
A Quick Introduction to C++Tom Anderson\If programming in Pascal is like being put in a straightjacket, then program-ming in C is like playing with knives, and programming in C++ is like jugglingchainsaws." Anonymous.1 IntroductionThis note introduces some simple C++ concepts and outlines a subset of C++ that is easierto learn and use than the full language. Although we originally wrote this note for explainingthe C++ used in the Nachos project, I believe it is useful to anyone learning C++. I assumethat you are already somewhat familiar with C concepts like procedures, for loops, andpointers; these are pretty easy to pick up from reading Kernighan and Ritchie's \The CProgramming Language."I should admit up front that I am quite opinionated about C++, if that isn't obviousalready. I know several C++ purists (an oxymoron perhaps?) who violently disagree withsome of the prescriptions contained here; most of the objections are of the form, \How couldyou have possibly left out feature X?" However, I've found from teaching C++ to nearly1000 undergrads over the past several years that the subset of C++ described here is prettyeasy to learn, taking only a day or so for most students to get started.The basic premise of this note is that while object-oriented programming is a useful wayto simplify programs, C++ is a wildly over-complicated language, with a host of featuresthat only very, very rarely �nd a legitimate use. It's not too far o� the mark to say thatC++ includes every programming language feature ever imagined, and more. The naturaltendency when faced with a new language feature is to try to use it, but in C++ thisapproach leads to disaster.Thus, we need to carefully distinguish between (i) those concepts that are fundamental(e.g., classes, member functions, constructors) { ones that everyone should know and use,(ii) those that are sometimes but rarely useful (e.g., single inheritance, templates) { onesthat beginner programmers should be able to recognize (in case they run across them) butavoid using in their own programs, at least for a while, and (iii) those that are just a bad ideaand should be avoided like the plague (e.g., multiple inheritance, exceptions, overloading,references, etc).Of course, all the items in this last category have their proponents, and I will admit that,like the hated goto, it is possible to construct cases when the program would be simplerThis article is based on an earlier version written by Wayne Christopher.1



using a goto or multiple inheritance. However, it is my belief that most programmers willnever encounter such cases, and even if you do, you will be much more likely to misuse thefeature than properly apply it. For example, I seriously doubt an undergraduate would needany of the features listed under (iii) for any course project (at least at Berkeley this is true).And if you �nd yourself wanting to use a feature like multiple inheritance, then, my advice isto fully implement your program both with and without the feature, and choose whicheveris simpler. Sure, this takes more e�ort, but pretty soon you'll know from experience when afeature is useful and when it isn't, and you'll be able to skip the dual implementation.A really good way to learn a language is to read clear programs in that language. I havetried to make the Nachos code as readable as possible; it is written in the subset of C++described in this note. It is a good idea to look over the �rst assignment as you read thisintroduction. Of course, your TA's will answer any questions you may have.You should not need a book on C++ to do the Nachos assignments, but if you are curious,there is a large selection of C++ books at Cody's and other technical bookstores. (My wifequips that C++ was invented to make researchers at Bell Labs rich from writing \How toProgram in C++" books.) Most new software development these days is being done inC++, so it is a pretty good bet you'll run across it in the future. I use Stroustrup's "TheC++ Programming Language" as a reference manual, although other books may be morereadable. I would also recommend Scott Meyer's \E�ective C++" for people just beginningto learn the language, and Coplien's \Advanced C++" once you've been programming inC++ for a couple years and are familiar with the language basics. Also, C++ is continuallyevolving, so be careful to buy books that describe the latest version (currently 3.0, I think!).2 C in C++To a large extent, C++ is a superset of C, and most carefully written ANSI C will compileas C++. There are a few major caveats though:1. All functions must be declared before they are used, rather than defaulting to typeint.2. All function declarations and de�nition headers must use new-style declarations, e.g.,extern int foo(int a, char* b);The form extern int foo(); means that foo takes no arguments, rather than argu-ments of an unspeci�ed type and number. In fact, some advise using a C++ compilereven on normal C code, because it will catch errors like misused functions that a normalC compiler will let slide.3. If you need to link C object �les together with C++, when you declare the C functionsfor the C++ �les, they must be done like this:2



extern "C" int foo(int a, char* b);Otherwise the C++ compiler will alter the name in a strange manner.4. There are a number of new keywords, which you may not use as identi�ers | somecommon ones are new, delete, const, and class.3 Basic ConceptsBefore giving examples of C++ features, I will �rst go over some of the basic concepts ofobject-oriented languages. If this discussion at �rst seems a bit obscure, it will becomeclearer when we get to some examples.1. Classes and objects. A class is similar to a C structure, except that the de�nitionof the data structure, and all of the functions that operate on the data structure aregrouped together in one place. An object is an instance of a class (an instance of thedata structure); objects share the same functions with other objects of the same class,but each object (each instance) has its own copy of the data structure. A class thusde�nes two aspects of the objects: the data they contain, and the behavior they have.2. Member functions. These are functions which are considered part of the object andare declared in the class de�nition. They are often referred to as methods of the class.In addition to member functions, a class's behavior is also de�ned by:(a) What to do when you create a new object (the constructor for that object) { inother words, initialize the object's data.(b) What to do when you delete an object (the destructor for that object).3. Private vs. public members. A public member of a class is one that can be reador written by anybody, in the case of a data member, or called by anybody, in thecase of a member function. A private member can only be read, written, or called bya member function of that class.Classes are used for two main reasons: (1) it makes it much easier to organize yourprograms if you can group together data with the functions that manipulate that data, and(2) the use of private members makes it possible to do information hiding, so that you canbe more con�dent about the way information ows in your programs.3.1 ClassesC++ classes are similar to C structures in many ways. In fact, a C++ struct is really aclass that has only public data members. In the following explanation of how classes work,we will use a stack class as an example. 3



