
1 Handout for CS 372H
2 Class 7
3 7 February 2012
4

5 1. Example to illustrate interleavings: say that thread A executes f()
6 and thread B executes g(). (Here, we are using the term "thread"
7 abstractly. This example applies to any of the approaches that fall
8 under the word "thread".)
9

10     a.
11

12 int x;
13

14 f() { x = 1; }
15

16 g() { x = 2; }
17

18 What are possible values of x after A has executed f() and B has
19 executed g()?
20

21     b. 
22 int y = 12;
23

24 f() { x = y + 1; }
25 g() { y = y * 2; }
26

27 What are the possible values of x?
28

29     c. 
30 int x = 0;
31 f() { x = x + 1; }
32 g() { x = x + 2; }
33

34 What are the possible values of x?
35

36 2. Linked list example
37

38     struct List_elem {
39 int data;
40 struct List_elem* next;
41     };
42

43     List_elem* head = 0;
44

45     insert(int data) {
46 List_elem* l = new List_elem;
47 l−>data = data;                  
48 l−>next = head;                 
49 head = l;
50     }
51

52     What happens if two threads execute insert() at once and we get the
53     following interleaving?
54

55     thread 1: l−>next = head
56     thread 2: l−>next = head
57     thread 2: head = l;
58     thread 1: head = l;
59

Feb 07, 12 15:10 Page 1/10l07−handout.txt
60

61 3. Producer/consumer example:
62

63     /* 
64     "buffer" stores BUFFER_SIZE items
65     "count" is number of used slots. a variable that lives in memory
66     "out" is next empty buffer slot to fill (if any)
67     "in" is oldest filled slot to consume (if any)
68     */
69

70      void producer (void *ignored) {
71          for (;;) {
72      /* next line produces an item and puts it in nextProduced */
73              nextProduced = means_of_production(); 
74              while (count == BUFFER_SIZE)
75                  ; // do nothing
76              buffer [in] = nextProduced;
77              in = (in + 1) % BUFFER_SIZE;
78              count++;
79          }
80      }
81

82      void consumer (void *ignored) {
83          for (;;) {
84              while (count == 0)
85 ; // do nothing
86              nextConsumed = buffer[out];
87              out = (out + 1) % BUFFER_SIZE;
88              count−−;
89              /* next line abstractly consumes the item */
90      consume_item(nextConsumed);
91          }
92      }
93

94     /* 
95        what count++ probably compiles to:
96 reg1 <−− count      # load
97 reg1 <−− reg1 + 1   # increment register
98 count <−− reg1      # store
99

100        what count−− could compile to:
101         reg2 <−− count      # load
102         reg2 <−− reg2 − 1   # decrement register
103         count <−− reg2      # store
104     */
105

106     What happens if we get the following interleaving?
107

108 reg1 <−− count
109 reg1 <−− reg1 + 1
110         reg2 <−− count
111         reg2 <−− reg2 − 1
112 count <−− reg1
113         count <−− reg2
114

Feb 07, 12 15:10 Page 2/10l07−handout.txt

Printed by Michael Walfish

Tuesday February 07, 2012 1/5l07−handout.txt



115

116 4. Some other examples. What is the point of these?
117

118     [From S.V. Adve and K. Gharachorloo, IEEE Computer, December 1996,
119     66−76. http://rsim.cs.uiuc.edu/~sadve/Publications/computer96.pdf]
120

121     a. Can both "critical sections" run? 
122

123 int flag1 = 0, flag2 = 0; 
124

125 int main () { 
126     tid id = thread_create (p1, NULL); 
127     p2 (); thread_join (id); 
128 } 
129

130 void p1 (void *ignored) { 
131     flag1 = 1; 
132     if (!flag2) {
133 critical_section_1 ();
134     } 
135 } 
136

137 void p2 (void *ignored) { 
138     flag2 = 1; 
139     if (!flag1) {
140 critical_section_2 ();
141     } 
142 } 
143

144     b. Can use() be called with value 0, if p2 and p1 run concurrently? 
145

146 int data = 0, ready = 0;
147

148 void p1 () {
149     data = 2000;
150     ready = 1;
151 }
152 int p2 () {
153     while (!ready) {}
154     use(data);
155 }
156

157     c. Can use() be called with value 0?
158

159 int a = 0, b = 0;
160

161 void p1 (void *ignored) { a = 1; }
162

163 void p2 (void *ignored) {
164   if (a == 1)
165     b = 1;
166 }
167

168 void p3 (void *ignored) {
169   if (b == 1)
170     use (a);
171 }
172

173     d. 
174 /* keyword "register" tells compiler to place the variable in a
175   register, not on the stack. So f, g are local to each thread. */
176

