
The University of Texas at Austin
CS 372H Introduction to Operating Systems: Honors: Spring 2012

Midterm Exam

• This exam is 80 minutes. Stop writing when “time” is called. You must turn in your exam; we will
not collect it. Do not get up or pack up between 75 and 80 minutes. The instructor will leave the
room 83 minutes after the exam begins and will not accept exams outside the room.

• There are 12 problems in this booklet. Many can be answered quickly. Some may be harder than
others, and some earn more points than others. You may want to skim all questions before starting.

• This exam is closed book and notes. You may not use electronics: phones, calculators, laptops,
etc. You may refer to ONE two-sided 8.5x11” sheet with 10 point or larger Times New Roman font,
1 inch or larger margins, and a maximum of 55 lines per side.

• If you find a question unclear or ambiguous, be sure to write any assumptions you make.

• Follow the instructions: if they ask you to justify something, explain your reasoning and any im-
portant assumptions. Write brief, precise answers. Rambling brain dumps will not work and
will waste time. Think before you start writing so that you can answer crisply. Be neat. If we can’t
understand your answer, we can’t give you credit!

• There is no credit for leaving the “small” problems blank. However, if a problem is worth 10 or
more points, then completely blank answers will get 15%-20% of the credit. For these problems, if
you attempt the problem, you start at zero points for the problem. Note that by problem we mean
numbered questions for which a point total is listed. Sub-problems with no points listed are not
eligible for this treatment. Thus, if you attempt any sub-problem, you may as well attempt the other
sub-problems in the problem.

• Don’t linger. If you know the answer, give it, and move on.

• Write your name and UT EID on this cover sheet and on the bottom of every page of the exam.

Do not write in the boxes below.

I (xx/20) II (xx/36) III (xx/19) IV (xx/25) Total (xx/100)
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I Short answer (20 points total)

1. [2 points] Fill in the blank:

In the context of programming errors, we said in class that confidence and
are inversely correlated.

Competence.

2. [18 points] Consider a fragment of a program foo in a file called moo.c:

void moo(char* to_print)

{

const char* cheerful = "printf is awesome\n";

printf("%s", to_print);

write(1, cheerful, strlen(cheerful));

}

Between the time that the programmer writes the code above and the time that the program’s output
actually appears, there are layers of indirection and references that have to be resolved. This problem
will explore when these resolutions happen: compile time, assembly time, link time, load time, or run
time.

Compile time, as usual, means “while the compiler is running, including the instant it finishes”. Same
for assembly time and link time. We use the term load time to refer to the moment when the OS loader
brings the program image into memory in response to exec(). Run time means “any time after the
program begins running”.

For each piece of information below, place an X in the column that indicates the earliest that the
information is available and explicit. Assume that the code does not modify itself once loaded.

The number of arguments that moo() passes to printf() is known at:

compile time assembly time link time load time run time

Compile time: moo() passes two arguments to printf().

The number of arguments that printf() receives the first time that it is called in foo is known at:
(Note that printf()’s first caller may not be moo().)

compile time assembly time link time load time run time
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Run time. While we know how many arguments moo() passes to printf(), we don’t know how
many arguments printf() itself receives the first time that it is called, and printf() cannot an-
ticipate it (it takes a variable number of arguments). As a simple example, imagine something like:

if (something-that-depends-on-the-programs-input) {

printf("%d %d", 2, 3");

} else {

printf("%d %d %d", 2, 3, 4);

}

The virtual addresses of the instructions that implement printf() are known at:

compile time assembly time link time load time run time

Link time (or run time, for the dynamic case, but no one marked run time). Some students marked
load time, presumably thinking that this captured the shared library case. That’s not quite right for the
standard library. Under shared libraries, the answer for the standard C library (which contains printf)
should be either link time (for the case of linking to a shared library that appears at a well-known point
in the virtual address space) or run time in the case of linking to a standard library that is “faulted in”
and dynamically patched up as necessary (recall the hack wherein the GOT—the global offset table—
has pointers to functions that patch up the GOT itself). For a non-standard library, a dynamic linker
running at load time could indeed assign virtual addresses to code and patch up code, but the question
asked about printf.

The virtual addresses of any instructions that call printf() directly are known at:

compile time assembly time link time load time run time

Link time. The purpose of linking is in fact to give every instruction a virtual address and to patch up
references to instructions and data.