1. Member functions. Here is a (partial) example of a class with a member functionand some data members:class Stack {public:void Push(int value); // Push an integer, checking for overflow.int top; // Index of the top of the stack.int stack[10]; // The elements of the stack.};voidStack::Push(int value) {ASSERT(top < 10); // stack should never overflowstack[top++] = value;}This class has two data members, top and stack, and one member function, Push.The notation class::function denotes the function member of the class class. (In thestyle we use, most function names are capitalized.) The function is de�ned beneath it.As an aside, note that we use a call to ASSERT to check that the stack hasn't overowed;ASSERT drops into the debugger if the condition is false. It is an extremely goodidea for you to use ASSERT statements liberally throughout your code to documentassumptions made by your implementation. Better to catch errors automatically viaASSERTs than to let them go by and have your program overwrite random locations.In actual usage, the de�nition of class Stack would typically go in the �le stack.hand the de�nitions of the member functions, like Stack::Push, would go in the �lestack.cc.If we have a pointer to a Stack object called s, we can access the top element ass->top, just as in C. However, in C++ we can also call the member function using thefollowing syntax:s->Push(17);Of course, as in C, s must point to a valid Stack object.Inside a member function, one may refer to the members of the class by their namesalone. In other words, the class de�nition creates a scope that includes the member(function and data) de�nitions.Note that if you are inside a member function, you can get a pointer to the object youwere called on by using the variable this. If you want to call another member functionon the same object, you do not need to use the this pointer, however. Let's extendthe Stack example to illustrate this by adding a Full() function.4



class Stack {public:void Push(int value); // Push an integer, checking for overflow.bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.int top; // Index of the lowest unused position.int stack[10]; // A pointer to an array that holds the contents.};

5



boolStack::Full() {return (top == 10);}Now we can rewrite Push this way:voidStack::Push(int value) {ASSERT(!Full());stack[top++] = value;}We could have also written the ASSERT:ASSERT(!(this->Full());but in a member function, the this-> is implicit.The purpose of member functions is to encapsulate the functionality of a type of objectalong with the data that the object contains. A member function does not take upspace in an object of the class.2. Private members. One can declare some members of a class to be private, which arehidden to all but the member functions of that class, and some to be public, which arevisible and accessible to everybody. Both data and function members can be eitherpublic or private.In our stack example, note that once we have the Full() function, we really don'tneed to look at the top or stack members outside of the class { in fact, we'd ratherthat users of the Stack abstraction not know about its internal implementation, in casewe change it. Thus we can rewrite the class as follows:class Stack {public:void Push(int value); // Push an integer, checking for overflow.bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.private:int top; // Index of the top of the stack.int stack[10]; // The elements of the stack.}; 6



Before, given a pointer to a Stack object, say s, any part of the program could accesss->top, in potentially bad ways. Now, since the top member is private, only a memberfunction, such as Full(), can access it. If any other part of the program attempts touse s->top the compiler will report an error.You can have alternating public: and private: sections in a class. Before you specifyeither of these, class members are private, thus the above example could have beenwritten:class Stack {int top; // Index of the top of the stack.int stack[10]; // The elements of the stack.public:void Push(int value); // Push an integer, checking for overflow.bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.};Which form you prefer is a matter of style, but it's usually best to be explicit, so thatit is obvious what is intended. In Nachos, we make everything explicit.What is not a matter of style: all data members of a class should be private. Alloperations on data should be via that class' member functions. Keeping data privateadds to the modularity of the system, since you can rede�ne how the data membersare stored without changing how you access them.3. Constructors and the operator new. In C, in order to create a new object of typeStack, one might write:struct Stack *s = (struct Stack *) malloc(sizeof (struct Stack));InitStack(s, 17);The InitStack() function might take the second argument as the size of the stack tocreate, and use malloc() again to get an array of 17 integers.The way this is done in C++ is as follows:Stack *s = new Stack(17);The new function takes the place of malloc(). To specify how the object should beinitialized, one declares a constructor function as a member of the class, with the nameof the function being the same as the class name:
7



class Stack {public:Stack(int sz); // Constructor: initialize variables, allocate space.void Push(int value); // Push an integer, checking for overflow.bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.private:int size; // The maximum capacity of the stack.int top; // Index of the lowest unused position.int* stack; // A pointer to an array that holds the contents.};Stack::Stack(int sz) {size = sz;top = 0;stack = new int[size]; // Let's get an array of integers.}There are a few things going on here, so we will describe them one at a time.The new operator automatically creates (i.e. allocates) the object and then calls theconstructor function for the new object. This same sequence happens even if, forinstance, you declare an object as an automatic variable inside a function or block{ the compiler allocates space for the object on the stack, and calls the constructorfunction on it.In this example, we create two stacks of di�erent sizes, one by declaring it as anautomatic variable, and one by using new.voidtest() {Stack s1(17);Stack* s2 = new Stack(23);}Note there are two ways of providing arguments to constructors: with new, you putthe argument list after the class name, and with automatic or global variables, you putthem after the variable name.It is crucial that you always de�ne a constructor for every class you de�ne, and thatthe constructor initialize every data member of the class. If you don't de�ne yourown constructor, the compiler will automatically de�ne one for you, and believe me,it won't do what you want (\the unhelpful compiler"). The data members will beinitialized to random, unrepeatable values, and while your program may work anyway,it might not the next time you recompile (or vice versa!).8



As with normal C variables, variables declared inside a function are deallocated auto-matically when the function returns; for example, the s1 object is deallocated whentest returns. Data allocated with new (such as s2) is stored on the heap, however,and remains after the function returns; heap data must be explicitly disposed of usingdelete, described below.The new operator can also be used to allocate arrays, illustrated above in allocatingan array of ints, of dimension size:stack = new int[size];Note that you can use new and delete (described below) with built-in types like intand char as well as with class objects like Stack.4. Destructors and the operator delete. Just as new is the replacement for malloc(),the replacement for free() is delete. To get rid of the Stack object we allocated abovewith new, one can do:delete s2;This will deallocate the object, but �rst it will call the destructor for the Stack class,if there is one. This destructor is a member function of Stack called ~Stack():class Stack {public:Stack(int sz); // Constructor: initialize variables, allocate space.~Stack(); // Destructor: deallocate space allocated above.void Push(int value); // Push an integer, checking for overflow.bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.private:int size; // The maximum capacity of the stack.int top; // Index of the lowest unused position.int* stack; // A pointer to an array that holds the contents.};Stack::~Stack() {delete [] stack; // delete an array of integers}The destructor has the job of deallocating the data the constructor allocated. Manyclasses won't need destructors, and some will use them to close �les and otherwiseclean up after themselves. 9



