
1 Handout for CS 372H
2 Class 8
3 9 February 2012
4

5 1. How can we implement lock, acquire(), and release()?
6

7 1a. Here is A BADLY BROKEN implementation:
8

9 struct Lock {
10 int locked;
11 }
12

13 void [BROKEN] acquire(Lock *lock) {
14 while (1) {
15 if (lock−>locked == 0) { // C
16 lock−>locked = 1; // D
17 break;
18 }
19 }
20 }
21

22 void release (Lock *lock) {
23 lock−>locked = 0;
24 }
25

26 What’s the problem? Two acquire()s on the same lock on different
27 CPUs might both execute line C, and then both execute D. Then
28 both will think they have acquired the lock. This is the same
29 kind of race that we were trying to eliminate in insert(). But
30 we have made a little progress: now we only need a way to
31 prevent interleaving in one place (acquire()), not for many
32 arbitrary complex sequences of code.
33

34 1b. Here’s a way that is correct but only sometimes appropriate:
35 Use an atomic instruction on the CPU. For example, on the x86,
36 doing
37 "xchg addr, %eax"
38 does the following:
39

40 (i) freeze all CPUs’ memory activity for address addr
41 (ii) temp = *addr
42 (iii) *addr = %eax
43 (iv) %eax = temp
44 (v) un−freeze memory activity
45

46 /* pseudocode */
47 int xchg_val(addr, value) {
48 %eax = value;
49 xchg (*addr), %eax
50 }
51

52 struct Lock {
53 int locked;
54 }
55

56 /* bare−bones version of acquire */
57 void acquire (Lock *lock) {
58 pushcli(); /* what does this do? */
59 while (1) {
60 if (xchg_val(&lock−>locked, 1) == 0)
61 break;
62 }
63 }
64

65 /* optimization in acquire; call xchg_val() less frequently */
66 void acquire(Lock* lock) {
67 pushcli();
68 while (xchg_val(&lock−>locked, 1) == 1) {
69 while (lock−>locked) ;
70 }
71 }
72

Mar 19, 12 16:21 Page 1/11l08−handout−1.txt
73 void release(Lock *lock){
74 xchg_val(&lock−>locked, 0);
75 popcli(); /* what does this do? */
76 }
77

78 The above is called a *spinlock* because acquire() spins.
79

80 The spinlock above is great for some things, not so great for
81 others. The main problem is that it *busy waits*: it spins,
82 chewing up CPU cycles. Sometimes this is what we want (e.g., if
83 the cost of going to sleep is greater than the cost of spinning
84 for a few cycles waiting for another thread or process to
85 relinquish the spinlock). But sometimes this is not at all what we
86 want (e.g., if the lock would be held for a while: in those
87 cases, the CPU waiting for the lock would waste cycles spinning
88 instead of running some other thread or process).
89

90

91 1c. Here’s an object that does not involve busy waiting; it can work
92 as the list_lock mentioned above. Note: the "threads" here
93 can be user−level threads, kernel threads, or threads−inside−kernel.
94 The concept is the same in all cases.
95

96 struct Mutex {
97 bool is_held; /* true if mutex held */
98 thread_id owner; /* thread holding mutex, if locked */
99 thread_list waiters; /* queue of thread TCBs */

100 Lock wait_lock; /* as in 1b */
101 }
102

103 Now, instead of acquire(&list_lock) and release(&list_lock) as
104 abve, we’d write, mutex_acquire(&list_mutex) and
105 mutex_release(&list_mutex). The implementation of the latter two
106 would be something like this:
107

108 void mutex_acquire(Mutex *m) {
109

110 acquire(&m−>wait_lock); /* we spin to acquire wait_lock */
111 while (m−>is_held) { /* someone else has the mutex */
112 m−>waiters.insert(current_thread)
113 release(&m−>wait_lock);
114 schedule(); /* run a thread that is on the ready list */
115 acquire(&m−>wait_lock); /* we spin again */
116 }
117 m−>is_held = true; /* we now hold the mutex */
118 m−>owner = self;
119 release(&m−>wait_lock);
120 }
121

122 void mutex_release(Mutex *m) {
123

124 acquire(&m−>wait_lock); /* we spin to acquire wait_lock */
125 m−>is_held = false;
126 m−>owner = 0;
127 wake_up_a_waiter(m−>waiters); /* select and run a waiter */
128 release(&m−>wait_lock);
129