The virtual addresses of any instructions that call printf() indirectly are known at:

compile time assembly time link time load time run time

Run time. An indirect call calls a function whose address is contained in a register. Meanwhile, the
contents of registers at runtime cannot be predicted.

The virtual address (on the stack) of printf()’s second argument is known at:
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compile time assembly time link time load time run time

Run time. The degree to which the stack grows or shrinks at run time cannot be predicted in advance.

Whether file descriptor 1 represents a device, a pipe, a file (or none of these) is known at:

compile time assembly time link time load time run time

Load time was the preferred answer: we intended to ask about fd 1 at the time that the program
begins running. However, there’s another interpretation, namely one in which fd 1 represents the file
descriptor in the write call. Under that interpretation, run time is also an acceptable answer (we
gave credit for both). The reason is that the setting of fd 1 can change at run time. For example, the
program could have executed dup2(x,1), which would set 1 to be the same file or object as x.

Whether the output of printf() goes to file descriptor 1 is known at:

compile time assembly time link time load time run time

Compile time, and in fact it’s true by convention: printf() wraps a call to write(1, ...).

The number of symbolic references used by moo.c is known at:

compile time assembly time link time load time run time

Assembly time.
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II Concurrency and multicore (36 points total)

3. [3 points] Assume that the code below runs on machine X. Machine X does not offer sequential
consistency (also, do not assume that Machine X offers the x86’s memory model). One thread ex-
ecutes the function p1(), and another thread concurrently executes the function p2(). Assume that
data and ready are initialized to 0 before the two threads begin executing.

int data = 0, ready = 0;

void p1 () {

data = 2000;

ready = 1;

}

int p2 () {

while (!ready) {}

return data;

}

What are the possible return values of p2()?

Circle the BEST answer below:

A 0, only.

B 2000, only.

C 0 or 2000.

D The return value of p2() is unspecified; that is, p2() could return anything.

C.

4. [4 points] Recall the graph that we saw in class, which compared the performance of MCS
spinlocks to the spinlocks that were standard in Linux at the time that the graph was produced (in year
2008). The graph suggested that although MCS spinlocks have asymptotically better performance,
they have a higher fixed cost. (The larger point was that the fairness of MCS spinlocks has a cost.)

What is the likely source of MCS spinlocks’ higher fixed cost? State your answer briefly below.

Acquiring and releasing an MCS lock takes more instructions than acquiring and releasing a standard
spinlock.

5. [5 points] Consider a job (meaning a computation plus an input) that an application developer
has decomposed into several (kernel-level) threads. The application developer initially runs the job on
a single-processor machine. Then, the developer adds three CPUs to the machine without modifying
the code or the input. It turns out that adding these CPUs might make the performance worse. Why?
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Below, explain why adding CPUs could make performance worse. There are multiple ways to
answer this question: you can explain in general what’s going on, or you can give an example,
etc.

One example is a workload that appears only superficially parallel: that is, all threads are engaged,
but there is some shared bottleneck resource protected by a synchronization primitive like a spinlock.
If the resource is enough of a bottleneck, and if the threads spend a lot of time spinning (either in the
kernel or in user space), the synchronization may be more expensive (because of cache line bounces,
for example) than if a single CPU were executing the same synchronization instructions.

6. [4 points] Recall that locks are in conflict with modularity.

Give one example of this conflict. (We discussed a number of examples in class; you only need
to give one here.) Be brief; there is far more space below than you need.
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7. [20 points] In this problem you will write code to drive a simplified linear accelerator (“LinAc”)
that is reminiscent of the Therac-25. This LinAc is an I/O device that is attached to your (32-bit) com-
puter. The LinAc has a mode setting and a position setting that are (unfortunately) set independently,
via different hardware registers that your computer accesses through memory mapped I/O.

The host’s interface to the linear accelerator hardware is as follows:

#define LINAC_MODE 0xfd000000 /* assume this is both virtual and physical */

#define LINAC_POS 0xfd000400 /* ditto */

#define LINAC_BEAM 0xfd000800 /* ditto */

#define LINAC_BUSY 0x00000001

#define MODE_PHOTON 0x00000010

#define MODE_ELECTRON 0x00000020

#define POS_FLATTENER 0x00000040

#define POS_BENDER 0x00000080

– To set the mode of the linear accelerator, the software writes to memory address LINAC_MODE.
Legal values to store are MODE_PHOTON and MODE_ELECTRON. After such a write, a read from
memory address LINAC_MODE returns either LINAC_BUSY (meaning that the linear accelerator is
adjusting) or the value just stored (meaning that the adjustment is done).