The destructor for an object is called when the object is deallocated. If the objectwas created with new, then you must call delete on the object, or else the object willcontinue to occupy space until the program is over { this is called \a memory leak."Memory leaks are bad things { although virtual memory is supposed to be unlimited,you can in fact run out of it { and so you should be careful to always delete whatyou allocate. Of course, it is even worse to call delete too early { delete calls thedestructor and puts the space back on the heap for later re-use. If you are still usingthe object, you will get random and non-repeatable results that will be very di�cultto debug. In my experience, using data that has already been deleted is major sourceof hard-to-locate bugs in student (and professional) programs, so hey, be careful outthere!If the object is an automatic, allocated on the execution stack of a function, thedestructor will be called and the space deallocated when the function returns; in thetest() example above, s1 will be deallocated when test() returns, without you havingto do anything.In Nachos, we always explicitly allocate and deallocate objects with new and delete,to make it clear when the constructor and destructor is being called. For example,if an object contains another object as a member variable, we use new to explicitlyallocated and initialize the member variable, instead of implicitly allocating it as partof the containing object. C++ has strange, non-intuitive rules for the order in whichthe constructors and destructors are called when you implicitly allocate and deallocateobjects. In practice, although simpler, explicit allocation is slightly slower and it makesit more likely that you will forget to deallocate an object (a bad thing!), and so somewould disagree with this approach.When you deallocate an array, you have to tell the compiler that you are deallocatingan array, as opposed to a single element in the array. Hence to delete the array ofintegers in Stack::~Stack:delete [] stack;3.2 Other Basic C++ FeaturesHere are a few other C++ features that are useful to know.1. When you de�ne a class Stack, the name Stack becomes usable as a type name asif created with typedef. The same is true for enums.2. You can de�ne functions inside of a class de�nition, whereupon they become inlinefunctions, which are expanded in the body of the function where they are used. Therule of thumb to follow is to only consider inlining one-line functions, and even thendo so rarely.As an example, we could make the Full routine an inline.10



class Stack {...bool Full() { return (top == size); };...};There are two motivations for inlines: convenience and performance. If overused,inlines can make your code more confusing, because the implementation for an objectis no longer in one place, but spread between the .h and .c �les. Inlines can sometimesspeed up your code (by avoiding the overhead of a procedure call), but that shouldn'tbe your principal concern as a student (rather, at least to begin with, you should bemost concerned with writing code that is simple and bug free). Not to mention thatinlining sometimes slows down a program, since the object code for the function isduplicated wherever the function is called, potentially hurting cache performance.3. Inside a function body, you can declare some variables, execute some statements, andthen declare more variables. This can make code a lot more readable. In fact, you caneven write things like:for (int i = 0; i < 10; i++) ;Depending on your compiler, however, the variable i may still visible after the end ofthe for loop, however, which is not what one might expect or desire.4. Comments can begin with the characters // and extend to the end of the line. Theseare usually more handy than the /* */ style of comments.5. C++ provides some new opportunities to use the const keyword from ANSI C. Thebasic idea of const is to provide extra information to the compiler about how a variableor function is used, to allow it to ag an error if it is being used improperly. You shouldalways look for ways to get the compiler to catch bugs for you. After all, which takesless time? Fixing a compiler-agged error, or chasing down the same bug using gdb?For example, you can declare that a member function only reads the member data,and never modi�es the object:class Stack {...bool Full() const; // Full() never modifies member data...};As in C, you can use const to declare that a variable is never modi�ed:11



const int InitialHashTableSize = 8;This is much better than using #define for constants, since the above is type-checked.6. Input/output in C++ can be done with the >> and << operators and the objects cinand cout. For example, to write to stdout:cout << "Hello world! This is section " << 3 << "!";This is equivalent to the normal C codefprintf(stdout, "Hello world! This is section %d!\n", 3);except that the C++ version is type-safe; with printf, the compiler won't complain ifyou try to print a oating point number as an integer. In fact, you can use traditionalprintf in a C++ program, but you will get bizarre behavior if you try to use bothprintf and << on the same stream. Reading from stdin works the same way as writingto stdout, except using the shift right operator instead of shift left. In order to readtwo integers from stdin:int field1, field2;cin >> field1 >> field2;// equivalent to fscanf(stdin, "%d %d", &field1, &field2);// note that field1 and field2 are implicitly modifiedIn fact, cin and cout are implemented as normal C++ objects, using operator over-loading and reference parameters, but (fortunately!) you don't need to understandeither of those to be able to do I/O in C++.4 Advanced Concepts in C++: Dangerous but Occa-sionally UsefulThere are a few C++ features, namely (single) inheritance and templates, which are easilyabused, but can dramatically simplify an implementation if used properly. I describe thebasic idea behind these \dangerous but useful" features here, in case you run across them.Feel free to skip this section { it's long, complex, and you can understand 99% of the codein Nachos without reading this section.Up to this point, there really hasn't been any fundamental di�erence between program-ming in C and in C++. In fact, most experienced C programmers organize their func-tions into modules that relate to a single data structure (a "class"), and often even use12