130 }
131

132 [Please let me (MW) know if you see bugs in the above.]
133

134 NOTE: Unfortunately, insert() with these locks is correct only if
135 there are some constraints on the order in which the CPU carries out
136 memory reads and writes. For example, if insert() were executed so
137 that the read at A appeared to another processor (and to memory) to
138 be executed before the acquire(), then insert() would be incorrect
139 even with locks.
140

141 How do we get the required guarantee? Answer: by ensuring that neither
142 the programmer nor the processor reorders instructions with respect to
143 the acquire().
144

Mar 19, 12 16:21 Page 2/11l08−handout−1.txt
Printed by Michael Walfish

Monday March 19, 2012 l08−handout−1.txt

145 2. Terminology
146

147 To avoid confusion, we will use the following terminology in this
148 course (you will hear other terminology elsewhere):
149

150 −−A "lock" is an abstract object that provides mutual exclusion
151

152 −−A "spinlock" is a lock that works by busy waiting, as in 6b
153

154 −−A "mutex" is a lock that works by having a "waiting" queue and
155 then protecting that waiting queue with atomic hardware
156 instructions, as in 6c. The most natural way to "use the hardware"
157 is with a spinlock, but there are others, such as turning off
158 interrupts, which works if we’re on a single CPU machine.
159

160

Mar 19, 12 16:21 Page 3/11l08−handout−1.txt
161 3. Producer/consumer example [also known as bounded buffer]
162

163 3a. Recall buggy implementation
164
165 /*
166 "buffer" stores BUFFER_SIZE items
167 "count" is number of used slots. a variable that lives in memory
168 "out" is next empty buffer slot to fill (if any)
169 "in" is oldest filled slot to consume (if any)
170 */
171

172 void producer (void *ignored) {
173 for (;;) {
174 /* next line produces an item and puts it in nextProduced */
175 nextProduced = means_of_production();
176 while (count == BUFFER_SIZE)
177 ; // do nothing
178 buffer [in] = nextProduced;
179 in = (in + 1) % BUFFER_SIZE;
180 count++;
181 }
182 }
183

184 void consumer (void *ignored) {
185 for (;;) {
186 while (count == 0)
187 ; // do nothing
188 nextConsumed = buffer[out];
189 out = (out + 1) % BUFFER_SIZE;
190 count−−;
191 /* next line abstractly consumes the item */
192 consume_item(nextConsumed);
193 }
194 }
195
196 −−Review: what’s the problem?
197 −−Answer: count++ and count−− might compile to, respectively:
198

199 reg1 <−− count # load
200 reg1 <−− reg1 + 1 # increment register
201 count <−− reg1 # store
202

203 reg2 <−− count # load
204 reg2 <−− reg2 − 1 # decrement register
205 count <−− reg2 # store
206

207 −−Review: why not use instructions like "addl $0x1, _count"?
208 −−Answer: not atomic if there are multiple CPUs.
209

210 −−Review: so why not use "LOCK addl $0x1, _count"?
211 −−Answer: we could do that here, but LOCK won’t save us every time
212

213 −−Review: so use general−purpose approach to protecting
214 critical sections: locks (or mutexes).
215

216

Mar 19, 12 16:21 Page 4/11l08−handout−1.txt
Printed by Michael Walfish

Monday March 19, 2012 l08−handout−1.txt

217

218 3b. Producer/consumer [bounded buffer] using mutexes
219

220 Mutex mutex;
221

222 void producer (void *ignored) {
223 for (;;) {
224 /* next line produces an item and puts it in nextProduced */
225 nextProduced = means_of_production();
226

227 acquire(&mutex);
228 while (count == BUFFER_SIZE) {
229 release(&mutex);
230 yield(); /* or schedule() */
231 acquire(&mutex);
232 }
233

234 buffer [in] = nextProduced;
235 in = (in + 1) % BUFFER_SIZE;
236 count++;
237 release(&mutex);
238 }
239 }
240

241 void consumer (void *ignored) {
242 for (;;) {
243
244 acquire(&mutex);
245 while (count == 0) {
246 release(&mutex);
247 yield(); /* or schedule() */
248 acquire(&mutex);
249 }
250

