Printed by Michael Walfish

Feb 24, 11 12:57 [12—-handout.txt Page 1/5 Feb 24, 11 12:57 [12—-handout.txt Page 2/5
1 Handout for CS 372H 63 /l'lockp is a gnode**. | points to our local gnode.
> Class 12 64 void acquire(lock* lockp, gnode* 1) {
3 24 February 2011 65
4 66 I->next = NULL,
s 1. CAS/CMPXCHG 67 gnode* predecessor;
6 68
7 Useful operation: compare—and-swap, known as CAS. Says: "atomically 69 /I next line makes lockp point to | (that is, it sets *lockp <——1)
8 check whether a given memory cell contains a given value, and if it 70 /I and returns the old value of *lockp. Uses atomic operation
9 does, then replace the contents of the memory cell with this other 7 /I XCHG. see 109 handout for implementation of xchg_val.
10 value; in either case, return the original value in the memory 72
1 location”. 7 predecessor = xchg_val(lockp, 1); //"A"
12 74 If (predecessor = NULL) { // queue was non—-empty
13 On the X86, we implement CAS with the CMPXCHG instruction, but note 5 I->someoneelse_locked = true;
14 that this instruction is not atomic by default, so we need the LOCK 7 predecessor—>next = I; /1"B"
15 prefix. 7 while (I->someoneelse_locked) ; // spin
16 78 }
17 Here's pseudocode: 79 /I we hold the lock!
18 80 }
19 int cmpxchg_val(int* addr, int oldval, int newval) { 81
20 LOCK: // remember, this is pseudocode 82 What's going on?
21 int was = *addr; 83
22 if (raddr == oldval) 84 ——If the lock is unlocked, then *lockp == NULL.
23 *addr = newval; 85
24 return was; 86 ——If the lock is locked, and there are no waiters, then *lockp
25 87 points to the gnode of the owner
26 88
27 Here's inline assembly: 89 ——If the lock is locked, and there are waiters, then *lockp points
28 % to the gnode at the tail of the waiter list.
29 uint32_t cmpxchg_val(uint32_t* addr, uint32_t oldval, uint32_t newval) { o1
30 uint32_t was; %2 —-Here’s the code for release:
a1 asm volatile("lock cmpxchg %3, %0" 93
32 2 "+m" (*addr), "=a" (was) [void release(lock* lockp, gnode* 1) {
3 :"a" (oldval), "r* (newval) % if (I->next) {// no known successor
34 :"ec"); % if (cmpxchg_val(lockp, I, NULL) ==1){ //"C"
35 return was; 97 /I swap successful: lockp was pointing to I, so now
36 98 /I *lockp == NULL, and the lock is unlocked. we can
a7 £ /I go home now.
33 2. MCS locks 100 return;
39 101
40 Citation: Mellor—-Crummey, J. M. and M. L. Scott. Algorithms for 102 II'if we get here, then there was a timing issue: we had
2 Scalable Synchronization on Shared-Memory Multiprocessors, ACM 103 /I no known successor when we first checked, but now we
42 Transactions on Computer Systems, Vol. 9, No. 1, February, 1991, 104 I/l have a successor: some CPU executed the line "A"
43 pp.21-65. 105 /I above. Wait for that CPU to execute line "B" above.
44 106 while (lI->next) ;
5 Each CPU has a gnode structure in *local* memory. Here, local can 107 }
46 mean local memory in NUMA machine or its own cache line that other 108 /I handing the lock off to the next waiter is as simple as
47 CPUs are not allowed to cache (i.e., the cache line is in exclusive 109 /I just setting that waiter's "someoneelse_locked" flag to false
48 mode): 110 I->next—>someoneelse_locked = false;
49 111 }
50 typedef struct gnode { 112
51 struct gnode* next; 113 What's going on?
52 bool someoneelse_locked; 114
53 } gnode; 115 ——If I->next == NULL and *lockp == 1, then no one else is
54 116 waiting for the lock. So we set *lockp == NULL.
55 typedef gnode* lock; // alock is a pointer to a gnode 117
56 118 —=If I->next == NULL and *lockp != I, then another CPU is in
57 —-The lock itself is literally the *tail* of the list of CPUs holding 119 acquire (specifically, it executed its atomic operation, namely
58 or waiting for the lock. 120 line "A", before we executed ours, namely line "C"). So wait for
59 121 the other CPU to put the list in a sane state, and then drop
60 —-While waiting, a CPU spins on its local "locked" flag. Here's the 122 down to the next case:
61 code for acquire: 123
62 124 —=If I->next != NULL, then we know that there is a spinning
125 waiter (the oldest one). Hand it the lock by setting its flag to
126 false.
127
Thursday February 24, 2011 I112-handout.txt 1/3

