
1 Handout for CS 372H
2 Class 12
3 24 February 2011
4

5 1. CAS / CMPXCHG
6
7 Useful operation: compare−and−swap, known as CAS. Says: "atomically
8 check whether a given memory cell contains a given value, and if it
9 does, then replace the contents of the memory cell with this other

10 value; in either case, return the original value in the memory
11 location".
12

13 On the X86, we implement CAS with the CMPXCHG instruction, but note
14 that this instruction is not atomic by default, so we need the LOCK
15 prefix.
16

17 Here’s pseudocode:
18

19 int cmpxchg_val(int* addr, int oldval, int newval) {
20 LOCK: // remember, this is pseudocode
21 int was = *addr;
22 if (*addr == oldval)
23 *addr = newval;
24 return was;
25 }
26

27 Here’s inline assembly:
28

29 uint32_t cmpxchg_val(uint32_t* addr, uint32_t oldval, uint32_t newval) {
30 uint32_t was;
31 asm volatile("lock cmpxchg %3, %0"
32 : "+m" (*addr), "=a" (was)
33 : "a" (oldval), "r" (newval)
34 : "cc");
35 return was;
36 }
37

38 2. MCS locks
39

40 Citation: Mellor−Crummey, J. M. and M. L. Scott. Algorithms for
41 Scalable Synchronization on Shared−Memory Multiprocessors, ACM
42 Transactions on Computer Systems, Vol. 9, No. 1, February, 1991,
43 pp.21−65.
44

45 Each CPU has a qnode structure in *local* memory. Here, local can
46 mean local memory in NUMA machine or its own cache line that other
47 CPUs are not allowed to cache (i.e., the cache line is in exclusive
48 mode):
49

50 typedef struct qnode {
51 struct qnode* next;
52 bool someoneelse_locked;
53 } qnode;
54

55 typedef qnode* lock; // a lock is a pointer to a qnode
56
57 −−The lock itself is literally the *tail* of the list of CPUs holding
58 or waiting for the lock.
59

60 −−While waiting, a CPU spins on its local "locked" flag. Here’s the
61 code for acquire:
62

Feb 24, 11 12:57 Page 1/5l12−handout.txt
63 // lockp is a qnode**. I points to our local qnode.
64 void acquire(lock* lockp, qnode* I) {
65

66 I−>next = NULL;
67 qnode* predecessor;
68

69 // next line makes lockp point to I (that is, it sets *lockp <−− I)
70 // and returns the old value of *lockp. Uses atomic operation
71 // XCHG. see l09 handout for implementation of xchg_val.
72

73 predecessor = xchg_val(lockp, I); // "A"
74 if (predecessor != NULL) { // queue was non−empty
75 I−>someoneelse_locked = true;
76 predecessor−>next = I; // "B"
77 while (I−>someoneelse_locked) ; // spin
78 }
79 // we hold the lock!
80 }
81

82 What’s going on?
83

84 −−If the lock is unlocked, then *lockp == NULL.
85

86 −−If the lock is locked, and there are no waiters, then *lockp
87 points to the qnode of the owner
88

89 −−If the lock is locked, and there are waiters, then *lockp points
90 to the qnode at the tail of the waiter list.
91

92 −−Here’s the code for release:
93

94 void release(lock* lockp, qnode* I) {
95 if (!I−>next) { // no known successor
96 if (cmpxchg_val(lockp, I, NULL) == I) { // "C"
97 // swap successful: lockp was pointing to I, so now
98 // *lockp == NULL, and the lock is unlocked. we can
99 // go home now.

100 return;
101 }
102 // if we get here, then there was a timing issue: we had
103 // no known successor when we first checked, but now we
104 // have a successor: some CPU executed the line "A"
105 // above. Wait for that CPU to execute line "B" above.
106 while (!I−>next) ;
107 }
108 // handing the lock off to the next waiter is as simple as
109 // just setting that waiter’s "someoneelse_locked" flag to false
110 I−>next−>someoneelse_locked = false;
111 }
112

113 What’s going on?
114

115 −−If I−>next == NULL and *lockp == I, then no one else is
116 waiting for the lock. So we set *lockp == NULL.
117

118 −−If I−>next == NULL and *lockp != I, then another CPU is in
119 acquire (specifically, it executed its atomic operation, namely
120 line "A", before we executed ours, namely line "C"). So wait for
121 the other CPU to put the list in a sane state, and then drop
122 down to the next case:
123