251 nextConsumed = buffer[out];
252 out = (out + 1) % BUFFER_SIZE;
253 count−−;
254 release(&mutex);
255

256 /* next line abstractly consumes the item */
257 consume_item(nextConsumed);
258 }
259 }
260

Mar 19, 12 16:21 Page 5/11l08−handout−1.txt
261

262 3c. Producer/consumer [bounded buffer] using mutexes and condition
263 variables
264

265 Mutex mutex;
266 Cond nonempty;
267 Cond nonfull;
268

269 void producer (void *ignored) {
270 for (;;) {
271 /* next line produces an item and puts it in nextProduced */
272 nextProduced = means_of_production();
273

274 acquire(&mutex);
275 while (count == BUFFER_SIZE)
276 cond_wait(&nonfull, &mutex);
277

278 buffer [in] = nextProduced;
279 in = (in + 1) % BUFFER_SIZE;
280 count++;
281 cond_signal(&nonempty, &mutex);
282 release(&mutex);
283 }
284 }
285

286 void consumer (void *ignored) {
287 for (;;) {
288

289 acquire(&mutex);
290 while (count == 0)
291 cond_wait(&nonempty, &mutex);
292

293 nextConsumed = buffer[out];
294 out = (out + 1) % BUFFER_SIZE;
295 count−−;
296 cond_signal(&nonfull, &mutex);
297 release(&mutex);
298

299 /* next line abstractly consumes the item */
300 consume_item(nextConsumed);
301 }
302 }
303

304

305 Question: why does cond_wait need to both release the mutex and
306 sleep? Why not:
307

308 while (count == BUFFER_SIZE) {
309 release(&mutex);
310 cond_wait(&nonfull);
311 acquire(&mutex);
312 }
313

Mar 19, 12 16:21 Page 6/11l08−handout−1.txt
Printed by Michael Walfish

Monday March 19, 2012 l08−handout−1.txt

314 3d. Producer/consumer [bounded buffer] with semaphores
315

316 Semaphore mutex(1); /* mutex initialized to 1 */
317 Semaphore empty(BUFFER_SIZE); /* start with BUFFER_SIZE empty slots */
318 Semaphore full(0); /* 0 full slots */
319

320 void producer (void *ignored) {
321 for (;;) {
322 /* next line produces an item and puts it in nextProduced */
323 nextProduced = means_of_production();
324
325 /*
326 * next line diminishes the count of empty slots and
327 * waits if there are no empty slots
328 */
329 sem_down(&empty);
330 sem_down(&mutex); /* get exclusive access */
331

332 buffer [in] = nextProduced;
333 in = (in + 1) % BUFFER_SIZE;
334

335 sem_up(&mutex);
336 sem_up(&full); /* we just increased the # of full slots */
337 }
338 }
339

340 void consumer (void *ignored) {
341 for (;;) {
342
343 /*
344 * next line diminishes the count of full slots and
345 * waits if there are no full slots
346 */
347 sem_down(&full);
348 sem_down(&mutex);
349

350 nextConsumed = buffer[out];
351 out = (out + 1) % BUFFER_SIZE;
352

353 sem_up(&mutex);
354 sem_up(&empty); /* one further empty slot */
355

356 /* next line abstractly consumes the item */
357 consume_item(nextConsumed);
358 }
359 }
360

361 Semaphores *can* (not always) lead to elegant solutions (notice
362 that the code above is fewer lines than 3c) but they are much
363 harder to use.
364

365 The fundamental issue is that semaphores make implicit (counts,
366 conditions, etc.) what is probably best left explicit. Moreover,
367 they *also* implement mutual exclusion.
368

369 For this reason, you should not use semaphores. This example is
370 here mainly for completeness and so you know what a semaphore
371 is. But do not code with them. Solutions that use semaphores in
372 this course will receive no credit.
373

Mar 19, 12 16:21 Page 7/11l08−handout−1.txt
374 4. Example of a monitor: MyBuffer
375

376 // This is pseudocode that is inspired by C++.
377 // Don’t take it literally.
378

379 class MyBuffer {
380 public:
381 MyBuffer();
382 ~MyBuffer();
383 void Enqueue(Item);
384 Item = Dequeue();
385 private:
386 int count;
387 int in;
388 int out;
389 Item buffer[BUFFER_SIZE];
390 Mutex* mutex;
391 Cond* nonempty;
392 Cond* nonfull;
393 }
394