177 int flag1 = 0, flag2 = 0;
178

179 int p1 (void *ignored)       int p2 (void *ignored)
180 {                            {
181   register int f, g;           register int f, g;
182   flag1 = 1;                   flag2 = 1;
183   f = flag1;                   f = flag2;
184   g = flag2;                   g = flag1;
185   return 2*f + g;              return 2*f + g;
186 }                            }
187

Feb 07, 12 15:10 Page 3/10l07−handout.txt
188 5. Protecting the linked list......
189

190 Lock list_lock;  
191

192 insert(int data) {
193     List_elem* l = new List_elem;
194     l−>data = data;
195     
196     acquire(&list_lock);
197

198     l−>next = head;     // A
199     head = l;     // B
200

201     release(&list_lock);
202 }
203

204 6. How can we implement list_lock, acquire(), and release()?
205

206     6a. Here is A BADLY BROKEN implementation:
207

208 struct Lock {
209   int locked;
210 }
211

212 void [BROKEN] acquire(Lock *lock) {
213   while (1) {
214     if (lock−>locked == 0) { // C
215       lock−>locked = 1;    // D
216       break;
217     }
218   }
219 }
220

221 void release (Lock *lock) {
222   lock−>locked = 0;
223 }
224

225 What’s the problem? Two acquire()s on the same lock on different
226 CPUs might both execute line C, and then both execute D. Then
227 both will think they have acquired the lock. This is the same
228 kind of race that we were trying to eliminate in insert().  But
229 we have made a little progress: now we only need a way to
230 prevent interleaving in one place (acquire()), not for many
231 arbitrary complex sequences of code.
232

Feb 07, 12 15:10 Page 4/10l07−handout.txt

Printed by Michael Walfish

Tuesday February 07, 2012 2/5l07−handout.txt



233     6b. Here’s a way that is correct but only sometimes appropriate:
234 Use an atomic instruction on the CPU. For example, on the x86,
235 doing
236 "xchg addr, %eax"
237 does the following:
238

239 (i)   freeze all CPUs’ memory activity for address addr
240 (ii)  temp = *addr
241 (iii) *addr = %eax
242 (iv)  %eax = temp
243 (v)   un−freeze memory activity
244

245 /* pseudocode */
246 int xchg_val(addr, value) {
247     %eax = value;
248     xchg (*addr), %eax
249 }
250

251 struct Lock {
252   int locked;
253 }
254

255 /* bare−bones version of acquire */
256 void acquire (Lock *lock) {
257   pushcli();    /* what does this do? */
258   while (1) {
259     if (xchg_val(&lock−>locked, 1) == 0)
260       break;
261   }
262 }
263

264 /* optimization in acquire; call xchg_val() less frequently */
265 void acquire(Lock* lock) {
266     pushcli();
267     while (xchg_val(&lock−>locked, 1) == 1) {
268 while (lock−>locked) ;
269     }
270 }
271

272 void release(Lock *lock){
273    xchg_val(&lock−>locked, 0);
274    popcli();    /* what does this do? */
275 }
276

277 The above is called a *spinlock* because acquire() spins.
278

279 The spinlock above is great for some things, not so great for
280 others. The main problem is that it *busy waits*: it spins,
281 chewing up CPU cycles. Sometimes this is what we want (e.g., if
282 the cost of going to sleep is greater than the cost of spinning
283 for a few cycles waiting for another thread or process to
284 relinquish the spinlock). But sometimes this is not at all what we
285 want (e.g., if the lock would be held for a while: in those
286 cases, the CPU waiting for the lock would waste cycles spinning
287 instead of running some other thread or process).
288

289

290     6c. Here’s an object that does not involve busy waiting; it can work
291     as the list_lock mentioned above. Note: the "threads" here
292     can be user−level threads, kernel threads, or threads−inside−kernel.
293     The concept is the same in all cases.
294

295 struct Mutex {
296     bool is_held;           /* true if mutex held */
297     thread_id owner;     /* thread holding mutex, if locked */
298     thread_list waiters;    /* queue of thread TCBs */
299     Lock wait_lock;     /* as in 6b */
300 }
301

302 Now, instead of acquire(&list_lock) and release(&list_lock) as
303 abve, we’d write, mutex_acquire(&list_mutex) and
304 mutex_release(&list_mutex). The implementation of the latter two
305 would be something like this:

Feb 07, 12 15:10 Page 5/10l07−handout.txt
306

307 void mutex_acquire(Mutex *m) {
308

309     acquire(&m−>wait_lock);   /* we spin to acquire wait_lock */
310     while (m−>is_held) {     /* someone else has the mutex */
311 m−>waiters.insert(current_thread)
312 release(&m−>wait_lock);
313 schedule();   /* run a thread that is on the ready list */
314 acquire(&m−>wait_lock);   /* we spin again */
315     }
316     m−>is_held = true;     /* we now hold the mutex */
317     m−>owner = self;
318     release(&m−>wait_lock);
319 }
320

321 void mutex_release(Mutex *m) {
322

323     acquire(&m−>wait_lock);    /* we spin to acquire wait_lock */
324     m−>is_held = false;
325     m−>owner = 0;
326     wake_up_a_waiter(m−>waiters); /* select and run a waiter */
327     release(&m−>wait_lock);
328

329 }
330

331 [Please let me (MW) know if you see bugs in the above.]
332

333 7. NOTE: Unfortunately, insert() with these locks is correct only if
334 there are some constraints on the order in which the CPU carries out
335 memory reads and writes. For example, if insert() were executed so that
336 the read at A appeared to another processor (and to memory) to be
337 executed before the acquire(), then insert() would be incorrect even
338 with locks. 
339

340 How do we get the required guarantee? Answer: by ensuring that neither
341 the programmer nor the processor reorders instructions with respect to
342 the acquire().
343

344 8. Terminology
345

346     To avoid confusion, we will use the following terminology in this
347     course (you will hear other terminology elsewhere):
348

349     −−A "lock" is an abstract object that provides mutual exclusion
350

351     −−A "spinlock" is a lock that works by busy waiting, as in 6b
352

353     −−A "mutex" is a lock that works by having a "waiting" queue and
354     then protecting that waiting queue with atomic hardware
355     instructions, as in 6c. The most natural way to "use the hardware"
356     is with a spinlock, but there are others, such as turning off
357     interrupts, which works if we’re on a single CPU machine.
358

359

Feb 07, 12 15:10 Page 6/10l07−handout.txt

Printed by Michael Walfish

Tuesday February 07, 2012 3/5l07−handout.txt



360

361 9. Producer/consumer example [also known as bounded buffer]
362

363    9a. buggy implementation 
364     
365     /* 
366     "buffer" stores BUFFER_SIZE items
367     "count" is number of used slots. a variable that lives in memory
368     "out" is next empty buffer slot to fill (if any)
369     "in" is oldest filled slot to consume (if any)
370     */
371

372      void producer (void *ignored) {
373          for (;;) {
374      /* next line produces an item and puts it in nextProduced */
375              nextProduced = means_of_production(); 
376              while (count == BUFFER_SIZE)
377                  ; // do nothing
378              buffer [in] = nextProduced;
379              in = (in + 1) % BUFFER_SIZE;
380              count++;
381          }
382      }
383

384      void consumer (void *ignored) {
385          for (;;) {
386              while (count == 0)
387 ; // do nothing
388              nextConsumed = buffer[out];
389              out = (out + 1) % BUFFER_SIZE;
390              count−−;
391              /* next line abstractly consumes the item */
392      consume_item(nextConsumed);
393          }
394      }
395     
396     −−Review: what’s the problem?
397     −−Answer: count++ and count−− might compile to, respectively:
398

399 reg1 <−− count      # load
400 reg1 <−− reg1 + 1   # increment register
401 count <−− reg1      # store
402

403         reg2 <−− count      # load
404         reg2 <−− reg2 − 1   # decrement register
405         count <−− reg2      # store
406

407     −−Review: why not use instructions like "addl $0x1, _count"?
408     −−Answer: not atomic if there are multiple CPUs.
409

410     −−Review: so why not use "LOCK addl $0x1, _count"?
411     −−Answer: we could do that here, but LOCK won’t save us every time
412

413     −−Review: so use general−purpose approach to protecting
414     critical sections: locks (or mutexes). 
415

416

Feb 07, 12 15:10 Page 7/10l07−handout.txt
417

418    9b. Producer/consumer [bounded buffer] using mutexes
419

420      Mutex mutex;
421

422      void producer (void *ignored) {
423          for (;;) {
424      /* next line produces an item and puts it in nextProduced */
425              nextProduced = means_of_production(); 
426

427      acquire(&mutex);
428              while (count == BUFFER_SIZE) {
429 release(&mutex);
430 yield(); /* or schedule() */
431 acquire(&mutex);
432      } 
433