– The position of the linear accelerator is set analogously: the host software writes to address
LINAC_POS. Then, reading from LINAC_POS returns either the requested value or LINAC_BUSY.

– Enabling the radiation beam is similar: host software writes to LINAC_BEAM. The LinAc decides
when to turn off the beam, at which point reads from LINAC_BEAM return 0.

Your first task is to implement part of a primitive device driver to interface with the hardware. Here is
the interface exposed by the device driver:

uint32_t LINAC_GET_MODE(); // Returns the LinAc’s current mode.

// YOU WILL IMPLEMENT THIS FUNCTION BELOW.

void LINAC_SET_MODE(uint32_t mode); // Sets the requested mode and returns

// _only after the machine has completed

// the adjustment_.

// YOU WILL IMPLEMENT THIS FUNCTION BELOW.

uint32_t LINAC_GET_POS(); // analogous to LINAC_GET_MODE

void LINAC_SET_POS(uint32_t pos); // analogous to LINAC_SET_MODE

void LINAC_BEAM_ON(); // turns on beam; returns when beam off
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Fill in the function below, whose purpose is to return the current mode of the LinAc:

uint32_t LINAC_GET_MODE()

{

volatile uint32_t* mode_addr = LINAC_MODE;

// FILL THIS IN. YOU NEED ONLY ONE LINE.

}

Fill in the function below. You should return only after the machine has completed the adjust-
ment. You should not busy wait; thus, sleep()ing for an appropriate interval is acceptable.

void LINAC_SET_MODE(uint32_t mode)

{

volatile uint32_t* mode_addr = LINAC_MODE;

// FILL THIS IN. DON’T BUSY WAIT.

}

uint32_t LINAC_GET_MODE()

{

volatile uint32_t* mode_addr = LINAC_MODE;

return *mode_addr;

}

void LINAC_SET_MODE(uint32_t mode)

{

volatile uint32_t* mode_addr = LINAC_MODE;

*mode_addr = mode;

while (*mode_addr != mode)

sleep(1);

}

Next, you will synchronize access to the LinAc.

Note: the hardware interface to the linear accelerator permits four combinations of (mode, position).
However, the software should only ever put the machine in one of two configurations: (MODE_PHOTON,
POS_FLATTENER) and (MODE_ELECTRON, POS_BENDER).

The above note concerns safety. For performance, however, we observe that setting the mode and po-
sition each take on the order of seconds to complete. Thus, we want these tasks to proceed in parallel.
To balance the safety and performance goals, you decide to structure your software as follows:
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– You create a single producer thread and a pool of multiple (more than 5) consumer threads that
interact through a message queue. Specifically, the producer thread interprets the operator’s
requests, places descriptions of those requests in Task structures, and enqueues the Tasks; the
consumer threads dequeue Tasks and carry them out. (We saw code for a message queue in
class.)

– To avoid mixing up modes and positions, you establish the following invariants:

1. The task of mode setting can run only if (a) no other mode setting task is in progress; and
(b) no beam enabling task is in progress.

2. The task of position setting can run only if (a) no other position setting task is in progress;
and (b) no beam enabling task is in progress.

3. The task of beam enabling can run only if (a) there is no mode setting, position setting, or
beam enabling task in progress; and (b) the machine’s actual position and mode correspond
to the operator’s request at the time that the operator requested “beam on”. If a beam
enable task is otherwise ready to run but condition (b) is violated, the beam enabling task
must return an error.

The monitor defined and partially implemented below is intended to respect the invariants above.
However, it is missing a method that you must fill in. For context, note that the monitor is used by the
consumer threads; the consumer thread implementation is at the end of this problem.

class LinacMonitor {

public:

void set_mode(uint32_t mode);

void set_position(uint32_t pos);

// YOU WILL IMPLEMENT THIS FUNCTION ON THE NEXT PAGE

void beam_on(uint32_t mode, uint32_t pos);

private:

Mutex mutex;

Cond cv;

bool setting_mode;

bool setting_position;

bool delivering_radiation;

};

void

LinacMonitor::LinacMonitor()

{

setting_mode = false;

setting_position = false;

delivering_radiation = false;