395 void
396 MyBuffer::MyBuffer()
397 {
398 in = out = count = 0;
399 mutex = new Mutex;
400 nonempty = new Cond;
401 nonfull = new Cond;
402 }
403

404 void
405 MyBuffer::Enqueue(Item item)
406 {
407 mutex.acquire();
408 while (count == BUFFER_SIZE)
409 cond_wait(&nonfull, &mutex);
410

411 buffer[in] = item;
412 in = (in + 1) % BUFFER_SIZE;
413 ++count;
414 cond_signal(&nonempty, &mutex);
415 mutex.release();
416 }
417

418 Item
419 MyBuffer::Dequeue()
420 {
421 mutex.acquire();
422 while (count == 0)
423 cond_wait(&nonempty, &mutex);
424

425 Item ret = buffer[out];
426 out = (out + 1) % BUFFER_SIZE;
427 −−count;
428 cond_signal(&nonfull, &mutex);
429 mutex.release();
430 return ret;
431 }
432

Mar 19, 12 16:21 Page 8/11l08−handout−1.txt
Printed by Michael Walfish

Monday March 19, 2012 l08−handout−1.txt

433 int main(int, char**)
434 {
435 MyBuffer buf;
436 int dummy;
437 tid1 = thread_create(producer, &buf);
438 tid2 = thread_create(consumer, &buf);
439 thread_join(tid1);
440

441 // never reach this point
442 return −1;
443 }
444

445 void producer(void* buf)
446 {
447 MyBuffer* sharedbuf = reinterpret_cast<MyBuffer*>(buf);
448 for (;;) {
449 /* next line produces an item and puts it in nextProduced */
450 Item nextProduced = means_of_production();
451 sharedbuf−>Enqueue(nextProduced);
452 }
453 }
454

455 void consumer(void* buf)
456 {
457 MyBuffer* sharedbuf = reinterpret_cast<MyBuffer*>(buf);
458 for (;;) {
459 Item nextConsumed = sharedbuf−>Dequeue();
460

461 /* next line abstractly consumes the item */
462 consume_item(nextConsumed);
463 }
464 }
465

466 Key point: *Threads* (the producer and consumer) are separate from
467 *shared object* (MyBuffer). The synchronization happens in the
468 shared object.
469

470 5. Readers/writers
471

472 state variables:
473 AR = 0; // # active readers
474 AW = 0; // # active writers
475 WR = 0; // # waiting readers
476 WW = 0; // # waiting writers
477

478 Condition okToRead = NIL;
479 Condition okToWrite = NIL;
480 Mutex mutex = FREE;
481

482 Database::read() {
483 startRead(); // first, check self into the system
484 Access Data
485 doneRead(); // check self out of system
486 }
487

488 Database::startRead() {
489 acquire(&mutex);
490 while((AW + WW) > 0){
491 WR++;
492 wait(&okToRead, &mutex);
493 WR−−;
494 }
495 AR++;
496 release(&mutex);
497 }
498
499 Database::doneRead() {
500 acquire(&mutex);
501 AR−−;
502 if (AR == 0 && WW > 0) { // if no other readers still
503 signal(&okToWrite, &mutex); // active, wake up writer
504 }

Mar 19, 12 16:21 Page 9/11l08−handout−1.txt
505 release(&mutex);
506 }
507
508 Database::write(){ // symmetrical
509 startWrite(); // check in
510 Access Data
511 doneWrite(); // check out
512 }
513

514 Database::startWrite() {
515 acquire(&mutex);
516 while ((AW + AR) > 0) { // check if safe to write.
517 // if any readers or writers, wait
518 WW++;
519 wait(&okToWrite, &mutex);
520 WW−−;
521 }
522 AW++;
523 release(&mutex);
524 }
525

526 Database::doneWrite() {
527 acquire(&mutex);
528 AW−−;
529 if (WW > 0) {
530 signal(&okToWrite, &mutex); // give priority to writers
531 } else if (WR > 0) {
532 broadcast(&okToRead, &mutex);
533 }
534 release(&mutex);
535 }
536