124 −−If I−>next != NULL, then we know that there is a spinning
125 waiter (the oldest one). Hand it the lock by setting its flag to
126 false.
127

Feb 24, 11 12:57 Page 2/5l12−handout.txt

Printed by Michael Walfish

Thursday February 24, 2011 1/3l12−handout.txt

128 3. Some examples related to sequential consistency
129

130 [From S.V. Adve and K. Gharachorloo, IEEE Computer, December 1996,
131 66−76. http://rsim.cs.uiuc.edu/~sadve/Publications/computer96.pdf]
132

133 a. What might p2 return if run concurrently with p1?
134

135 int data = 0, ready = 0;
136

137 void p1 () {
138 data = 2000;
139 ready = 1;
140 }
141 int p2 () {
142 while (!ready) {}
143 return data;
144 }
145

146 [answer depends on the memory model given *by* the hardware *to*
147 the software. if the model is sequential consistency, then the
148 code does what you expect. but if not, then p2 can return 0.]
149

150 b. Can both "critical sections" run?
151

152 int flag1 = 0, flag2 = 0;
153

154 int main () {
155 tid id = thread_create (p1, NULL);
156 p2 (); thread_join (id);
157 }
158

159 void p1 (void *ignored) {
160 flag1 = 1;
161 if (!flag2) {
162 critical_section_1 ();
163 }
164 }
165

166 void p2 (void *ignored) {
167 flag2 = 1;
168 if (!flag1) {
169 critical_section_2 ();
170 }
171 }
172

173 [answer again depends on the memory model. if there’s no
174 sequential consistency, both "critical sections" can run.]
175

176 c. If a processor can read its own writes early, then both functions
177 below can return 2:
178

179 /*
180 * keyword "register" tells compiler to place the variable in a
181 * register, not on the stack.
182 */
183

184 int flag1 = 0, flag2 = 0;
185

186 int p1 (void *ignored) int p2 (void *ignored)
187 { {
188 register int f, g; register int f, g;
189 flag1 = 1; flag2 = 1;
190 f = flag1; f = flag2;
191 g = flag2; g = flag1;
192 return 2*f + g; return 2*f + g;
193 } }
194

195 The point of these examples: one processor’s writes may not
196 show up in program order to another processor. Which means: if
197 you’re using synchronization primitives, don’t access shared data
198 outside of the mutex. If you’re implementing synchronization
199 primitives, read the processor and compiler manuals carefully.
200

Feb 24, 11 12:57 Page 3/5l12−handout.txt
201 4. Performance v complexity trade−off with locks
202

203 /*
204 * linux/mm/filemap.c
205 *
206 * Copyright (C) 1994−1999 Linus Torvalds
207 */
208

209 /*
210 * This file handles the generic file mmap semantics used by
211 * most "normal" filesystems (but you don’t /have/ to use this:
212 * the NFS filesystem used to do this differently, for example)
213 */
214 #include <linux/config.h>
215 #include <linux/module.h>
216 #include <linux/slab.h>
217 #include <linux/compiler.h>
218 #include <linux/fs.h>
219 #include <linux/aio.h>
220 #include <linux/capability.h>
221 #include <linux/kernel_stat.h>
222 #include <linux/mm.h>
223 #include <linux/swap.h>
224 #include <linux/mman.h>
225 #include <linux/pagemap.h>
226 #include <linux/file.h>
227 #include <linux/uio.h>
228 #include <linux/hash.h>
229 #include <linux/writeback.h>
230 #include <linux/pagevec.h>
231 #include <linux/blkdev.h>
232 #include <linux/security.h>
233 #include <linux/syscalls.h>
234 #include "filemap.h"
235 /*
236 * FIXME: remove all knowledge of the buffer layer from the core VM
237 */
238 #include <linux/buffer_head.h> /* for generic_osync_inode */
239

240 #include <asm/uaccess.h>
241 #include <asm/mman.h>
242

243 static ssize_t
244 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
245 loff_t offset, unsigned long nr_segs);
246

247 /*
248 * Shared mappings implemented 30.11.1994. It’s not fully working yet,
249 * though.
250 *
251 * Shared mappings now work. 15.8.1995 Bruno.
252 *
253 * finished ’unifying’ the page and buffer cache and SMP−threaded the
254 * page−cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
255 *
256 * SMP−threaded pagemap−LRU 1999, Andrea Arcangeli <andrea@suse.de>
257 */
258