a naming convention which mimics C++, for example, naming routines StackFull() andStackPush(). However, the features I'm about to describe do require a paradigm shift {there is no simple translation from them into a normal C program. The bene�t will be that,in some circumstances, you will be able to write generic code that works with multiple kindsof objects.Nevertheless, I would advise a beginning C++ programmer against trying to use thesefeatures, because you will almost certainly misuse them. It's possible (even easy!) to writecompletely inscrutable code using inheritance and/or templates. Although you might �nd itamusing to write code that is impossible for your graders to understand, I assure you theywon't �nd it amusing at all, and will return the favor when they assign grades. In industry,a high premium is placed on keeping code simple and readable. It's easy to write new code,but the real cost comes when you try to keep it working, even as you add new features to it.Nachos contains a few examples of the correct use of inheritance and templates, butrealize that Nachos does not use them everywhere. In fact, if you get confused by thissection, don't worry, you don't need to use any of these features in order to do the Nachosassignments. I omit a whole bunch of details; if you �nd yourself making widespread useof inheritance or templates, you should consult a C++ reference manual for the real scoop.This is meant to be just enough to get you started, and to help you identify when it wouldbe appropriate to use these features and thus learn more about them!4.1 InheritanceInheritance captures the idea that certain classes of objects are related to each other in usefulways. For example, lists and sorted lists have quite similar behavior { they both allow theuser to insert, delete, and �nd elements that are on the list. There are two bene�ts to usinginheritance:1. You can write generic code that doesn't care exactly which kind of object it is manip-ulating. For example, inheritance is widely used in windowing systems. Everything onthe screen (windows, scroll bars, titles, icons) is its own object, but they all share a setof member functions in common, such as a routine Repaint to redraw the object ontothe screen. This way, the code to repaint the entire screen can simply call the Repaintfunction on every object on the screen. The code that calls Repaint doesn't need toknow which kinds of objects are on the screen, as long as each implements Repaint.2. You can share pieces of an implementation between two objects. For example, ifyou were to implement both lists and sorted lists in C, you'd probably �nd yourselfrepeating code in both places { in fact, you might be really tempted to only implementsorted lists, so that you only had to debug one version. Inheritance provides a wayto re-use code between nearly similar classes. For example, given an implementationof a list class, in C++ you can implement sorted lists by replacing the insert memberfunction { the other functions, delete, isFull, print, all remain the same.13



4.1.1 Shared BehaviorLet me use our Stack example to illustrate the �rst of these. Our Stack implementation abovecould have been implemented with linked lists, instead of an array. Any code using a Stackshouldn't care which implementation is being used, except that the linked list implementationcan't overow. (In fact, we could also change the array implementation to handle overowby automatically resizing the array as items are pushed on the stack.)To allow the two implementations to coexist, we �rst de�ne an abstract Stack, containingjust the public member functions, but no data.class Stack {public:Stack();virtual ~Stack(); // deallocate the stackvirtual void Push(int value) = 0;// Push an integer, checking for overflow.virtual bool Full() = 0; // Is the stack is full?};// For g++, need these even though no data to initialize.Stack::Stack {}Stack::~Stack() {}The Stack de�nition is called a base class or sometimes a superclass. We can then de�netwo di�erent derived classes, sometimes called subclasses which inherit behavior from thebase class. (Of course, inheritance is recursive { a derived class can in turn be a base classfor yet another derived class, and so on.) Note that I have prepended the functions in thebase class is prepended with the keyword virtual, to signify that they can be rede�nedby each of the two derived classes. The virtual functions are initialized to zero, to tell thecompiler that those functions must be de�ned by the derived classes.Here's how we could declare the array-based and list-based implementations of Stack.The syntax : public Stack signi�es that both ArrayStack and ListStack are kinds ofStacks, and share the same behavior as the base class.class ArrayStack : public Stack { // the same as in Section 2public:ArrayStack(int sz); // Constructor: initialize variables, allocate space.~ArrayStack(); // Destructor: deallocate space allocated above.void Push(int value); // Push an integer, checking for overflow.bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.private:int size; // The maximum capacity of the stack.int top; // Index of the lowest unused position.14



int *stack; // A pointer to an array that holds the contents.};class ListStack : public Stack {public:ListStack();~ListStack();void Push(int value);bool Full();private:List *list; // list of items pushed on the stack};ListStack::ListStack() {list = new List;}ListStack::~ListStack() {delete list;}

15



void ListStack::Push(int value) {list->Prepend(value);}bool ListStack::Full() {return FALSE; // this stack never overflows!} The neat concept here is that I can assign pointers to instances of ListStack or ArrayStackto a variable of type Stack, and then use them as if they were of the base type.Stack *s1 = new ListStack;Stack *s2 = new ArrayStack(17);if (!stack->Full())s1->Push(5);if (!s2->Full())s2->Push(6);delete s1;delete s2;The compiler automatically invokes ListStack operations for s1, and ArrayStack op-erations for s2; this is done by creating a procedure table for each object, where derivedobjects override the default entries in the table de�ned by the base class. To the code above,it invokes the operations Full, Push, and delete by indirection through the procedure table,so that the code doesn't need to know which kind of object it is.In this example, since I never create an instance of the abstract class Stack, I do not needto implement its functions. This might seem a bit strange, but remember that the derivedclasses are the various implementations of Stack, and Stack serves only to reect the sharedbehavior between the di�erent implementations.Also note that the destructor for Stack is a virtual function but the constructor isnot. Clearly, when I create an object, I have to know which kind of object it is, whetherArrayStack or ListStack. The compiler makes sure that no one creates an instance of theabstract Stack by mistake { you cannot instantiate any class whose virtual functions arenot completely de�ned (in other words, if any of its functions are set to zero in the classde�nition).But when I deallocate an object, I may no longer know its exact type. In the above code,I want to call the destructor for the derived object, even though the code only knows that Iam deleting an object of class Stack. If the destructor were not virtual, then the compilerwould invoke Stack's destructor, which is not at all what I want. This is an easy mistake tomake (I made it in the �rst draft of this article!) { if you don't de�ne a destructor for theabstract class, the compiler will de�ne one for you implicitly (and by the way, it won't be16