537 NOTE: what is the starvation problem here?
538

Mar 19, 12 16:21 Page 10/11l08−handout−1.txt
Printed by Michael Walfish

Monday March 19, 2012 l08−handout−1.txt

539 6. Shared locks
540

541 struct sharedlock {
542 int i;
543 Mutex mutex;
544 Cond c;
545 };
546

547 void AcquireExclusive (sharedlock *sl) {
548 acquire(&sl−>mutex);
549 while (sl−>i) {
550 wait (&sl−>c, &sl−>mutex);
551 }
552 sl−>i = −1;
553 release(&sl−>mutex);
554 }
555

556 void AcquireShared (sharedlock *sl) {
557 acquire(&sl−>mutex);
558 while (sl−>i < 0) {
559 wait (&sl−>c, &sl−>mutex);
560 }
561 sl−>i++;
562 release(&sl−>mutex);
563 }
564

565 void ReleaseShared (sharedlock *sl) {
566 acquire(&sl−>mutex);
567 if (!−−sl−>i)
568 signal (&sl−>c, &sl−>mutex);
569 release(&sl−>mutex);
570 }
571

572 void ReleaseExclusive (sharedlock *sl) {
573 acquire(&sl−>mutex);
574 sl−>i = 0;
575 broadcast (&sl−>c, &sl−>mutex);
576 release(&sl−>mutex);
577 }
578

579 QUESTIONS:
580 A. There is a starvation problem here. What is it? (Readers can keep
581 writers out if there is a steady stream of readers.)
582 B. How could you use these shared locks to write a cleaner version
583 of the code in item 5., above? (Though note that the starvation
584 properties would be different.)
585

586

Mar 19, 12 16:21 Page 11/11l08−handout−1.txt
Printed by Michael Walfish

Monday March 19, 2012 l08−handout−1.txt

page 9 of 11

13. [12 points] Consider the function doublecheck alloc() below, which is intended to be in-
voked from multiple threads on a multiprocessor machine. Its purpose is to avoid a mutex acquisition
in the common case that ptr is already initialized. The requirements for this function are:

(i) doublecheck alloc() must call alloc foo() no more than once over the whole execution.

(ii) A caller of doublecheck alloc() must, after the function returns, observe ptr as non-zero.

The machine does not offer sequential consistency. Thus, a processor is not guaranteed to see the
memory operations of another processor in program order. However, each of mutex acquire()
and mutex release() is implemented correctly; in particular, each of them internally contains a
memory barrier (mfence on the x86). Recall that mfence ensures that all memory operations before
the mfence barrier appear to all processors to have executed before all memory operations after the
mfence barrier.

On the other hand, the compiler preserves program order (it does not reorder instructions).

struct foo {
int abc;
int def;

};
static int ready = 0;
static mutex_t mutex;
static struct foo* ptr = 0;

void
doublecheck_alloc()
{

if (!ready) { /* <-- accesses shared variable w/out holding mutex */
mutex_acquire(&mutex);
if (!ready) {

ptr = alloc_foo(); /* <-- sets ptr to be non-zero */
ready = 1;

}
mutex_release(&mutex);

}
return;

}

The above code certainly violates our coding standards, but this problem is about whether it violates
requirements (i) and (ii), above. The questions are given on the next page.

Name: UT EID:

The AMD 16-core system topology. Memory access latency is in cycles and listed before the backslash.
Memory bandwidth is in bytes per cycle and listed after the backslash. The measurements reflect the
latency and bandwidth achieved by a core issuing load instructions. The measurements for accessing the
L1 or L2 caches of a different core on the same chip are the same. The measurements for accessing any
cache on a different chip are the same. Each cache line is 64 bytes, L1 caches are 64 Kbytes 8-way set
associative, L2 caches are 512 Kbytes 16-way set associative, and L3 caches are 2 Mbytes 32-way set
associative.

[Reprinted with permission from S. Boyd-Wickizer et al. Corey: An Operating System for Many Cores.
Proceedings of Usenix Symposium on Operating Systems Design and Implementation (OSDI),
December 2008.]

