
1 Handout for CS 372H
2 Class 10
3 17 February 2011
4

5 1. Protecting the linked list......
6

7 Lock list_lock;
8

9 insert(int data) {
10 List_elem* l = new List_elem;
11 l−>data = data;
12
13 acquire(&list_lock);
14

15 l−>next = head; // A
16 head = l; // B
17

18 release(&list_lock);
19 }
20

21 2. How can we implement list_lock, acquire(), and release()?
22

23 2a. Here is A BADLY BROKEN implementation:
24

25 struct Lock {
26 int locked;
27 }
28

29 void [BROKEN] acquire(Lock *lock) {
30 while (1) {
31 if (lock−>locked == 0) { // C
32 lock−>locked = 1; // D
33 break;
34 }
35 }
36 }
37

38 void release (Lock *lock) {
39 lock−>locked = 0;
40 }
41

42 What’s the problem? Two acquire()s on the same lock on different CPUs
43 might both execute line C, and then both execute D. Then both will
44 think they have acquired the lock. This is the same kind of race we
45 were trying to eliminate in insert(). But we have made a little
46 progress: now we only need a way to prevent interleaving in one place
47 (acquire()), not for many arbitrary complex sequences of code.
48

Feb 17, 11 16:22 Page 1/9l10−handout.txt
49 2b. Here’s a way that is correct but only sometimes appropriate:
50 Use an atomic instruction on the CPU. For example, on the x86,
51 doing
52 "xchg addr, %eax"
53 does the following:
54

55 (i) freeze all CPUs’ memory activity for address addr
56 (ii) temp = *addr
57 (iii) *addr = %eax
58 (iv) %eax = temp
59 (v) un−freeze memory activity
60

61 /* pseudocode */
62 int xchg_val(addr, value) {
63 %eax = value;
64 xchg (*addr), %eax
65 }
66

67 struct Lock {
68 int locked;
69 }
70

71 /* bare−bones version of acquire */
72 void acquire (Lock *lock) {
73 pushcli(); /* what does this do? */
74 while (1) {
75 if (xchg_val(&lock−>locked, 1) == 0)
76 break;
77 }
78 }
79

80 /* optimization in acquire; call xchg_val() less frequently */
81 void acquire(Lock* lock) {
82 pushcli();
83 while (xchg_val(&lock−>locked, 1) == 1) {
84 while (lock−>locked) ;
85 }
86 }
87

88 void release(Lock *lock){
89 xchg_val(&lock−>locked, 0);
90 popcli(); /* what does this do? */
91 }
92

93 The above is called a *spinlock* because acquire() spins.
94

95 Unfortunately, insert() with these locks is correct only if each
96 CPU carries out memory reads and writes in program order. For
97 example, if the CPU were to execute insert() out of order so
98 that it did the read at A before the acquire(), then insert()
99 would be incorrect even with locks. Many modern processors

100 execute memory operations out of order to increase performance!
101 So we may have to use special instructions ("lock", "LFENCE",
102 "SFENCE", "MFENCE") to tell the CPU not to re−order memory
103 operations past acquire()s and release()s. The compiler may
104 also generate instructions in orders that don’t correspond to
105 the order of the source code lines, so we have to worry about
106 that too. One way around this is to make the asm instructions
107 volatile.
108

109 Moral of the above paragraph: if you’re implementing a
110 concurrency primitive, read the processor’s documentation about
111 how loads and stores get sequenced (chapter 8 in current
112 architecture manual).
113

114 The spinlock above is great for some things, not so great for
115 others. The main problem is that it *busy waits*: it spins,
116 chewing up CPU cycles. Sometimes this is what we want (e.g., if
117 the cost of going to sleep is greater than the cost of spinning
118 for a few cycles waiting for another thread or process to
119 relinquish the spinlock). But sometimes this is not at all what we
120 want (e.g., if the lock would be held for a while: in those
121 cases, the CPU waiting for the lock would waste cycles spinning

Feb 17, 11 16:22 Page 2/9l10−handout.txt

Printed by Michael Walfish

Thursday February 17, 2011 1/5l10−handout.txt

122 instead of running some other thread or process).
123

124

125 2c. Here’s an object that does not involve busy waiting; it can work
126 as the list_lock mentioned in #1, above. Note: the "threads" here
127 can be user−level threads, kernel threads, or threads−inside−kernel.
128 The concept is the same in all cases.
129

