
The AMD 16-core system topology. Memory access latency is in cycles and listed before the backslash.
Memory bandwidth is in bytes per cycle and listed after the backslash. The measurements reflect the
latency and bandwidth achieved by a core issuing load instructions. The measurements for accessing the
L1 or L2 caches of a different core on the same chip are the same. The measurements for accessing any
cache on a different chip are the same. Each cache line is 64 bytes, L1 caches are 64 Kbytes 8-way set
associative, L2 caches are 512 Kbytes 16-way set associative, and L3 caches are 2 Mbytes 32-way set
associative.

[Reprinted with permission from S. Boyd-Wickizer et al. Corey: An Operating System for Many Cores.
Proceedings of Usenix Symposium on Operating Systems Design and Implementation (OSDI),
December 2008.]

1 Handout for CS 372H
2 Class 18
3 21 March 2013
4

5 1. Recall implementation of acquire() and release() in spinlocks
6 context:
7

8 [this item is fully review.]
9

10 It uses an atomic instruction on the CPU. For example, on the
11 x86, doing
12 "xchg addr, %eax"
13 does the following:
14

15 (i) freeze all CPUs’ memory activity for address addr
16 (ii) temp = *addr
17 (iii) *addr = %eax
18 (iv) %eax = temp
19 (v) un−freeze memory activity
20

21 /* pseudocode */
22 int xchg_val(addr, value) {
23 %eax = value;
24 xchg (*addr), %eax
25 }
26

27 struct Lock {
28 int locked;
29 }
30

31 /* bare−bones version of acquire */
32 void acquire (Lock *lock) {
33 pushcli(); /* what does this do? */
34 while (1) {
35 if (xchg_val(&lock−>locked, 1) == 0)
36 break;
37 }
38 }
39

40 /* optimization in acquire; call xchg_val() less frequently */
41 void acquire(Lock* lock) {
42 pushcli();
43 while (xchg_val(&lock−>locked, 1) == 1) {
44 while (lock−>locked) ;
45 }
46 }
47

48 void release(Lock *lock){
49 xchg_val(&lock−>locked, 0);
50 popcli(); /* what does this do? */
51 }
52

53 The above is called a *spinlock* because acquire() spins.
54

Mar 21, 13 15:19 Page 1/3l18−handout−2.txt
55 2. Here’s an alternative.....
56

57 Instead of using the XCHG instruction, it uses CMPXCHG.
58

59 A. CAS / CMPXCHG
60

61 Useful operation: compare−and−swap, known as CAS. Says: "atomically
62 check whether a given memory cell contains a given value, and if it
63 does, then replace the contents of the memory cell with this other
64 value; in either case, return the original value in the memory
65 location".
66

67 On the X86, we implement CAS with the CMPXCHG instruction, but note
68 that this instruction is not atomic by default, so we need the LOCK
69 prefix.
70

71 Here’s pseudocode:
72

73 int cmpxchg_val(int* addr, int oldval, int newval) {
74 LOCK: // remember, this is pseudocode
75 int was = *addr;
76 if (*addr == oldval)
77 *addr = newval;
78 return was;
79 }
80

81 Here’s inline assembly:
82

83 uint32_t cmpxchg_val(uint32_t* addr, uint32_t oldval, uint32_t newval) {
84 uint32_t was;
85 asm volatile("lock cmpxchg %3, %0"
86 : "+m" (*addr), "=a" (was)
87 : "a" (oldval), "r" (newval)
88 : "cc");
89 return was;
90 }
91

92 B. MCS locks
93

94 Citation: Mellor−Crummey, J. M. and M. L. Scott. Algorithms for
95 Scalable Synchronization on Shared−Memory Multiprocessors, ACM
96 Transactions on Computer Systems, Vol. 9, No. 1, February, 1991,
97 pp.21−65.
98

99 Each CPU has a qnode structure in *local* memory. Here, local can
100 mean local memory in NUMA machine or its own cache line that other
101 CPUs are not allowed to cache (i.e., the cache line is in exclusive
102 mode):
103

104 typedef struct qnode {
105 struct qnode* next;
106 bool someoneelse_locked;
107 } qnode;
108

109 typedef qnode* lock; // a lock is a pointer to a qnode
110
111 −−The lock itself is literally the *tail* of the list of CPUs holding
112 or waiting for the lock.
113

114 −−While waiting, a CPU spins on its local "locked" flag. Here’s the
115 code for acquire:
116

Mar 21, 13 15:19 Page 2/3l18−handout−2.txt

Printed by Michael Walfish

Thursday March 21, 2013 1/2l18−handout−2.txt

117 // lockp is a qnode**. I points to our local qnode.
118 void acquire(lock* lockp, qnode* I) {
119

120 I−>next = NULL;
121 qnode* predecessor;
122

123 // next line makes lockp point to I (that is, it sets *lockp <−− I)
124 // and returns the old value of *lockp. Uses atomic operation
125 // XCHG. see earlier in handout (or earlier handouts)
126 // for implementation of xchg_val.
127

128 predecessor = xchg_val(lockp, I); // "A"
129 if (predecessor != NULL) { // queue was non−empty
130 I−>someoneelse_locked = true;
131

132 predecessor−>next = I; // "B"
133 while (I−>someoneelse_locked) ; // spin
134 }
135 // we hold the lock!
136 }
137

138 What’s going on?
139

140 −−If the lock is unlocked, then *lockp == NULL.
141

142 −−If the lock is locked, and there are no waiters, then *lockp
143 points to the qnode of the owner
144

145 −−If the lock is locked, and there are waiters, then *lockp points
146 to the qnode at the tail of the waiter list.
147

148 −−Here’s the code for release:
149

150 void release(lock* lockp, qnode* I) {
151 if (!I−>next) { // no known successor
152 if (cmpxchg_val(lockp, I, NULL) == I) { // "C"
153 // swap successful: lockp was pointing to I, so now
154 // *lockp == NULL, and the lock is unlocked. we can
155 // go home now.
156 return;
157 }
158 // if we get here, then there was a timing issue: we had
159 // no known successor when we first checked, but now we
160 // have a successor: some CPU executed the line "A"
161 // above. Wait for that CPU to execute line "B" above.
162 while (!I−>next) ;
163 }
164

165 // handing the lock off to the next waiter is as simple as
166 // just setting that waiter’s "someoneelse_locked" flag to false
167 I−>next−>someoneelse_locked = false;
168 }
169

170 What’s going on?
171

172 −−If I−>next == NULL and *lockp == I, then no one else is
173 waiting for the lock. So we set *lockp == NULL.
174

175 −−If I−>next == NULL and *lockp != I, then another CPU is in
176 acquire (specifically, it executed its atomic operation, namely
177 line "A", before we executed ours, namely line "C"). So wait for
178 the other CPU to put the list in a sane state, and then drop
179 down to the next case:
180

181 −−If I−>next != NULL, then we know that there is a spinning
182 waiter (the oldest one). Hand it the lock by setting its flag to
183 false.

Mar 21, 13 15:19 Page 3/3l18−handout−2.txt

Printed by Michael Walfish

Thursday March 21, 2013 2/2l18−handout−2.txt

Time required to acquire and release a lock on a 16-core AMD machine when varying number of cores
contend for the lock. The two lines show Linux kernel spin locks and MCS locks (on Corey). A spin
lock with one core takes about 11 nanoseconds; an MCS lock about 26 nanoseconds.

[Reprinted with permission from S. Boyd-Wickizer et al. Corey: An Operating System for Many Cores.
Proceedings of Symposium on Operating Systems Design and Implementation (OSDI), December
2008.]