1

2 A. CAS / CMPXCHG
3

4 Useful operation: compare−and−swap, known as CAS. Says: "atomically
5 check whether a given memory cell contains a given value, and if it
6 does, then replace the contents of the memory cell with this other
7 value; in either case, return the original value in the memory
8 location".
9

10 On the X86, we implement CAS with the CMPXCHG instruction, but note
11 that this instruction is not atomic by default, so we need the LOCK
12 prefix.
13

14 Here’s pseudocode:
15

16 int cmpxchg_val(int* addr, int oldval, int newval) {
17 LOCK: // remember, this is pseudocode
18 int was = *addr;
19 if (*addr == oldval)
20 *addr = newval;
21 return was;
22 }
23

24 Here’s inline assembly:
25

26 uint32_t cmpxchg_val(uint32_t* addr, uint32_t oldval, uint32_t newval) {
27 uint32_t was;
28 asm volatile("lock cmpxchg %3, %0"
29 : "+m" (*addr), "=a" (was)
30 : "a" (oldval), "r" (newval)
31 : "cc");
32 return was;
33 }
34

35 B. MCS locks
36

37 Citation: Mellor−Crummey, J. M. and M. L. Scott. Algorithms for
38 Scalable Synchronization on Shared−Memory Multiprocessors, ACM
39 Transactions on Computer Systems, Vol. 9, No. 1, February, 1991,
40 pp.21−65.
41

42 Each CPU has a qnode structure in *local* memory. Here, local can
43 mean local memory in NUMA machine or its own cache line that other
44 CPUs are not allowed to cache (i.e., the cache line is in exclusive
45 mode):
46

47 typedef struct qnode {
48 struct qnode* next;
49 bool someoneelse_locked;
50 } qnode;
51

52 typedef qnode* lock; // a lock is a pointer to a qnode
53
54 −−The lock itself is literally the *tail* of the list of CPUs holding
55 or waiting for the lock.
56

57 −−While waiting, a CPU spins on its local "locked" flag. Here’s the
58 code for acquire:
59

Feb 09, 12 15:36 Page 1/2l08−handout−2.txt
60 // lockp is a qnode**. I points to our local qnode.
61 void acquire(lock* lockp, qnode* I) {
62

63 I−>next = NULL;
64 qnode* predecessor;
65

66 // next line makes lockp point to I (that is, it sets *lockp <−− I)
67 // and returns the old value of *lockp. Uses atomic operation
68 // XCHG. see earlier in handout (or earlier handouts)
69 // for implementation of xchg_val.
70

71 predecessor = xchg_val(lockp, I); // "A"
72 if (predecessor != NULL) { // queue was non−empty
73 I−>someoneelse_locked = true;
74 predecessor−>next = I; // "B"
75 while (I−>someoneelse_locked) ; // spin
76 }
77 // we hold the lock!
78 }
79

80 What’s going on?
81

82 −−If the lock is unlocked, then *lockp == NULL.
83

84 −−If the lock is locked, and there are no waiters, then *lockp
85 points to the qnode of the owner
86

87 −−If the lock is locked, and there are waiters, then *lockp points
88 to the qnode at the tail of the waiter list.
89

90 −−Here’s the code for release:
91

92 void release(lock* lockp, qnode* I) {
93 if (!I−>next) { // no known successor
94 if (cmpxchg_val(lockp, I, NULL) == I) { // "C"
95 // swap successful: lockp was pointing to I, so now
96 // *lockp == NULL, and the lock is unlocked. we can
97 // go home now.
98 return;
99 }

100 // if we get here, then there was a timing issue: we had
101 // no known successor when we first checked, but now we
102 // have a successor: some CPU executed the line "A"
103 // above. Wait for that CPU to execute line "B" above.
104 while (!I−>next) ;
105 }
106 // handing the lock off to the next waiter is as simple as
107 // just setting that waiter’s "someoneelse_locked" flag to false
108 I−>next−>someoneelse_locked = false;
109 }
110

111 What’s going on?
112

113 −−If I−>next == NULL and *lockp == I, then no one else is
114 waiting for the lock. So we set *lockp == NULL.
115

116 −−If I−>next == NULL and *lockp != I, then another CPU is in
117 acquire (specifically, it executed its atomic operation, namely
118 line "A", before we executed ours, namely line "C"). So wait for
119 the other CPU to put the list in a sane state, and then drop
120 down to the next case:
121

122 −−If I−>next != NULL, then we know that there is a spinning
123 waiter (the oldest one). Hand it the lock by setting its flag to
124 false.