434              buffer [in] = nextProduced;
435              in = (in + 1) % BUFFER_SIZE;
436              count++;
437      release(&mutex);
438          }
439      }
440

441      void consumer (void *ignored) {
442          for (;;) {
443     
444      acquire(&mutex);
445              while (count == 0) {
446 release(&mutex);
447 yield(); /* or schedule() */
448 acquire(&mutex);
449      }
450

451              nextConsumed = buffer[out];
452              out = (out + 1) % BUFFER_SIZE;
453              count−−;
454      release(&mutex);
455

456              /* next line abstractly consumes the item */
457      consume_item(nextConsumed);
458          }
459      }
460

Feb 07, 12 15:10 Page 8/10l07−handout.txt

Printed by Michael Walfish

Tuesday February 07, 2012 4/5l07−handout.txt



461

462     9c. Producer/consumer [bounded buffer] using mutexes and condition
463     variables
464

465  Mutex mutex;
466  Cond nonempty;
467  Cond nonfull;
468

469  void producer (void *ignored) {
470      for (;;) {
471  /* next line produces an item and puts it in nextProduced */
472  nextProduced = means_of_production(); 
473

474  acquire(&mutex);
475  while (count == BUFFER_SIZE) 
476     cond_wait(&nonfull, &mutex);
477

478  buffer [in] = nextProduced;
479  in = (in + 1) % BUFFER_SIZE;
480  count++;
481  cond_signal(&nonempty, &mutex);
482  release(&mutex);
483      }
484  }
485

486  void consumer (void *ignored) {
487      for (;;) {
488

489  acquire(&mutex);
490  while (count == 0) 
491     cond_wait(&nonempty, &mutex);
492

493  nextConsumed = buffer[out];
494  out = (out + 1) % BUFFER_SIZE;
495  count−−;
496  cond_signal(&nonfull, &mutex);
497  release(&mutex);
498

499  /* next line abstractly consumes the item */
500  consume_item(nextConsumed);
501      }
502  }
503

504

505 Question: why does cond_wait need to both release the mutex and
506 sleep? Why not:
507

508     while (count == BUFFER_SIZE)  {
509 release(&mutex);
510 cond_wait(&nonfull);
511 acquire(&mutex);
512     }
513

Feb 07, 12 15:10 Page 9/10l07−handout.txt
514     9d.  Producer/consumer [bounded buffer] with semaphores
515

516 Semaphore mutex(1);        /* mutex initialized to 1 */
517 Semaphore empty(BUFFER_SIZE);  /* start with BUFFER_SIZE empty slots */
518 Semaphore full(0);        /* 0 full slots */
519

520 void producer (void *ignored) {
521      for (;;) {
522  /* next line produces an item and puts it in nextProduced */
523  nextProduced = means_of_production(); 
524    
525 /* 
526  * next line diminishes the count of empty slots and
527  * waits if there are no empty slots
528  */
529  sem_down(&empty);
530  sem_down(&mutex);  /* get exclusive access */
531

532  buffer [in] = nextProduced;
533  in = (in + 1) % BUFFER_SIZE;
534

535  sem_up(&mutex);
536  sem_up(&full);   /* we just increased the # of full slots */
537      }
538  }
539

540  void consumer (void *ignored) {
541      for (;;) {
542     
543  /* 
544   * next line diminishes the count of full slots and
545   * waits if there are no full slots 
546   */
547  sem_down(&full);   
548  sem_down(&mutex);
549

550  nextConsumed = buffer[out];
551  out = (out + 1) % BUFFER_SIZE;
552

553  sem_up(&mutex);
554  sem_up(&empty);   /* one further empty slot */
555

556  /* next line abstractly consumes the item */
557  consume_item(nextConsumed);
558      }
559  }
560

561 Semaphores *can* (not always) lead to elegant solutions (notice
562 that the code above is fewer lines than 1c) but they are much
563 harder to use.
564

565 The fundamental issue is that semaphores make implicit (counts,
566 conditions, etc.) what is probably best left explicit. Moreover,
567 they *also* implement mutual exclusion.
568

569 For this reason, you should not use semaphores. This example is
570 here mainly for completeness and so you know what a semaphore
571 is. But do not code with them. Solutions that use semaphores in
572 this course will receive no credit.
573

Feb 07, 12 15:10 Page 10/10l07−handout.txt

Printed by Michael Walfish

Tuesday February 07, 2012 5/5l07−handout.txt


