all
such controls would be “lit up”, only that we cannot predict
which controls will be most important, so we should per-
mit their simultaneous expression. The tussle between vari-

13

ous entities (e.g., end-hosts vs. providers) can then take place
within the context of the design, not by violating it [22].

This paper makes contributions to policy and mechanism.
For policy, we observe that (1)–(3) are a superset of prior pol-
icy proposals. On the mechanism side, we showed how a net-
work architecture, ICING, could enforce this very large set of
potential policies with a very small number of mechanisms
(realm ids, vnodes, PoCs, PoPs, and the overall control/data
split) while obeying constraints of the Internet environment
like tolerating adversarial behavior, the need for efficient for-
warding hardware, and the absence of centralized authority.
Along the way, we solved a longstanding problem in network
architecture: how to bind a packet to its path in a federated
environment. And to do that, we introduced packet authen-
tication techniques that may be of independent interest. We
validated our design by implementing it on the NetFPGA
platform and observing that, though it is not cost-free—it
asks more of forwarders, and it requires larger packet sizes—
it is within the realm of plausibility.

Certainly, ICING is not perfect, but we think it broadens
the space of the possible. In particular, it responds to two
formerly unanswered questions in network architecture: how
can we uphold the many policy considerations simultane-
ously, and what do we have to pay to do so?

Acknowledgments
This work was supported by ONR grant N00014-09-10757,
by NSF Cybertrust award CNS-0716806, by the Stanford
Clean Slate program, and by Intel Corporation, whose gift to
Brad Karp supported Walfish and Mazières while they vis-
ited Karp at UCL in Autumn 2008.

References
[1] The 32-bit autonomous system number report.

http://www.potaroo.net/tools/asn32/index.html.
[2] NetFPGA: Programmable networking hardware. http://netfpga.org.
[3] The OpenFlow switch specification. http://OpenFlowSwitch.org.
[4] Digital signature standard (DSS). Federal Information Processing Standards

Publication, November 2008. DRAFT FIPS PUB 186-3.
[5] D. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and

S. Shenker. Accountable Internet protocol. In SIGCOMM, Aug. 2008.
[6] K. Argyraki and D. R. Cheriton. Loose source routing as a mechanism for

traffic policies. In Proc. SIGCOMM Workshop on Future Directions in Network
Architecture, Sept. 2004.

[7] K. Argyraki and D. R. Cheriton. Network capabilities: The good, the bad and
the ugly. In HotNets, Nov. 2005.

[8] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy. Highly
secure and efficient routing. In INFOCOM, Mar. 2004.

[9] I. Avramopoulos and J. Rexford. Efficient data-plane security for IP routing. In
USENIX Technical Conference, June 2006.

[10] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow.
RSVP-TE: Extensions to RSVP for LSP tunnels. RFC 3209, Dec. 2001.

[11] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker. Off by
default! In HotNets, Nov. 2005.

[12] J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable
message authentication. In Proc. EUROCRYPT, pages 384–397, 2002.

[13] R. Braden, D. Clark, and S. Shenker. Integrated services in the Internet
architecture: an overview. RFC 1633, June 1994.

[14] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource
ReSerVation Protocol (RSVP) – Version 1 Functional Specification. RFC 2205,
Sept. 1997.

[15] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der
Merwe. Design and implementation of a routing control platform. In NSDI,
May 2005.

[16] K. Calvert, J. Griffioen, and L. Poutievski. Separating routing and forwarding:
A clean-slate network layer design. In Proc. IEEE Broadnets, Sept. 2007.

[17] M. Casado, M. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker.
Ethane: Taking control of the enterprise. In SIGCOMM, Aug. 2007.

[18] I. Castineyra, N. Chiappa, and M. Steenstrup. The Nimrod routing architecture.
RFC 1992, Aug. 1996.

[19] J. Chou, B. Lin, S. Sen, and O. Spatscheck. Proactive surge protection: a
defense mechanism for bandwidth-based attacks. In USENIX SECURITY, July
2008.

[20] Cisco Systems, Inc. Cisco Catalyst 6500/Cisco 7600 Series Supervisor Engine
720 Datasheet.
http://www.cisco.com/en/US/prod/collateral/switches/ps5718/
ps708/product_data_sheet09186a0080159856.pdf.