Feb 09, 12 15:36 Page 2/2l08−handout−2.txt

Printed by Michael Walfish

Thursday February 09, 2012 1/1l08−handout−2.txt

Time required to acquire and release a lock on a 16-core AMD machine when varying number of cores
contend for the lock. The two lines show Linux kernel spin locks and MCS locks (on Corey). A spin
lock with one core takes about 11 nanoseconds; an MCS lock about 26 nanoseconds.

[Reprinted with permission from S. Boyd-Wickizer et al. Corey: An Operating System for Many Cores.
Proceedings of Symposium on Operating Systems Design and Implementation (OSDI), December
2008.]

1 Performance v complexity trade−off with locks
2

3 /*
4 * linux/mm/filemap.c
5 *
6 * Copyright (C) 1994−1999 Linus Torvalds
7 */
8

9 /*
10 * This file handles the generic file mmap semantics used by
11 * most "normal" filesystems (but you don’t /have/ to use this:
12 * the NFS filesystem used to do this differently, for example)
13 */
14 #include <linux/config.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/compiler.h>
18 #include <linux/fs.h>
19 #include <linux/aio.h>
20 #include <linux/capability.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/hash.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include "filemap.h"
35 /*
36 * FIXME: remove all knowledge of the buffer layer from the core VM
37 */
38 #include <linux/buffer_head.h> /* for generic_osync_inode */
39

40 #include <asm/uaccess.h>
41 #include <asm/mman.h>
42

43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
46

47 /*
48 * Shared mappings implemented 30.11.1994. It’s not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished ’unifying’ the page and buffer cache and SMP−threaded the
54 * page−cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP−threaded pagemap−LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58

59 /*
60 * Lock ordering:
61 *
62 * −>i_mmap_lock (vmtruncate)
63 * −>private_lock (__free_pte−>__set_page_dirty_buffers)
64 * −>swap_lock (exclusive_swap_page, others)
65 * −>mapping−>tree_lock
66 *
67 * −>i_mutex
68 * −>i_mmap_lock (truncate−>unmap_mapping_range)
69 *
70 * −>mmap_sem
71 * −>i_mmap_lock
72 * −>page_table_lock or pte_lock (various, mainly in memory.c)
73 * −>mapping−>tree_lock (arch−dependent flush_dcache_mmap_lock)

Feb 09, 12 15:22 Page 1/2l08−handout−3.txt
74 *
75 * −>mmap_sem
76 * −>lock_page (access_process_vm)
77 *
78 * −>mmap_sem
79 * −>i_mutex (msync)
80 *
81 * −>i_mutex
82 * −>i_alloc_sem (various)
83 *
84 * −>inode_lock
85 * −>sb_lock (fs/fs−writeback.c)
86 * −>mapping−>tree_lock (__sync_single_inode)
87 *
88 * −>i_mmap_lock
89 * −>anon_vma.lock (vma_adjust)
90 *
91 * −>anon_vma.lock
92 * −>page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * −>page_table_lock or pte_lock
95 * −>swap_lock (try_to_unmap_one)
96 * −>private_lock (try_to_unmap_one)
97 * −>tree_lock (try_to_unmap_one)
98 * −>zone.lru_lock (follow_page−>mark_page_accessed)
99 * −>zone.lru_lock (check_pte_range−>isolate_lru_page)

100 * −>private_lock (page_remove_rmap−>set_page_dirty)
101 * −>tree_lock (page_remove_rmap−>set_page_dirty)
102 * −>inode_lock (page_remove_rmap−>set_page_dirty)
103 * −>inode_lock (zap_pte_range−>set_page_dirty)
104 * −>private_lock (zap_pte_range−>__set_page_dirty_buffers)
105 *
106 * −>task−>proc_lock
107 * −>dcache_lock (proc_pid_lookup)
108 */
109

110 /*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it − or that usage
113 * is safe. The caller must hold a write_lock on the mapping’s tree_lock.
114 */
115 void __remove_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page−>mapping;
118

119
120

121 [point of this item on the handout: fine−grained locking leads to complexity]

Feb 09, 12 15:22 Page 2/2l08−handout−3.txt

Printed by Michael Walfish

Thursday February 09, 2012 1/1l08−handout−3.txt