Printed by Michael Walfish

Feb 24, 11 12:57 [12—handout.txt Page 3/5 Feb 24, 11 12:57 [12—handout.txt Page 4/5

128 3. Some examples related to sequential consistency 200 4. Performance v complexity trade—off with locks

129 202

130 [From S.V. Adve and K. Gharachorloo, IEEE Computer, December 1996, 208 [*

131 66-76. http://rsim.cs.uiuc.edu/~sadve/Publications/computer96.pdf] 204 ¥ linux/mm/filemap.c

132 205 *

133 a. What might p2 return if run concurrently with p1? 206 */Copyright (C) 1994-1999 Linus Torvalds

134 207 ¥

135 int data = 0, ready = 0O; 208

136 200 [*

137 void p1 () { 210 * This file handles the generic file mmap semantics used by

138 data = 2000; 211 * most "normal” filesystems (but you don't /have/ to use this:

139 ready = 1; 212 * the NFS filesystem used to do this differently, for example)

140 213 ¥/

141 int p2 () { 214 #include <linux/config.h>

142 while (Iready) {} 215 #include <linux/module.h>

143 return data; 216 #include <linux/slab.h>

144 217 #include <linux/compiler.h>

145 218 #include <linux/fs.h>

146 [answer depends on the memory model given *by* the hardware *to* 210 #include <linux/aio.h>

147 the software. if the model is sequential consistency, then the 220 #include <linux/capability.h>

148 code does what you expect. but if not, then p2 can return 0.] 221 #include <linux/kernel_stat.h>

149 222 #include <linux/mm.h>

150 b. Can both "critical sections" run? 223 #include <linux/swap.h>

151 224 #include <linux/mman.h>

152 int flagl = 0, flag2 = 0; 225 #include <linux/pagemap.h>

153 226 #include <linux/file.h>

154 int main () { 227 #include <linux/uio.h>

155 tid id = thread_create (p1, NULL); 228 #include <linux/hash.h>

156 p2 (); thread_join (id); 229 #include <linux/writeback.h>

157 } 230 #include <linux/pagevec.h>

158 23 #include <linux/blkdev.h>

159 void p1 (void *ignored) { 232 #include <linux/security.h>

160 flagl = 1; 233 #include <linux/syscalls.h>

161 if (Iflag2) { 234 #include "filemap.h"

162 critical_section_1 (); 235 [*

163 } 236 * FIXME: remove all knowledge of the buffer layer from the core VM

164 } 237 %

165 238 #include <linux/buffer_head.h> /* for generic_osync_inode */

166 void p2 (void *ignored) { 239

167 flag2 = 1; 240 #include <asm/uaccess.h>

168 if (Iflagl) { 241 #include <asm/mman.h>

169 critical_section_2 (); 242

170 } 243 static ssize_t

171 } 24 generic_file_direct_lO(int rw, struct kiocb *iocb, const struct iovec *iov,

172 245 loff_t offset, unsigned long nr_segs);

173 [answer again depends on the memory model. if there’s no 246

174 sequential consistency, both "critical sections" can run.] a7 [*

175 28 * Shared mappings implemented 30.11.1994. It's not fully working yet,

176 c. If a processor can read its own writes early, then both functions 29 * though.

177 below can return 2: %0 ¥

178 251 * Shared mappings now work. 15.8.1995 Bruno.

179 I* %2 ¥

180 * keyword "register" tells compiler to place the variable in a 253 *finished 'unifying’ the page and buffer cache and SMP-threaded the

181 * register, not on the stack. 254 * page—cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>

182 */ 255 ¥

183 256 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>

184 int flagl = 0, flag2 = 0; 257 ¥

185 258

186 int p1 (void *ignored) int p2 (void *ignored) 259 [*

187 260 * Lock ordering:

188 register int f, g; register int f, g; %1 *

189 flagl = 1; flag2 = 1; 262 * —=>i_mmap_lock (vmtruncate)

190 f=flagl; f = flag2; 263 * —>private_lock (__free_pte—>__set_page_dirty_buffers)

101 g =flag2; g =flagl; 64 * —>swap_lock (exclusive_swap_page, others)

