
1 Handout for CS 372H
2 Class 10
3 21 February 2012
4

5 Therac−25
6

7 1. Software problem #1 (our best guess)
8

9 A. Three threads:
10

11 −−Hand: sets the collimator/turntable position
12

13 −−Treat: sets a bunch of other parameters. Part of its job takes
14 eight seconds, during which time it’s ignoring everything else.
15

16 −−Vtkbp (keyboard handler): invoked when user types. It parses
17 the input, and writes to a two−byte shared variable, "MEOS" (mode/energy
18 offset)
19 −−"Treat" reads top byte, sets current and energy
20 −−"Hand" reads bottom byte, sets the collimator/turntable position
21

22 B. Pseudocode:
23

24 Vtkbp (gets and parses keyboard input):
25

26 data_completion_flag = 0
27

28 while (1) {
29 wait_for_keyboard_activity();
30 /* there was some keyboard activity; let’s check it */
31 if (cursor_in_bottom_right) {
32 parse_the_input();
33 set the MEOS variable
34 set data_completion_flag = 1;
35 signal hand thread
36 signal treat thread
37 } else {
38 /* operator still typing */
39 data_completion_flag = 0;
40 }
41 yield();
42 }
43

44

45 Hand (sets the turntable position):
46

47 while (1) {
48 wait until signalled
49 read bottom byte of MEOS variable
50 /* next line executes quickly */
51 set turntable position
52 yield();
53 }
54

55 Treat (sets a bunch of parameters and delivers treatment):
56

57 dataent() { /* this is a subroutine that was called */
58

59 while (1) {
60 wait until signalled
61 read top byte of MEOS variable
62 set_energy_and_current();
63 set_bending_magnets(); /* this takes eight seconds */
64 if (data_completion_flag == 1)
65 break;
66 }
67 /*
68 * now we leave the subroutine and progress to a state in
69 * which the machine will accept a "beam on" command
70 */
71 return;
72 }
73

Feb 21, 12 14:22 Page 1/2l10−handout−1.txt
74 2. Software problem #2 (simplified)
75

76 [Simplifying here and condensing to one thread of control; in
77 reality, the functions below are spread over two different threads,
78 but that is not actually the problem, despite what the paper
79 sometimes says. The problem appears to be given by the following
80 simplified description.]
81

82 class3 = 0;
83

84 while (1) {
85

86 if (in field light position) {
87 increment class3;
88 }
89

90 check whether operator pressed "set"
91

92 if (operator pressed set) {
93 if (class3 != 0) {
94 move turntable out of field light mode;
95 }
96 break;
97 }
98 }
99

100 What’s the issue here? (Hint: class3 is only one byte.)
101

Feb 21, 12 14:22 Page 2/2l10−handout−1.txt

Printed by Michael Walfish

Tuesday February 21, 2012 1/1l10−handout−1.txt

1 3. Implementing threads
2

3 Per−thread state in thread control block:
4

5 typedef struct tcb {
6 unsigned long esp; /* Stack pointer of thread */
7 char *t_stack; /* Bottom of thread’s stack */
8 /* ... */
9 };

10
11 Machine−dependent thread−switch function:
12

13 void swtch(tcb *current, tcb *next);
14
15 Machine−dependent thread initialization function:
16

17 void thread_init (tcb *t, void (*fn) (void *), void *arg);
18

19 Implementation of swtch(current, next):
20

21 pushl %ebp; movl %esp, %ebp # Save frame pointer
22 pushl %ebx; pushl %esi; pushl %edi # Save callee−saved regs
23

24 movl 8(%ebp),%edx # %edx = current
25 movl 12(%ebp),%eax # %eax = next
26 movl %esp,(%edx) # %edx−>esp = %esp
27 movl (%eax),%esp # %esp = %eax−>esp
28

29 popl %edi; popl %esi; popl %ebx # Restore callee saved regs
30 popl %ebp # Restore frame pointer
31 ret # Resume execution
32

33

34 [thanks to David Mazieres]
35

Feb 21, 12 14:29 Page 1/1l10−handout−2.txt

Printed by Michael Walfish

Tuesday February 21, 2012 1/1l10−handout−2.txt