}

void

LinacMonitor::set_mode(uint32_t mode)
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{

mutex.acquire();

while (setting_mode || delivering_radiation)

cv.wait(&mutex);

setting_mode = true;

LINAC_SET_MODE(mode);

setting_mode = false;

cv.broadcast(&mutex);

mutex.release();

}

void

LinacMonitor::set_pos(uint32_t pos)

{

mutex.acquire();

while (setting_pos || delivering_radiation)

cv.wait(&mutex);

setting_pos = true;

LINAC_SET_POS(pos);

setting_pos = false;

cv.broadcast(&mutex);

mutex.release();

}

int

LinacMonitor::beam_on(uint32_t mode, uint32_t pos)

{

// FILL THIS IN. Return -1 if there is an error and 0 otherwise.

// You must handle operator error, among others.
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}

int

LinacMonitor::beam_on(mode_t mode, uint32_t pos)

{

mutex.acquire();

while (setting position || setting_mode) {

cv.wait(&mutex);

}

// we don’t actually have to check the delivering_radiation

// flag: owing to the mutex (it’s never released from here to the

// end of the function), no other task can observe

// the case that delivering_radiation == true.

delivering_radiation = true;

// don’t harm the patient

assert((mode == MODE_PHOTON && pos == POS_FLATTENER) ||

(mode == MODE_ELECTRON && pos == POS_BENDER));

// instead of assert, could return error if above condition is false.

if (mode != LINAC_GET_MODE() || pos != LINAC_GET_POS()) {

delivering_radiation = false;

mutex.release();

return -1;

}

LINAC_BEAM_ON();

delivering_radiation = false;
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cv.broadcast(&mutex);

mutex.release();

return 0;

}

Some of you observed that the code “doesn’t care” about the delivering_radiation flag in the
sense that beam_on() holds the mutex the entire time that delivering_radiation == true. So
why do we bother to set it in beam_on() and check its value in the other two methods? Two reasons:
(1) when we wrote the other two methods, we did not know that beam_on() would not wait; some
students might have elected to wait inside beam_on(); in that case, the delivering_radiation

flag is surely needed because every cv.wait() implicitly releases the mutex. (2) It’s cleaner to
express the idea that the beam is on explicitly (versus the implicit point that “if radiation is on, every
other method is locked out, so if the other methods are making progress, radiation must not be on”).
That makes the code easier to maintain. As an example, if we had moved the software-hardware
interface to something interrupt-driven (versus the polling that happens now inside BEAM_ON), then
BEAM_ON might wait, to be signaled by an interrupt. At that point, depending on the locking structure,
one could imagine that beam_on is not a full critical section, in which case we want the state variables.

A related point holds for cv.broadcast(), namely the other methods are not truly “waiting” for
delivering_radiation, so there is no need to signal or broadcast on this condition variable at the
end of beam_on. However, for maintainability (again, if beam_on did in fact wait...), it makes sense
to do the broadcast (even if the modularity that’s sacrificed by locks means that we shouldn’t have
been designing for this sort of maintainability in the first place...).
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typedef enum {PLEASE_SET_POS, PLEASE_SET_MODE, PLEASE_TURN_ON_BEAM} req_t;

struct Task {

req_t request_type;

uint32_t mode;

uint32_t pos;

};

MessageBuffer msg_buf;

LinacMonitor linac_monitor;

// there are many threads, each of which is running this consumer() function.

void consumer()

{

struct Task task;

while (1) {

task = msg_buf.dequeue();

switch (task.request_type) {

case PLEASE_SET_MODE:

linac_monitor.set_mode(task.mode);

break;

case PLEASE_SET_POS:

linac_monitor.set_pos(task.pos);

break;

case PLEASE_TURN_ON_BEAM:

if (linac_monitor.beam_on(task.mode, task.pos))

raise_error();

break;

default:

raise_error();

}

}

}
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III Readings (19 points total)

8. [3 points] This question concerns the assigned reading, “Andy Tanenbaum hasn’t learned
anything” (which was a newsgroup posting by Rob Pike et al., 1992).

Briefly state one of the things that Andy Tanenbaum hasn’t learned, according to Pike et al.
Your answer should NOT use the word “microkernel”.

9. [4 points] This question concerns “The xv6 book”, chapter 3 (which was assigned reading).
This chapter discusses recursive locks, which are locks that permit a CPU to acquire the lock multiple
times without releasing it. What is the chapter’s principal argument against recursive locks?