192 return 2*f + g; return 2*f + g; 25 ¥ —>mapping—>tree_lock

193 266 ¥

194 267 * —>i_mutex

195 The point of these examples: one processor’s writes may not 268 * —>_mmap_lock (truncate->unmap_mapping_range)

196 show up in program order to another processor. Which means: if %0 ¥

197 you’re using synchronization primitives, don't access shared data 270 * =>mmap_sem

198 outside of the mutex. If you're implementing synchronization 2711 * —>i_mmap_lock

199 primitives, read the processor and compiler manuals carefully. 272 * —>page_table_lock or pte_lock (various, mainly in memory.c)

200 273 ¥ —>mapping—>tree_lock (arch—-dependent flush_dcache_mmap_lock)
Thursday February 24, 2011 I112-handout.txt 2/3

Printed by Michael Walfish

Feb 24, 11 12:57 [12—handout.txt Page 5/5

*

274
275 * —>mmap_sem

276 * —>lock_page (access_process_vm)

27 ¥

278 * —>mmap_sem

279 * —>i_mutex (msync)

280 *

281 * —>i_mutex

22 * —>i_alloc_sem (various)

283 ¥

284 * —>inode_lock

285 * —>sb_lock (fs/fs—writeback.c)

286 * —>mapping—>tree_lock (__sync_single_inode)

287 ¥

288 * —>_mmap_lock

280 * —>anon_vma.lock (vma_adjust)

20 ¥

201 * =>anon_vma.lock

202 * —>page_table_lock or pte_lock (anon_vma_prepare and various)
203 %

204 * —>page_table_lock or pte_lock

205 * —>swap_lock (try_to_unmap_one)

206 * —>private_lock (try_to_unmap_one)

207 * —>tree_lock (try_to_unmap_one)

208 * —>zone.lru_lock (follow_page—>mark_page_accessed)
200 * —>zone.lru_lock (check_pte_range—>isolate_Iru_page)
30 * —>private_lock (page_remove_rmap->set_page_dirty)
o1 * —>tree_lock (page_remove_rmap->set_page_dirty)
32 * —>inode_lock (page_remove_rmap—>set_page_dirty)
33 * —>inode_lock (zap_pte_range—>set_page_dirty)

s34 * —>private_lock (zap_pte_range—>__set_page_dirty_buffers)
305 *

36 * —>task—>proc_lock

07 * —>dcache_lock (proc_pid_lookup)

38 ¥/

309

a0 [*

a1 * Remove a page from the page cache and free it. Caller has to make
sz * sure the page is locked and that nobody else uses it — or that usage
a1z *is safe. The caller must hold a write_lock on the mapping’s tree_lock.
34 ¥/

a5 void __remove_from_page_cache(struct page *page)

316

317 struct address_space *mapping = page—>mapping;

318

319 e

320

321 [point of this item on the handout: fine—grained locking leads to complexity]

Thursday February 24, 2011 I112-handout.txt 3/3

201/0.86

DRAM

255/1.75 282/0.84

273/1.46

s
» 23—
A

DRAM

The AMD 16-core system topology. Memory access latency is in cycles and listed before the backslash.
Memory bandwidth is in bytes per cycle and listed after the backslash. The measurements reflect the
latency and bandwidth achieved by a core issuing load instructions. The measurements for accessing the
L1 or L2 caches of a different core on the same chip are the same. The measurements for accessing any
cache on a different chip are the same. Each cache line is 64 bytes, L1 caches are 64 Kbytes 8-way set
associative, L2 caches are 512 Kbytes 16-way set associative, and L3 caches are 2 Mbytes 32-way set
associative.

[Reprinted with permission from S. Boyd-Wickizer et al. Corey: An Operating System for Many Cores.
Proceedings of Usenix Symposium on Operating Systems Design and Implementation (OSDI),
December 2008.]

2800 _Splin Iloék I_'I_ T T T T T T T T T T ‘:_ i
b HCS lock — e
i A+
? F
+ 1500 [yu .
d A
5 ¥
® 1eee | -
g A
o A
K A
S "
2 see .
@ e e A H 3K
a AT T =
-
c ____.4.-"';_

e 21"’;—-‘1‘- 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3456 7 8 9 1011121314 1516
Cores

Time required to acquire and release a lock on a 16-core AMD machine when varying number of cores
contend for the lock. The two lines show Linux kernel spin locks and MCS locks (on Corey). A spin
lock with one core takes about 11 nanoseconds; an MCS lock about 26 nanoseconds.

[Reprinted with permission from S. Boyd-Wickizer et al. Corey: An Operating System for Many Cores.
Proceedings of Symposium on Operating Systems Design and Implementation (OSDI), December
2008.]

