
The University of Texas at Austin
CS 372H Introduction to Operating Systems: Honors: Spring 2011

Midterm Exam

• This exam is 75 minutes. Stop writing when “time” is called. You must turn in your exam; we will
not collect it. Do not get up or pack up between 70 and 75 minutes. The instructor will leave the
room 78 minutes after the exam begins and will not accept exams outside the room.

• There are 13 questions in this booklet. Many can be answered quickly. Some may be harder than
others, and some earn more points than others. You may want to skim all questions before starting.

• This exam is closed book and notes. You may not use electronics: phones, calculators, laptops,
etc. You may refer to ONE two-sided 8.5x11” sheet with 10 point or larger Times New Roman font,
1 inch or larger margins, and a maximum of 55 lines per side.

• If you find a question unclear or ambiguous, be sure to write any assumptions you make.

• Follow the instructions: if they ask you to justify something, explain your reasoning and any im-
portant assumptions. Write brief, precise answers. Rambling brain dumps will not work and
will waste time. Think before you start writing so you can answer crisply. Be neat. If we can’t
understand your answer, we can’t give you credit!

• To discourage guessing and brain dumps, we will give 15%-20% of the credit for any problem left
completely blank. If you attempt a problem, you start at zero points for the problem. Note that by
problem we mean numbered questions for which a point total is listed. Sub-problems with no points
listed are not eligible for this treatment. Thus, if you attempt any sub-problem, you may as well
attempt the other sub-problems in the problem.

• The exception is the True/False problems. There, we grade by individual True/False item: cor-
rect items earn positive points, blank items earn 0 points, and incorrect items earn negative points.
However, the minimum score on any question—that is, any group of True/False items—is 0.

• Don’t linger. If you know the answer, give it, and move on.

• Write your name and UT EID on this cover sheet and on the bottom of every page of the exam.

Do not write in the boxes below.

I (xx/31) II (xx/31) III (xx/18) IV (xx/20) Total (xx/100)

Name: UT EID:

page 2 of 11

I Short answer (31 points total)

1. [10 points] This question is about deadlock and other coding errors. Assume that the programmer
uses a kernel-level threading package and monitors (mutexes and conditional variables).

Circle True or False for each item below:

True / False To guarantee no deadlock, it is sufficient to negate just one of the four conditions that
contribute to deadlock.

True / False In practice, one way to guarantee no deadlock is to acquire mutexes in the same partial
order.

True / False The existence of a race condition in the code implies that there is an execution schedule
that will result in deadlock.

True / False If the code is vulnerable to starvation, then there is an execution schedule that will
result in deadlock.

True / False If there is an execution schedule that will result in deadlock, then the code has a liveness
error.

2. [8 points] This question is about cache replacement. Suppose that there is a page reference
string (also known as a reference pattern; in class, these were strings of the form A, B, C, A, . . .). You
don’t know anything about the reference string except that it has length p and has n distinct pages
occurring in it. Suppose also that there is a cache (of pages) that these page references will encounter.
You don’t know anything about the cache except that it has m entries and that it starts out empty. From
this description, p ≥ n. Also, suppose n > m and m > 0.

What is the minimum possible number of cache misses, over all combinations of reference pat-
tern and cache replacement policy? You do not need to justify your answer.

What is the maximum possible number of cache misses, over all combinations of reference pat-
tern and cache replacement policy? You do not need to justify your answer.

Name: UT EID:

page 3 of 11

3. [5 points] In class, we said that whereas test-and-set (or test and test-and-set) spinlocks are not
fair, MCS spinlocks are fair. This question asks: what is the precise reason that MCS spinlocks, as
implemented on an x86, are fair? (NOTE: the answer is not that a thread trying to acquire a lock is
spinning on nearby or cached memory. That fact is true, but it is not the fundamental reason that MCS
spinlocks are fair.)

State briefly below the precise reason that MCS spinlocks are fair.

4. [8 points] This question is about scheduling. Assume that the jobs to be scheduled each take
finite time.

Circle True or False for each item below:

True / False Round-robin scheduling optimizes (minimizes) average completion time (defined as
the time from when a process enters the system to when it completes).

True / False Priority scheduling optimizes (minimizes) average waiting time.