virtual, since you have a really unhelpful compiler). The result for the above code would bea memory leak, and who knows how you would �gure that out!4.1.2 Shared ImplementationWhat about sharing code, the other reason for inheritance? In C++, it is possible to usemember functions of a base class in its derived class. (You can also share data between abase class and derived classes, but this is a bad idea for reasons I'll discuss later.)Suppose that I wanted to add a new member function, NumberPushed(), to both imple-mentations of Stack. The ArrayStack class already keeps count of the number of items onthe stack, so I could duplicate that code in ListStack. Ideally, I'd like to be able to use thesame code in both places. With inheritance, we can move the counter into the Stack class,and then invoke the base class operations from the derived class to update the counter.class Stack {public:virtual ~Stack(); // deallocate datavirtual void Push(int value); // Push an integer, checking for overflow.virtual bool Full() = 0; // return TRUE if fullint NumPushed(); // how many are currently on the stack?protected:Stack(); // initialize dataprivate:int numPushed;};Stack::Stack() {numPushed = 0;}void Stack::Push(int value) {numPushed++;}int Stack::NumPushed() {return numPushed;} We can then modify both ArrayStack and ListStack to make use the new behavior ofStack. I'll only list one of them here:class ArrayStack : public Stack {public: 17



ArrayStack(int sz);~ArrayStack();void Push(int value);bool Full();private:int size; // The maximum capacity of the stack.int *stack; // A pointer to an array that holds the contents.};ArrayStack::ArrayStack(int sz) : Stack() {size = sz;stack = new int[size]; // Let's get an array of integers.}voidArrayStack::Push(int value) {ASSERT(!Full());stack[NumPushed()] = value;Stack::Push(); // invoke base class to increment numPushed} There are a few things to note:1. The constructor for ArrayStack needs to invoke the constructor for Stack, in orderto initialize numPushed. It does that by adding : Stack() to the �rst line in theconstructor:ArrayStack::ArrayStack(int sz) : Stack()The same thing applies to destructors. There are special rules for which get called �rst{ the constructor/destructor for the base class or the constructor/destructor for thederived class. All I should say is, it's a bad idea to rely on whatever the rule is { moregenerally, it is a bad idea to write code which requires the reader to consult a manualto tell whether or not the code works!2. I introduced a new keyword, protected, in the new de�nition of Stack. For a baseclass, protected signi�es that those member data and functions are accessible toclasses derived (recursively) from this class, but inaccessible to other classes. In otherwords, protected data is public to derived classes, and private to everyone else. Forexample, we need Stack's constructor to be callable by ArrayStack and ListStack,but we don't want anyone else to create instances of Stack. Hence, we make Stack'sconstructor a protected function. In this case, this is not strictly necessary since thecompiler will complain if anyone tries to create an instance of Stack because Stack still18



has an unde�ned virtual functions, Push. By de�ning Stack::Stack as protected,you are safe even if someone comes along later and de�nes Stack::Push.Note however that I made Stack's data member private, not protected. Althoughthere is some debate on this point, as a rule of thumb you should never allow oneclass to see directly access the data in another, even among classes related by inher-itance. Otherwise, if you ever change the implementation of the base class, you willhave to examine and change all the implementations of the derived classes, violatingmodularity.3. The interface for a derived class automatically includes all functions de�ned for its baseclass, without having to explicitly list them in the derived class. Although we didn'tde�ne NumPushed() in ArrayStack, we can still call it for those objects:ArrayStack *s = new ArrayStack(17);ASSERT(s->NumPushed() == 0); // should be initialized to 04. Conversely, even though we have de�ned a routine Stack::Push(), because it isdeclared as virtual, if we invoke Push() on an ArrayStack object, we will getArrayStack's version of Push:Stack *s = new ArrayStack(17);if (!s->Full()) // ArrayStack::Fulls->Push(5); // ArrayStack::Push5. Stack::NumPushed() is not virtual. That means that it cannot be re-de�ned byStack's derived classes. Some people believe that you should mark all functions in abase class as virtual; that way, if you later want to implement a derived class thatrede�nes a function, you don't have to modify the base class to do so.6. Member functions in a derived class can explicitly invoke public or protected functionsin the base class, by the full name of the function, Base::Function(), as in:void ArrayStack::Push(int value){ ...Stack::Push(); // invoke base class to increment numPushed}Of course, if we just called Push() here (without prepending Stack::, the compilerwould think we were referring to ArrayStack's Push(), and so that would recurse,which is not exactly what we had in mind here.19



Whew! Inheritance in C++ involves lots and lots of details. But it's real downside isthat it tends to spread implementation details across multiple �les { if you have a deepinheritance tree, it can take some serious digging to �gure out what code actually executeswhen a member function is invoked.So the question to ask yourself before using inheritance is: what's your goal? Is it towrite your programs with the fewest number of characters possible? If so, inheritance isreally useful, but so is changing all of your function and variable names to be one letter long{ "a", "b", "c" { and once you run out of lower case ones, start using upper case, then twocharacter variable names: "XX XY XZ Ya ..." (I'm joking here.) Needless to say, it is reallyeasy to write unreadable code using inheritance.So when is it a good idea to use inheritance and when should it be avoided? My ruleof thumb is to only use it for representing shared behavior between objects, and to neveruse it for representing shared implementation. With C++, you can use inheritance for bothconcepts, but only the �rst will lead to truly simpler implementations.To illustrate the di�erence between shared behavior and shared implementation, supposeyou had a whole bunch of di�erent kinds of objects that you needed to put on lists. Forexample, almost everything in an operating system goes on a list of some sort: bu�ers,threads, users, terminals, etc.A very common approach to this problem (particularly among people new to object-oriented programming) is to make every object inherit from a single base class Object, whichcontains the forward and backward pointers for the list. But what if some object needsto go on multiple lists? The whole scheme breaks down, and it's because we tried to useinheritance to share implementation (the code for the forward and backward pointers) insteadof to share behavior. A much cleaner (although slightly slower) approach would be to de�nea list implementation that allocated forward/backward pointers for each object that gets puton a list.In sum, if two classes share at least some of the same member function signatures { thatis, the same behavior, and if there's code that only relies on the shared behavior, then theremay be a bene�t to using inheritance. In Nachos, locks don't inherit from semaphores, eventhough locks are implemented using semaphores. The operations on semaphores and locksare di�erent. Instead, inheritance is only used for various kinds of lists (sorted, keyed, etc.),and for di�erent implementations of the physical disk abstraction, to reect whether the diskhas a track bu�er, etc. A disk is used the same way whether or not it has a track bu�er; theonly di�erence is in its performance characteristics.4.2 TemplatesTemplates are another useful but dangerous concept in C++. With templates, you canparameterize a class de�nition with a type, to allow you to write generic type-independentcode. For example, our Stack implementation above only worked for pushing and poppingintegers; what if we wanted a stack of characters, or oats, or pointers, or some arbitrarydata structure? 20