259 /*
260 * Lock ordering:
261 *
262 * −>i_mmap_lock (vmtruncate)
263 * −>private_lock (__free_pte−>__set_page_dirty_buffers)
264 * −>swap_lock (exclusive_swap_page, others)
265 * −>mapping−>tree_lock
266 *
267 * −>i_mutex
268 * −>i_mmap_lock (truncate−>unmap_mapping_range)
269 *
270 * −>mmap_sem
271 * −>i_mmap_lock
272 * −>page_table_lock or pte_lock (various, mainly in memory.c)
273 * −>mapping−>tree_lock (arch−dependent flush_dcache_mmap_lock)

Feb 24, 11 12:57 Page 4/5l12−handout.txt

Printed by Michael Walfish

Thursday February 24, 2011 2/3l12−handout.txt

274 *
275 * −>mmap_sem
276 * −>lock_page (access_process_vm)
277 *
278 * −>mmap_sem
279 * −>i_mutex (msync)
280 *
281 * −>i_mutex
282 * −>i_alloc_sem (various)
283 *
284 * −>inode_lock
285 * −>sb_lock (fs/fs−writeback.c)
286 * −>mapping−>tree_lock (__sync_single_inode)
287 *
288 * −>i_mmap_lock
289 * −>anon_vma.lock (vma_adjust)
290 *
291 * −>anon_vma.lock
292 * −>page_table_lock or pte_lock (anon_vma_prepare and various)
293 *
294 * −>page_table_lock or pte_lock
295 * −>swap_lock (try_to_unmap_one)
296 * −>private_lock (try_to_unmap_one)
297 * −>tree_lock (try_to_unmap_one)
298 * −>zone.lru_lock (follow_page−>mark_page_accessed)
299 * −>zone.lru_lock (check_pte_range−>isolate_lru_page)
300 * −>private_lock (page_remove_rmap−>set_page_dirty)
301 * −>tree_lock (page_remove_rmap−>set_page_dirty)
302 * −>inode_lock (page_remove_rmap−>set_page_dirty)
303 * −>inode_lock (zap_pte_range−>set_page_dirty)
304 * −>private_lock (zap_pte_range−>__set_page_dirty_buffers)
305 *
306 * −>task−>proc_lock
307 * −>dcache_lock (proc_pid_lookup)
308 */
309

310 /*
311 * Remove a page from the page cache and free it. Caller has to make
312 * sure the page is locked and that nobody else uses it − or that usage
313 * is safe. The caller must hold a write_lock on the mapping’s tree_lock.
314 */
315 void __remove_from_page_cache(struct page *page)
316 {
317 struct address_space *mapping = page−>mapping;
318

319
320

321 [point of this item on the handout: fine−grained locking leads to complexity]

Feb 24, 11 12:57 Page 5/5l12−handout.txt

Printed by Michael Walfish

Thursday February 24, 2011 3/3l12−handout.txt

The AMD 16-core system topology. Memory access latency is in cycles and listed before the backslash.
Memory bandwidth is in bytes per cycle and listed after the backslash. The measurements reflect the
latency and bandwidth achieved by a core issuing load instructions. The measurements for accessing the
L1 or L2 caches of a different core on the same chip are the same. The measurements for accessing any
cache on a different chip are the same. Each cache line is 64 bytes, L1 caches are 64 Kbytes 8-way set
associative, L2 caches are 512 Kbytes 16-way set associative, and L3 caches are 2 Mbytes 32-way set
associative.

[Reprinted with permission from S. Boyd-Wickizer et al. Corey: An Operating System for Many Cores.
Proceedings of Usenix Symposium on Operating Systems Design and Implementation (OSDI),
December 2008.]

Time required to acquire and release a lock on a 16-core AMD machine when varying number of cores
contend for the lock. The two lines show Linux kernel spin locks and MCS locks (on Corey). A spin
lock with one core takes about 11 nanoseconds; an MCS lock about 26 nanoseconds.

[Reprinted with permission from S. Boyd-Wickizer et al. Corey: An Operating System for Many Cores.
Proceedings of Symposium on Operating Systems Design and Implementation (OSDI), December
2008.]

