Printed by Michael Walfish

Feb 21, 12 14:22 |10—handout-1.txt Page 1/2 Feb 21, 12 14:22 |10—handout-1.txt Page 2/2
1 Handout for CS 372H 74 2. Software problem #2 (simplified)

2 Class 10 5

3 21 February 2012 76 [Simplifying here and condensing to one thread of control; in
4 7 reality, the functions below are spread over two different threads,
s Therac-25 78 but that is not actually the problem, despite what the paper
6 79 sometimes says. The problem appears to be given by the following
7 1. Software problem #1 (our best guess) 80 simplified description.]

8 81

9 A. Three threads: 82 class3 =0;

10 83

1 —-Hand: sets the collimator/turntable position 84 while (1) {

12 85

13 —-Treat: sets a bunch of other parameters. Part of its job takes 86 if (in field light position) {

14 eight seconds, during which time it's ignoring everything else. 87 increment class3;

15 88

16 —=Vtkbp (keyboard handler): invoked when user types. It parses 89

17 the input, and writes to a two-byte shared variable, "MEOS" (mode/energy %0 check whether operator pressed "set"

18 offset) o1

19 ——"Treat" reads top byte, sets current and energy 9 if (operator pressed set) {

20 —-"Hand" reads bottom byte, sets the collimator/turntable position 93 if (class3 = 0) {

21 9 move turntable out of field light mode;
22 B. Pseudocode: 95 1

23 9% break;

24 Vtkbp (gets and parses keyboard input): 97

25 98 }

2 data_completion_flag = 0 9

27 100 What's the issue here? (Hint: class3 is only one byte.)
28 while (1) { 101

29 wait_for_keyboard_activity();

30 /* there was some keyboard activity; let's check it */

a1 if (cursor_in_bottom_right) {

32 parse_the_input();

33 set the MEOS variable

34 set data_completion_flag = 1;

35 signal hand thread

36 signal treat thread

a7 }else {

38 /* operator still typing */

39 data_completion_flag = O;

40

2 yield();

42 }

43

44

5 Hand (sets the turntable position):

46

a7 while (1) {

48 wait until signalled

49 read bottom byte of MEOS variable

50 /* next line executes quickly */

51 set turntable position

52 yield();

53 }

54

55 Treat (sets a bunch of parameters and delivers treatment):

56

57 dataent() { /* this is a subroutine that was called */

58

59 while (1) {

60 wait until signalled

61 read top byte of MEOS variable

62 set_energy_and_current();

63 set_bending_magnets(); /* this takes eight seconds */

64 if (data_completion_flag == 1)

65 break;

66 }

67 1*

68 * now we leave the subroutine and progress to a state in

69 * which the machine will accept a "beam on" command

70 */

7 return;

72 }

73

Tuesday February 21, 2012 110-handout-1.txt 1/1

T Thed (Hed)

oo e () é\j
> ”

a‘\”umjrhﬂ{‘ (o s"%«z Jﬂ»fr\lrﬂue

e

o Vrear seks mw%’ Se'JrS eredp

Sots curren

?c«@w.)e." 5{11[\]:\6 /r i"—’ﬂ}"’e“\- ﬁ‘eﬂfg

L

Feb 21, 12 14:29 [10-handout-2.txt Page 1/1
1 3. Implementing threads
2
3 Per-thread state in thread control block:
4
5 typedef struct tcb {
6 unsigned long esp; /* Stack pointer of thread */
7 char *t_stack; /* Bottom of thread's stack */
8 [* %
9 I
10
1 Machine-dependent thread—switch function:
12
13 void swtch(tcb *current, tcb *next);

15 Machine-dependent thread initialization function:

17 void thread_init (tcb *t, void (*fn) (void *), void *arg);

18

19 Implementation of swtch(current, next):

20

21 pushl %ebp; movl %esp, %ebp # Save frame pointer

22 pushl %ebx; pushl %esi; pushl %edi # Save callee-saved regs

23

24 movl 8(%ebp),%edx # %edx = current

25 movl 12(%ebp),%eax # %eax = next

2 movl %esp,(%edx) # Y%edx—>esp = %esp

27 movl (Y%eax),%esp # %esp = Y%eax—>esp
28

29 popl %edi; popl %esi; popl %ebx # Restore callee saved regs
30 popl %ebp # Restore frame pointer
a1 ret # Resume execution
32

33

34 [thanks to David Mazieres]

Tuesday February 21, 2012

[10-handout-2.txt

Printed by Michael Walfish

11