In C++, this is pretty easy to do using templates:template <class T>class Stack {public:Stack(int sz); // Constructor: initialize variables, allocate space.~Stack(); // Destructor: deallocate space allocated above.void Push(T value); // Push an integer, checking for overflow.bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.private:int size; // The maximum capacity of the stack.int top; // Index of the lowest unused position.T *stack; // A pointer to an array that holds the contents.}; To de�ne a template, we prepend the keyword template to the class de�nition, and weput the parameterized type for the template in angle brackets. If we need to parameterizethe implementation with two or more types, it works just like an argument list: template<class T, class S>. We can use the type parameters elsewhere in the de�nition, just likethey were normal types.When we provide the implementation for each of the member functions in the class, wealso have to declare them as templates, and again, once we do that, we can use the typeparameters just like normal types:// template version of Stack::Stacktemplate <class T>Stack<T>::Stack(int sz) {size = sz;top = 0;stack = new T[size]; // Let's get an array of type T} // template version of Stack::Pushtemplate <class T>voidStack<T>::Push(T value) {ASSERT(!Full());stack[top++] = value;} Creating an object of a template class is similar to creating a normal object:void 21



test() {Stack<int> s1(17);Stack<char> *s2 = new Stack<char>(23);s1.Push(5);s2->Push('z');delete s2;} Everything operates as if we de�ned two classes, one called Stack<int> { a stack ofintegers, and one called Stack<char> { a stack of characters. s1 behaves just like an instanceof the �rst; s2 behaves just like an instance of the second. In fact, that is exactly howtemplates are typically implemented { you get a complete copy of the code for the templatefor each di�erent instantiated type. In the above example, we'd get one copy of the code forints and one copy for chars.So what's wrong with templates? You've all been taught to make your code modular sothat it can be re-usable, so everything should be a template, right? Wrong.The principal problem with templates is that they can be very di�cult to debug { tem-plates are easy to use if they work, but �nding a bug in them can be di�cult. In part thisis because current generation C++ debuggers don't really understand templates very well.Nevertheless, it is easier to debug a template than two nearly identical implementations thatdi�er only in their types.So the best advice is { don't make a class into a template unless there really is a nearterm use for the template. And if you do need to implement a template, implement anddebug a non-template version �rst. Once that is working, it won't be hard to convert it toa template. Then all you have to worry about code explosion { e.g., your program's objectcode is now megabytes because of the 15 copies of the hash table/list/... routines, one foreach kind of thing you want to put in a hash table/list/... (Remember, you have an unhelpfulcompiler!)5 Features To Avoid Like the PlagueDespite the length of this note, there are numerous features in C++ that I haven't explained.I'm sure each feature has its advocates, but despite programming in C and C++ for over 15years, I haven't found a compelling reason to use them in any code that I've written (outsideof a programming language class!)Indeed, there is a compelling reason to avoid using these features { they are easy to misuse,resulting in programs that are harder to read and understand instead of easier to understand.In most cases, the features are also redundant { there are other ways of accomplishing thesame end. Why have two ways of doing the same thing? Why not stick with the simplerone?I do not use any of the following features in Nachos. If you use them, caveat hacker.22



1. Multiple inheritance. It is possible in C++ to de�ne a class as inheriting behaviorfrom multiple classes (for instance, a dog is both an animal and a furry thing). But ifprograms using single inheritance can be di�cult to untangle, programs with multipleinheritance can get really confusing.2. References. Reference variables are rather hard to understand in general; they playthe same role as pointers, with slightly di�erent syntax (unfortunately, I'm not jok-ing!) Their most common use is to declare some parameters to a function as referenceparameters, as in Pascal. A call-by-reference parameter can be modi�ed by the callingfunction, without the callee having to pass a pointer. The e�ect is that parameterslook (to the caller) like they are called by value (and therefore can't change), but infact can be transparently modi�ed by the called function. Obviously, this can be asource of obscure bugs, not to mention that the semantics of references in C++ are ingeneral not obvious.3. Operator overloading. C++ lets you rede�ne the meanings of the operators (such as+ and >>) for class objects. This is dangerous at best ("exactly which implementationof '+' does this refer to?"), and when used in non-intuitive ways, a source of greatconfusion, made worse by the fact that C++ does implicit type conversion, which cana�ect which operator is invoked. Unfortunately, C++'s I/O facilities make heavy useof operator overloading and references, so you can't completely escape them, but thinktwice before you rede�ne '+' to mean \concatenate these two strings".4. Function overloading. You can also de�ne di�erent functions in a class with thesame name but di�erent argument types. This is also dangerous (since it's easy toslip up and get the unintended version), and we never use it. We will also avoid usingdefault arguments (for the same reason). Note that it can be a good idea to use thesame name for functions in di�erent classes, provided they use the same argumentsand behave the same way { a good example of this is that most Nachos objects havea Print() method.5. Standard template library. An ANSI standard has emerged for a library of rou-tines implementing such things as lists, hash tables, etc., called the standard templatelibrary. Using such a library should make programming much simpler if the data struc-ture you need is already provided in the library. Alas, the standard template librarypushes the envelope of legal C++, and so virtually no compilers (including g++) cansupport it today. Not to mention that it uses (big surprise!) references, operatoroverloading, and function overloading.6. Exceptions. There are two ways to return an error from a procedure. One is simple{ just de�ne the procedure to return an error code if it isn't able to do it's job. Forexample, the standard library routine malloc returns NULL if there is no availablememory. However, lots of programmers are lazy and don't check error codes. Sowhat's the solution? You might think it would be to get programmers who aren't lazy,23