[21] D. Clark. Policy routing in internet protocols. RFC 1102, May 1989.
[22] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden. Tussle in cyberspace:

defining tomorrow’s Internet. In SIGCOMM, Aug. 2002.
[23] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271, Dec. 1959.
[24] C. Dixon, T. Anderson, and A. Krishnamurthy. Phalanx: Withstanding

multimillion-node botnets. In NSDI, Apr. 2008.
[25] D. Estrin, T. Li, Y. Rekhter, K. Varadhan, and D. Zappala. Source demand

routing: Packet format and forwarding specification (version 1). RFC 1940,
May 1996.

[26] D. Estrin, J. Mogul, and G. Tsudik. VISA protocols for controlling
inter-organizational datagram flow. IEEE JSAC, 7(4), May 1989.

[27] D. Estrin and G. Tsudik. Security issues in policy routing. In Proc. IEEE
Symposium on Security and Privacy, May 1989.

[28] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet routing. In
SIGCOMM, Aug. 2009.

[29] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford. Path-quality
monitoring in the presence of adversaries. In SIGMETRICS, June 2008.

[30] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,
H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach to network control
and management. ACM CCR, 35(5), Oct. 2005.

[31] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. NOX: Towards an Operating System for Networks. ACM CCR,
38(3):105–110, July 2008.

[32] S. Guha and P. Francis. An end-middle-end approach to connection
establishment. In SIGCOMM, Aug. 2007.

[33] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and
D. Wetherall. Improving the reliability of Internet paths with one-hop source
routing. In OSDI, Dec. 2004.

[34] M. Handley and A. Greenhalgh. Steps towards a DoS-resistant Internet
architecture. In Proc. SIGCOMM Workshop on Future Directions in Network
Architecture, Aug. 2004.

[35] P. Hawkes and C. McDonald. Submission to the SHA-3 competition: The CHI
family of cryptographic hash algorithms. Submission to NIST, 2008.
http://ehash.iaik.tugraz.at/uploads/2/2c/Chi_submission.pdf.

[36] J. Ioannidis and S. M. Bellovin. Implementing pushback: Router-based defense
against DDoS attacks. In NDSS, 2002.

[37] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. Measurement
and classification of out-of-sequence packets in a Tier-1 IP backbone. In
INFOCOM, 2003.

[38] J. Katz and A. Y. Lindell. Aggregate message authentication codes. In Topics in
Cryptology – CT-RSA, volume 4964 of Lecture Notes in Computer Science,
pages 155–169, April 2008.

[39] H. T. Kaur, A. Weiss, S. Kanwar, S. Kalyanaraman, and A. Gandhi.
BANANAS: An evolutionary framework for explicit and multipath routing in
the internet. In Proc. SIGCOMM Workshop on Future Directions in Network
Architecture, Aug. 2004.

[40] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
modular router. ACM Trans. on Computer Systems, Aug. 2000.

[41] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,
and I. Stoica. A data-oriented (and beyond) network architecture. In
SIGCOMM, Aug. 2007.

[42] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed Internet routing
convergence. ACM/IEEE Trans. on Networking, 9(3):293–306, June 2001.

[43] M. Little. Goals and functional requirements for inter-autonomous system
routing. RFC 1126, Oct. 1989.

[44] X. Liu, A. Li, X. Yang, and D. Wetherall. Passport: Secure and adoptable
source authentication. In NSDI, Apr. 2008.

[45] X. Liu, X. Yang, and Y. Lu. To filter or to authorize: Network-layer DoS
defense against multimillion-node botnets. In SIGCOMM, Aug. 2008.

[46] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker.
Controlling high bandwidth aggregates in the network. ACM CCR, 32(3), July
2002.

[47] R. Mahajan, D. Wetherall, and T. Anderson. Mutually controlled routing with
independent ISPs. In NSDI, Apr. 2007.

[48] Z. M. Mao, J. Rexford, J. Wang, and R. H. Katz. Towards an accurate AS-level
traceroute tool. In SIGCOMM, Aug. 2003.