True / False If Shortest Remaining Time to Completion First (a preemptive scheduling discipline of-
ten written as SRTCF) could be implemented, it would optimize (maximize) CPU utilization (defined
as fraction of CPU cycles that are dedicated to process execution).

True / False During periods when the processor spends all of its cycles handling interrupts, the
process scheduler is irrelevant to the machine’s performance.

Name: UT EID:

page 4 of 11

II JOS and virtual memory (31 points total)

5. [9 points] Consider a JOS environment: struct Env e. Suppose the JOS kernel first sets up
the page directory and page tables for e and then executes the following line:

e->env_pgdir[0] = e->env_cr3 | PTE_P | PTE_W | PTE_U;

Fill in the three blanks below, and note that the definition below the question may be helpful:

The above line exposes e’s (i) to e’s user-space code; that code sees the exposed
data or data structures at virtual addresses (ii) through 222− 1 (4 megabytes minus
one), with the following associated memory permissions: (iii) .

(i):

(ii):

(iii):

Here is a partial definition of struct Env:

struct Env {
struct Trapframe env_tf; // Saved registers
LIST_ENTRY(Env) env_link; // Free list link pointers
envid_t env_id; // Unique environment identifier

........

// Address space
pde_t *env_pgdir; // Kernel virtual address of page dir
physaddr_t env_cr3; // Physical address of page dir

};

Name: UT EID:

page 5 of 11

6. [6 points] In JOS, to enter kernel mode through a system call, a user-level environment executes:

int $0x30 ; this is in lib/syscall.c

Before the line above, the environment has placed the system call number in %ax and the system call
arguments in the other registers (%dx, %cx, etc.). If the JOS kernel has set up the IDT correctly, then,
after the int call above, the processor begins executing in kernel mode, with the value of %cr3 after
the transfer into kernel mode equal to the value of %cr3 before the transfer. Thus, after the transfer,
the processor’s %cr3 points to an environment-specific page directory. Yet, the processor can load
from, and store to, kernel memory—without generating page faults.

Why is there no page fault after the transfer? Which of the specific steps that you took, as
part of doing the labs, ensures that page faults do not happen? Assume that the IDT is set up
correctly (i.e., we are not asking about setting up the IDT). You do not need a lot of space; state
your answer briefly below:

7. [8 points] In lab 4a, you implemented the sys page map() system call. An environment makes
this call to request that the kernel map a given page of memory, P, into a target environment’s virtual
address space. The target environment can be the caller itself or any other environment. Which of the
following are arguments to this system call?

Circle ALL that apply:

A The environment id of the target.

B The target’s data segment descriptor.

C The physical address of the target’s page directory.

D The virtual address that P should have in the target.

E The physical address of P.

F The permissions that the kernel should associate to the mapping.

Name: UT EID:

page 6 of 11

8. [8 points] Note that there are two sub-parts here. Suppose that %fs on the x86 is currently
referencing a segment descriptor for which the base is 0x1000 0000, the limit is 0x4000 0000, and
the permissions are maximally permissive. Now suppose that a process executes a memory store to
the segment given by %fs, using offset 0x3000. The code might look like this:

movl $0x3000, %eax
movl $0xdeadbeef, %fs:(%eax)

As a result of the instructions above, the processor stores the value 0xdeadbeef to which lin-
ear address? If the processor would raise an error, write “error”. If you do not have enough
information to answer the question, write “not enough information”.

Now suppose that the descriptor pointed to by %fs has base set to 0xf000 0000 and the limit set to
0x1000, and suppose that the programmer’s intended offset is again 0x3000.

With the new segment descriptor, the result of the above instructions is to store the value
0xdeadbeef to which linear address? If the processor would raise an error, write “error”. If
you do not have enough information to answer the question, write “not enough information”.

Name: UT EID:

page 7 of 11

III The readings (18 points total)

9. [6 points] Note that this question consists of a multiple choice followed by another question.
Tanenbaum’s book has a section about The Ostrich Algorithm, as a way of addressing a particular
class of software errors. Which class of software errors is Tanenbaum proposing the algorithm for?

Circle the BEST answer below:

A Overflows from addition of fixed-width integers

B Starvation

C Deadlock

D Race conditions

E Priority inversion

F Performance problems from coarse-grained locking

G Broken modularity from locking

State below how the algorithm works at a high level (you do not need to give pseudocode):

10. [8 points] This question is about the assigned paper on the Therac-25 (“An Investigation of the
Therac-25 Accidents”) and linear accelerator disasters.

