Printed by Michael Walfish

Jan 17, 13 15:49 [02—handout.txt Page 1/4 Jan 17, 13 15:49 [02—handout.txt Page 2/4
1 Handout for CS 439 57 3. Another syscall example: pipe()

2 Class 2 58

3 17 January 2013 59 The pipe() syscall is used by the shell to implement pipelines, such as
4 60 $Is| sort | head -4

s This handout is meant to: 61 We will see this in a moment; for now, here is an example use of
6 62 pipes.

7 ——-communicate the power of the fork()/exec() separation 63

8 64 /I C fragment with simple use of pipes
9 —-illustrate how the shell itself uses syscalls 65

10 66 int fdarray[2];

1 —--give an example of how small, modular pieces (file descriptors, 67 char buf[512];

12 pipes, fork(), exec()) can be combined to achieve complex behavior 68 intn;

13 far beyond what any single application designer could or would have 69

14 specified at design time. (We will not cover pipes in lecture today.) 70 pipe(fdarray);

15 7 write(fdarray[1], "hello", 5);

16 1. Pseudocode for a very simple shell 7 n = read(fdarray[0], buf sizeof(buf));
17 73 /I buf[] now contains 'h’, 'e’, 'I', 'I', '0’
18 while (1) { 74

19 write(1, "$ ", 2); 75 4. File descriptors are inherited across fork
20 readcommand(command, args); // parse input 76

21 if ((pid = fork()) == 0) // child? 7 /I C fragment showing how two processes can communicate over a pipe
22 exec(command, args, 0); 78

23 else if (pid > 0) // parent? 79 int fdarray[2];

24 wait(0); //wait for child 80 char buf[512];

25 else 81 int n, pid;

26 perror(“failed to fork"); 82

27 } 83 pipe(fdarray);

28 84 pid = fork();

20 2. Now add two features to this simple shell: output redirection and 85 If(pid > 0){

30 backgrounding 86 write(fdarray[1], "hello", 5);

31 87 } else {

32 By output redirection, we mean, for example: 88 n = read(fdarray[0], buf, sizeof(buf));
3 $ Is > list.txt 89

34 By backgrounding, we mean, for example: %

35 $ myprog &

36 $

37

38 while (1) {

39 write(1, "$ ", 2);

40 readcommand(command, args); // parse input

a if ((pid = fork()) == 0) { // child?

42 if (output_redirected) {

43 close(1);

a4 open(redirect_file, O_CREAT | O_TRUNC | O_WRONLY, 0666);

45

6 /I when command runs, fd 1 will refer to the redirected file

47 exec(command, args, 0);

48 }else if (p|d > 0) {// parent?

49 if (foreground_process) {

50 wait(0); //wait for child

51

52 }else {

53 perror(“failed to fork™);

54 }

55 }

56

Friday January 18, 2013 102-handout.txt 1/2

Printed by Michael Walfish

Jan 17, 13 15:49 [02—handout.txt Page 3/4 Jan 17, 13 15:49 [02—handout.txt Page 4/4
o1 5. Putting it all together: implementing shell pipelines using 154
9 fork(), exec(), and pipe(). (See pipesh.c at the back of the 155 6. Commentary
93 handout for a non—pseudocode version of the pipeline handling.) 156
o 157 Why is this interesting? Because pipelines and output redirection
95 158 are accomplished by manipulating the child’s environment, not by
% /I Pseudocode for a Unix shell that can run processes in the 159 asking a program author to implement a complex set of behaviors.
97 /I background, redirect the output of commands, and implement 160 That is, the *identical code* for “Is" can result in printing to the
) /I two element pipelines, such as "Is | sort" 161 screen ("Is =I"), writing to a file ("Is —I > output.txt"), or
% 162 getting Is’s output formatted by a sorting program ("Is —I | sort").
100 void main_loop() { 163
101 164 This concept is powerful indeed. Consider what would be needed if it
102 while (1) { 165 weren't for redirection: the author of Is would have had to
103 write(1, "$ ", 2); 166 anticipate every possible output mode and would have had to build in
104 readcommand(command, args); // parse input 167 an interface by which the user could specify exactly how the output
105 if ((pid = fork()) == 0) { // child? 168 is treated.
106 if (pipeline_requested) { 169
107 handle_pipeline(left_command, right_command) 170 What makes it work is that the author of Is expressed his or her
108 } else 171 code in terms of a file descrlptor
109 if (output_redirected) { 172 write(1, "some output”, byte_count);
110 close(1); 173 This author does not, and cannot, know what the file descriptor will
111 open(redirect_file, O_CREAT | O_TRUNC | O_WRONLY, 0666); 174 represent at runtime. Meanwhile, the shell has the opportunity, *in
112 175 between fork() and exec()*, to arrange to have that file descriptor
113 exec(command, args, 0); 176 represent a pipe, a file to write to, the console, etc.
114
115 } else if (pid > 0) { // parent?
116 if (foreground_process) {
117 wait(0); // wait for child
118
119 }else {
120 perror(“failed to fork");
121 }
122 }
123 }
124
125 void handle_pipeline(left_command, right_command) {
126
127 int fdarray[2];
128
129 if (pipe(fdarray) < 0) panic ("error");
130 if ((pid = fork ()) == 0) { // child (left end of pipe)
131
132 close (1);
133 dup2 (fdarray[1], 1); // make fd 1 the same as fdarray[1],
134 which is the write end of the pipe
135 close (fdarray[0]);
136 close (fdarray[1]);
137 parse(command1, argsl, left_command);
138 exec (commandl, argsl, 0);
139
140 } else if (pid > 0) { /I parent (right end of pipe)
141
142 close (0);
143 dup2 (fdarray[0], 0); // make fd 0 the same as fdarray[0],
144 which is the read end of the pipe
145 close (fdarray[0]);
146 close (fdarray[1]);
147 parse(command2, args2, right_command);
148 exec (command2, args2, 0);
149
150 } else
151 pnntf ("Unable to fork\n");
152
153 }
154
Friday January 18, 2013 102-handout.txt 2/2