but no, the C++ solution is to add a programming language construct! A procedurecan return an error by \raising an exception" which e�ectively causes a goto back upthe execution stack to the last place the programmer put an exception handler. Youwould think this is too bizarre to be true, but unfortunately, I'm not making this up.While I'm at it, there are a number of features of C that you also should avoid, becausethey lead to bugs and make your code less easy to understand. See Maguire's "Writing SolidCode" for a more complete discussion of this issue. All of these features are legal C; what'slegal isn't necessarily good.1. Pointer arithmetic. Runaway pointers are a principal source of hard-to-�nd bugs in Cprograms, because the symptom of this happening can be mangled data structures ina completely di�erent part of the program. Depending on exactly which objects areallocated on the heap in which order, pointer bugs can appear and disappear, seeminglyat random. For example, printf sometimes allocates memory on the heap, which canchange the addresses returned by all future calls to new. Thus, adding a printf canchange things so that a pointer which used to (by happenstance) mangle a critical datastructure (such as the middle of a thread's execution stack), now overwrites memorythat may not even be used.The best way to avoid runaway pointers is (no surprise) to be very careful when usingpointers. Instead of iterating through an array with pointer arithmetic, use a separateindex variable, and assert that the index is never larger than the size of the array.Optimizing compilers have gotten very good, so that the generated machine code islikely to be the same in either case.Even if you don't use pointer arithmetic, it's still easy (easy is bad in this context!) tohave an o�-by-one errror that causes your program to step beyond the end of an array.How do you �x this? De�ne a class to contain the array and its length; before allowingany access to the array, you can then check whether the access is legal or in error.2. Casts from integers to pointers and back. Another source of runaway pointers is thatC and C++ allow you to convert integers to pointers, and back again. Needless to say,using a random integer value as a pointer is likely to result in unpredictable symptomsthat will be very hard to track down.In addition, on some 64 bit machines, such as the Alpha, it is no longer the case thatthe size of an integer is the same as the the size of a pointer. If you cast betweenpointers and integers, you are also writing highly non-portable code.3. Using bit shift in place of a multiply or divide. This is a clarity issue. If you are doingarithmetic, use arithmetic operators; if you are doing bit manipulation, use bitwiseoperators. If I am trying to multiply by 8, which is easier to understand, x << 3or x * 8? In the 70's, when C was being developed, the former would yield moree�cient machine code, but today's compilers generate the same code in both cases, soreadability should be your primary concern.24



4. Assignment inside conditional. Many programmers have the attitude that simplicityequals saving as many keystrokes as possible. The result can be to hide bugs thatwould otherwise be obvious. For example:if (x = y) {...Was the intent really x == y? After all, it's pretty easy to mistakenly leave o� theextra equals sign. By never using assignment within a conditional, you can tell by codeinspection whether you've made a mistake.5. Using #define when you could use enum. When a variable can hold one of a smallnumber of values, the original C practice was to use #define to set up symbolic namesfor each of the values. enum does this in a type-safe way { it allows the compiler toverify that the variable is only assigned one of the enumerated values, and none other.Again, the advantage is to eliminate a class of errors from your program, making itquicker to debug.

25



6 Style GuidelinesEven if you follow the approach I've outlined above, it is still as easy to write unreadable andundebuggable code in C++ as it is in C, and perhaps easier, given the more powerful featuresthe language provides. For the Nachos project, and in general, we suggest you adhere to thefollowing guidelines (and tell us if you catch us breaking them):1. Words in a name are separated SmallTalk-style (i.e., capital letters at the start of eachnew word). All class names and member function names begin with a capital letter,except for member functions of the form getSomething() and setSomething(), whereSomething is a data element of the class (i.e., accessor functions). Note that you wouldwant to provide such functions only when the data should be visible to the outsideworld, but you want to force all accesses to go through one function. This is often agood idea, since you might at some later time decide to compute the data instead ofstoring it, for example.2. All global functions should be capitalized, except for main and library functions, whichare kept lower-case for historical reasons.3. Minimize the use of global variables. If you �nd yourself using a lot of them, try andgroup some together in a class in a natural way or pass them as arguments to thefunctions that need them if you can.4. Minimize the use of global functions (as opposed to member functions). If you write afunction that operates on some object, consider making it a member function of thatobject.5. For every class or set of related classes, create a separate .h �le and .cc �le. The .h �leacts as the interface to the class, and the .cc �le acts as the implementation (a given.cc �le should include it's respective .h �le). If using a particular .h �le requiresanother .h �le to be included (e.g., synch.h needs class de�nitions from thread.h)you should include the dependency in the .h �le, so that the user of your class doesn'thave to track down all the dependencies himself. To protect against multiple inclusion,bracket each .h �le with something like:#ifndef STACK_H#define STACK_Hclass Stack { ... };#endifSometimes this will not be enough, and you will have a circular dependency. Forexample, you might have a .h �le that uses a de�nition from one .h �le, but also26