Circle the BEST answer:

A Recursive locks sometimes violate lock orderings.

B Recursive locks make it hard to reason about invariants.

C Recursive locks are in conflict with transparency and modularity.

D Recursive locks can lead to endless recursion.

E Recursive locks make it hard to avoid priority inversion.

F This question concerns “The xv6 book”, chapter 3 (which was assigned reading). This chapter
discusses recursive locks, which are . . .

B. Regarding C, note that recursive locks actually help with transparency and modularity; in fact the
argument for recursive locks is that if a thread is allowed to acquire a lock multiple times, then the
programmer need not expose locks outside of interfaces.
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10. [12 points] Recall that in the paper “Efficient Software-Based Fault Isolation” (Wahbe et al.,
Proc. SOSP 1993), the authors propose to sandbox STORE R1, R0 with the following instructions:

Ra <- R0 & Re // zero out segment ID

Ra <- Ra | Rf // replace with the valid segment ID

STORE R1, Ra

This question asks about how to sandbox the instruction STORE R1, offset(R2). Here, the mem-
ory address for the store is offset+R2, and offset is a 17-bit signed number (meaning that it can
represent numbers between -64KB and 64KB). A naive way to sandbox this instruction is:

Ra <- offset + R2

Ra <- Ra & Re

Ra <- Ra | Rf

STORE R1, Ra

However, the approach above requires three instructions of overhead. Instead, the authors propose
sandboxing STORE R1, offset(R2) using (a) overhead of two instructions and (b) mapping two
“guard” regions (that is, invalid areas of virtual memory; stores to these regions will generate page
faults and justly crash the program). This question asks about both of these aspects.

Below, give the pseudocode (in the same format above) for sandboxing STORE R1, offset(R2)

with an overhead of two instructions.

Ra <- R2 & Re

Ra <- Ra | Rf

STORE R1, offset(Ra)

What are the address ranges of the two guard regions? You should express your answer con-
cisely, and you may invent some notation if that will help.

Define a segment as all of the addresses whose upper bits are given by Rf. The purpose of the guard
regions is to catch, at reference time, offsets that result in underflowing or overflowing the segment
boundary (observe that offsets aren’t checked in the solution above). The offset is in the range [-
64KB,64KB], per the given, so the ultimate address is guaranteed to be in the range [segment begin-
64KB,segment end+64KB]. Thus, we must guard [segment begin-64KB,segment begin) as well as
[segment end,segment end+64KB].
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IV JOS + essay (25 points total)

11. [5 points] Recall that in lab 4a, you enabled multiprocessor support. As part of doing so, you
ensured that each CPU has its own kernel stack. You also used a big kernel lock (BKL) to ensure that
at most one CPU runs in the kernel at once. This question asks: since the big kernel lock provides
mutual exclusion, why do you need separate kernel stacks for each CPU?

Describe a sequence of events that would create a problem if you used a single kernel stack,
shared among all CPUs. Assume that the big kernel lock is acquired and used correctly. Be
brief; you do not need more than a few sentences.

Say CPU 0 is executing kernel code. Say CPU 1 is running user code and then gets an interrupt or
trap. This causes CPU 1 to start using a kernel stack. If that kernel stack were the same as the kernel
stack used by CPU 0, then that stack would be clobbered.

12. [20 points] This question asks you to write a short essay that refutes, supports, or partially
supports the following statement:

JOS is an exokernel.

Please note that there is no single correct answer. To get full credit, your answer must be well-
structured, and it should draw on the specifics of JOS and the exokernel vision as described in “Ex-
okernel: An Operating System Architecture for Application-Level Resource Management” (Engler et
al., Proc. SOSP 1995). You do not need more than one or two paragraphs. Do not brain dump your
knowledge about the relevant systems. Instead, think and outline before you start writing. Structure
and effective argument are important here; the exact length is not. You may use the next page too.

The most effective answers were those that responded directly to the question: they were well-
structured, and drew on the specifics of JOS and the specifics of the exokernel. Students lost points
for not addressing the exokernel vision, not using the specifics of JOS, and making incorrect state-
ments about JOS. For instance, a common error was thinking that JOS forces user-level processes to
have a particular page table structure and hence JOS is not an exokernel. In fact, it’s the x86 hard-
ware that mandates the page table structure; that user-level processes can “see” this structure is in fact
exokernelly.
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End of Midterm
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