[49] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key
management from file system security. In SOSP, Dec. 1999.

[50] A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage. Fatih: Detecting and
isolating malicious routers. In IEEE DSN, June 2005.

[51] J. Naous, A. Seehra, M. Walfish, D. Mazières, A. Nicolosi, and S. Shenker. The

14

http://www.potaroo.net/tools/asn32/index.html
http://netfpga.org
http://OpenFlowSwitch.org
http://www.cisco.com/en/US/prod/collateral/switches/ps5718/ps708/product_data_sheet09186a0080159856.pdf
http://www.cisco.com/en/US/prod/collateral/switches/ps5718/ps708/product_data_sheet09186a0080159856.pdf
http://ehash.iaik.tugraz.at/uploads/2/2c/Chi_submission.pdf

design and implementation of a policy framework for the future Internet, Sept.
2009. http://www.cs.utexas.edu/~mwalfish/icing-tr-09-28.pdf.

[52] R. Perlman. Network layer protocols with Byzantine robustness. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, 1988.

[53] R. Perlman. Routing with Byzantine robustness. Technical Report
TR-2005-146, Sun Microsystems, Aug. 2005.

[54] L. Popa, I. Stoica, and S. Ratnasamy. Rule-based forwarding (RBF): improving
the Internet’s flexibility and security. In HotNets, Oct. 2009.

[55] B. Raghavan and A. C. Snoeren. A system for authenticated policy-compliant
routing. In SIGCOMM, Sept. 2004.

[56] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching. RFC
3031, Network Working Group, Jan. 2001.

[57] M. Scott. Miracl library.
https://www.shamus.ie/index.php?page=Downloads.

[58] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet Indirection
Infrastructure. In SIGCOMM, Aug. 2002.

[59] The Cooperative Association for Internet Data Analysis (CAIDA). Packet size
distribution comparison between internet links in 1998 and 2008.
http://www.caida.org/research/traffic-analysis/pkt_size_
distribution/graphs.xml.

[60] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and S. Shenker.
Middleboxes no longer considered harmful. In OSDI, Dec. 2004.

[61] G. Xie, J. Zhan, D. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson, and
J. Rexford. On static reachability analysis of IP networks. In INFOCOM, Mar.
2005.

[62] W. Xu and J. Rexford. MIRO: Multi-path interdomain routing. In SIGCOMM,
Sept. 2006.

[63] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless Internet flow filter to mitigate
DDoS flooding attacks. In Proc. IEEE Symposium on Security and Privacy,
May 2004.

[64] A. Yaar, A. Perrig, and D. Song. StackPi: New packet marking and filtering
mechanisms for DDoS and IP spoofing defense. IEEE JSAC,
24(10):1853–1863, Oct. 2006.

[65] X. Yang, D. Clark, and A. W. Berger. NIRA: A new inter-domain routing
architecture. ACM/IEEE Trans. on Networking, 15(4), Aug. 2007.

[66] X. Yang and D. Wetherall. Source selectable path diversity via routing
deflections. In SIGCOMM, Sept. 2006.

[67] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network architecture.
In SIGCOMM, Aug. 2005.

[68] X. Zhang, A. Jain, and A. Perrig. Packet-dropping adversary identification for
data plane security. Dec. 2008.

15

http://www.cs.utexas.edu/~mwalfish/icing-tr-09-28.pdf
https://www.shamus.ie/index.php?page=Downloads
http://www.caida.org/research/traffic-analysis/pkt_size_distribution/graphs.xml
http://www.caida.org/research/traffic-analysis/pkt_size_distribution/graphs.xml

	1 Introduction
	2 What are reasonable policy considerations?
	3 Data plane
	3.1 Overview
	3.2 Hop IDs
	3.3 PoCs
	3.4 PoPs
	3.5 Packet processing and errors
	3.6 Design details

	4 Security considerations
	5 Control plane flexibility
	6 Implementation
	7 Evaluation
	7.1 Packet overhead
	7.2 igloo forwarder
	7.3 Data plane software performance
	7.4 Scaling
	7.5 Control plane overhead

	8 Discussion
	9 Related work
	10 Summary