de�nes something needed by that .h �le. In this case, you will have to do somethingad-hoc. One thing to realize is that you don't always have to completely de�ne a classbefore it is used. If you only use a pointer to class Stack and do not access any memberfunctions or data from the class, you can write, in lieu of including stack.h:class Stack;This will tell the compiler all it needs to know to deal with the pointer. In a few casesthis won't work, and you will have to move stu� around or alter your de�nitions.6. Use ASSERT statements liberally to check that your program is behaving properly. Anassertion is a condition that if FALSE signi�es that there is a bug in the program;ASSERT tests an expression and aborts if the condition is false. We used ASSERT abovein Stack::Push() to check that the stack wasn't full. The idea is to catch errorsas early as possible, when they are easier to locate, instead of waiting until there isa user-visible symptom of the error (such as a segmentation fault, after memory hasbeen trashed by a rogue pointer).Assertions are particularly useful at the beginnings and ends of procedures, to checkthat the procedure was called with the right arguments, and that the procedure didwhat it is supposed to. For example, at the beginning of List::Insert, you could assertthat the item being inserted isn't already on the list, and at the end of the procedure,you could assert that the item is now on the list.If speed is a concern, ASSERTs can be de�ned to make the check in the debug versionof your program, and to be a no-op in the production version. But many people runwith ASSERTs enabled even in production.7. Write a module test for every module in your program. Many programmers have thenotion that testing code means running the entire program on some sample input; ifit doesn't crash, that means it's working, right? Wrong. You have no way of knowinghow much code was exercised for the test. Let me urge you to be methodical abouttesting. Before you put a new module into a bigger system, make sure the moduleworks as advertised by testing it standalone. If you do this for every module, thenwhen you put the modules together, instead of hoping that everything will work, youwill know it will work.Perhaps more importantly, module tests provide an opportunity to �nd as many bugsas possible in a localized context. Which is easier: �nding a bug in a 100 line program,or in a 10000 line program?7 Compiling and DebuggingThe Make�les we will give you works only with the GNU version of make, called \gmake".You may want to put \alias make gmake" in your .cshrc �le.27



You should use gdb to debug your program rather than dbx. Dbx doesn't know how todecipher C++ names, so you will see function names like Run__9SchedulerP6Thread.On the other hand, in GDB (but not DBX) when you do a stack backtrace when in aforked thread (in homework 1), after printing out the correct frames at the top of the stack,the debugger will sometimes go into a loop printing the lower-most frame (ThreadRoot), andyou have to type control-C when it says \more?". If you understand assembly language andcan �x this, please let me know.8 Example: A Stack of IntegersWe've provided the complete, working code for the stack example. You should read throughit and play around with it to make sure you understand the features of C++ described inthis paper.To compile the simple stack test, type make all { this will compile the simple stack test(stack.cc), the inherited stack test (inheritstack.cc), and the template version of stacks(templatestack.cc).9 EpilogueI've argued in this note that you should avoid using certain C++ and C features. But you'reprobably thinking I must be leaving something out { if someone put the feature in thelanguage, there must be a good reason, right? I believe that every programmer should striveto write code whose behavior would be immediately obvious to a reader; if you �nd yourselfwriting code that would require someone reading the code to thumb through a manual inorder to understand it, you are almost certainly being way too subtle. There's probably amuch simpler and more obvious way to accomplish the same end. Maybe the code will be alittle longer that way, but in the real world, it's whether the code works and how simple itis for someone else to modify, that matters a whole lot more than how many characters youhad to type.A �nal thought to remember:\There are two ways of constructing a software design: one way is to make it sosimple that there are obviously no de�ciencies and the other way is to make it socomplicated that there are no obvious de�ciencies."C. A. R. Hoare, \The Emperor's Old Clothes", CACM Feb. 198110 Further ReadingJames Coplien, \Advanced C++", Addison-Wesley. This book is only for experts, butit has some good ideas in it, so keep it in mind once you've been programming in C++for a few years. 28



James Gosling. \The Java Language." Online at \http://java.sun.com/" Java is a safesubset of C++. It's main application is the safe extension of Web browsers by allowingyou to download Java code as part of clicking on a link to interpret and display thedocument. Safety is key here, since after all, you don't want to click on a Web link andhave it download code that will crash your browser. Java was de�ned independentlyof this document, but interestingly, it enforces a very similar style (for example, nomultiple inheritance and no operator overloading).C.A.R. Hoare, \The Emperor's Old Clothes." Communications of the ACM, Vol. 24,No. 2, February 1981, pp. 75-83. Tony Hoare's Turing Award lecture. How do youbuild software that really works? Attitude is everything { you need a healthy respectfor how hard it is to build working software. It might seem that addding this whiz-bangfeature is only \a small matter of code", but that's the path to late, buggy productsthat don't work.Brian Kernighan and Dennis Ritchie, \The C Programming Language", Prentice-Hall.The original C book { a very easy read. But the language has evolved since it was �rstdesigned, and this book doesn't describe all of C's newest features. But still the bestplace for a beginner to start, even when learning C++.Steve Maguire, \Writing Solid Code", Microsoft Press. How to write bug-free software;I think this should be required reading for all software engineers. This really will changeyour life { if you don't follow the recommendations in this book, you'll probably neverwrite code that completely works, and you'll spend your entire life struggling with hardto �nd bugs. There is a better way! Contrary to the programming language types,this doesn't involve proving the correctness of your programs, whatever that means.Instead, Maguire has a set of practical engineering solutions to writing solid code.Steve Maguire, \Debugging the Development Process", Microsoft Press. Maguire'sfollow up book on how to lead an e�ective team, and by the way, how to be an e�ectiveengineer. Maguire's background is that he is a turnaround artist for Microsoft { hegets assigned to oundering teams, and �gures out how to make them e�ective. Afteryou've pulled a few all-nighters to get that last bug out of your course project, you'reprobably wondering why in heck you're studying computer science anyway. This bookwill explain how to write programs that work, and still have a life!Scott Meyers, \E�ective C++". This book describes how 50 easy ways to make mis-takes C++; if you avoid these, you will be a lot more likely to write C++ code thatworks.Bjarne Stroustrup, \The C++ Programming Language", Addison-Wesley. This shouldbe the de�nite reference manual, but it isn't. You probably thought I was joking whenI said the C++ language was continually evolving. I bought the second edition of thisbook three years ago, and it is already out of date. Fortunately, it's still OK for thesubset of C++ that I use. 29