Circle True or False for each item below:

True / False The authors of the paper explain the race conditions that they uncovered when they
read the source code for the Therac-25.

True / False The authors of the paper explain the liveness bugs that they uncovered when they read
the source code for the Therac-25.

True / False Previous experience with the interface and operation of the machine led Therac-25
operators to expect the machine to malfunction.

True / False The thesis of the New York Times articles on linear accelerator disasters is that software
developers should be licensed.

11. [4 points] From which of our assigned readings is the following excerpt drawn?

Throughout the paper I use examples written in Modula-2+. These should be readily understandable
by anyone familiar with the Algol and Pascal family of languages.

Identify the author or the reading:

Name: UT EID:

page 8 of 11

IV Shared memory multiprogramming (20 points total)

12. [8 points] This question is about the correctness of the pseudocode below. The programmer
intends that g() not execute unless f() has executed; the two functions are called by different threads.
Assume POSIX thread semantics (Hansen semantics); that is, the thread package provides the same
guarantees that it did in lab T. Read the code carefully.

int f_ran = FALSE;
Mutex mutex;
Cond cv;

// called by a thread
Monitor::t1() {

mutex.acquire();
if (f_ran == FALSE)

cv.wait(&mutex);

g(); /* <-- It is an error if g() executes before f() */

mutex.release();
}

// called by another thread
Monitor::t2() {

mutex.acquire();

f();
f_ran = TRUE;

cv.broadcast(&mutex);
mutex.release();

}

Under which conditions is the above pseudocode correct?

Circle the BEST answer:

A The code executes on a single processor.

B The memory model is sequential consistency.

C The threads are user-level threads.

D The system contains only two threads, one that calls t1() and one that calls t2().

E The broadcast() is replaced with a signal().

F The code is correct if conditions A, C, and D all hold simultaneously.

G The code is correct if conditions B and D both hold simultaneously.

H The code is correct if conditions A, C, D, and E all hold simultaneously.

I None of the above.

Name: UT EID:

page 9 of 11

13. [12 points] Consider the function doublecheck alloc() below, which is intended to be in-
voked from multiple threads on a multiprocessor machine. Its purpose is to avoid a mutex acquisition
in the common case that ptr is already initialized. The requirements for this function are:

(i) doublecheck alloc() must call alloc foo() no more than once over the whole execution.

(ii) A caller of doublecheck alloc() must, after the function returns, observe ptr as non-zero.

The machine does not offer sequential consistency. Thus, a processor is not guaranteed to see the
memory operations of another processor in program order. However, each of mutex acquire()
and mutex release() is implemented correctly; in particular, each of them internally contains a
memory barrier (mfence on the x86). Recall that mfence ensures that all memory operations before
the mfence barrier appear to all processors to have executed before all memory operations after the
mfence barrier.

On the other hand, the compiler preserves program order (it does not reorder instructions).

struct foo {
int abc;
int def;

};
static int ready = 0;
static mutex_t mutex;
static struct foo* ptr = 0;

void
doublecheck_alloc()
{

if (!ready) { /* <-- accesses shared variable w/out holding mutex */
mutex_acquire(&mutex);
if (!ready) {

ptr = alloc_foo(); /* <-- sets ptr to be non-zero */
ready = 1;

}
mutex_release(&mutex);

}
return;

}

The above code certainly violates our coding standards, but this problem is about whether it violates
requirements (i) and (ii), above. The questions are given on the next page.

Name: UT EID:

page 10 of 11

Does the code above violate requirement (i)? In other words, can alloc foo() be called more than
once from doublecheck alloc()? If so, give an interleaved execution or an interleaving of memory
operations as observed by one of the threads. If not, argue from invariants.

Does the code above violate requirement (ii)? In other words, can the caller of doublecheck alloc()
observe ptr == 0 after doublecheck alloc() returns? If so, give an interleaved execution or an
interleaving of memory operations as observed by one of the threads. If not, argue from invariants.

Name: UT EID:

page 11 of 11

End of Midterm

Enjoy Spring Break!!

Name: UT EID:

	I Short answer (31 points total)
	II JOS and virtual memory (31 points total)
	III The readings (18 points total)
	IV Shared memory multiprogramming (20 points total)