130 struct Mutex {
131 bool is_held; /* true if mutex held */
132 thread_id owner; /* thread holding mutex, if locked */
133 thread_list waiters; /* queue of thread TCBs */
134 Lock wait_lock; /* as in 2b */
135 }
136

137 Now, instead of acquire(&list_lock) and release(&list_lock) as
138 in #1, we’d write, mutex_acquire(&list_mutex) and
139 mutex_release(&list_mutex). The implementation of the latter two
140 would be something like this:
141

142 void mutex_acquire(Mutex *m) {
143

144 acquire(&m−>wait_lock); /* we spin to acquire wait_lock */
145 while (m−>is_held) { /* someone else has the mutex */
146 m−>waiters.insert(current_thread)
147 release(&m−>wait_lock);
148 schedule(); /* run a thread that is on the ready list */
149 acquire(&m−>wait_lock); /* we spin again */
150 }
151 m−>is_held = true; /* we now hold the mutex */
152 m−>owner = self;
153 release(&m−>wait_lock);
154 }
155

156 void mutex_release(Mutex *m) {
157

158 acquire(&m−>wait_lock); /* we spin to acquire wait_lock */
159 m−>is_held = false;
160 m−>owner = 0;
161 wake_up_a_waiter(m−>waiters); /* select and run a waiter */
162 release(&m−>wait_lock);
163

164 }
165

166 [Please let me (MW) know if you see bugs in the above.]
167

168

169 3. Terminology
170

171 To avoid confusion, we will use the following terminology in this
172 course (you will hear other terminology elsewhere):
173

174 −−A "lock" is an abstract object that provides mutual exclusion
175

176 −−A "spinlock" is a lock that works by busy waiting, as in 6b
177

178 −−A "mutex" is a lock that works by having a "waiting" queue and
179 then protecting that waiting queue with atomic hardware
180 instructions, as in 6c. The most natural way to "use the hardware"
181 is with a spinlock, but there are others, such as turning off
182 interrupts, which works if we’re on a single CPU machine.
183

184

Feb 17, 11 16:22 Page 3/9l10−handout.txt
185

186 4. Producer/consumer example [also known as bounded buffer]
187

188 4a. buggy implementation (from last time)
189
190 /*
191 "buffer" stores BUFFER_SIZE items
192 "count" is number of used slots. a variable that lives in memory
193 "out" is next empty buffer slot to fill (if any)
194 "in" is oldest filled slot to consume (if any)
195 */
196

197 void producer (void *ignored) {
198 for (;;) {
199 /* next line produces an item and puts it in nextProduced */
200 nextProduced = means_of_production();
201 while (count == BUFFER_SIZE)
202 ; // do nothing
203 buffer [in] = nextProduced;
204 in = (in + 1) % BUFFER_SIZE;
205 count++;
206 }
207 }
208

209 void consumer (void *ignored) {
210 for (;;) {
211 while (count == 0)
212 ; // do nothing
213 nextConsumed = buffer[out];
214 out = (out + 1) % BUFFER_SIZE;
215 count−−;
216 /* next line abstractly consumes the item */
217 consume_item(nextConsumed);
218 }
219 }
220
221 −−Review: what’s the problem?
222 −−Answer: count++ and count−− might compile to, respectively:
223

224 reg1 <−− count # load
225 reg1 <−− reg1 + 1 # increment register
226 count <−− reg1 # store
227

228 reg2 <−− count # load
229 reg2 <−− reg2 − 1 # decrement register
230 count <−− reg2 # store
231

232 −−Review: why not use instructions like "addl $0x1, _count"?
233 −−Answer: not atomic if there are multiple CPUs.
234

235 −−Review: so why not use "LOCK addl $0x1, _count"?
236 −−Answer: we could do that here, but LOCK won’t save us every time
237

238 −−Review: so use general−purpose approach to protecting
239 critical sections: locks (or mutexes).
240

241

Feb 17, 11 16:22 Page 4/9l10−handout.txt

Printed by Michael Walfish

Thursday February 17, 2011 2/5l10−handout.txt

242

243 4b. Producer/consumer [bounded buffer] using mutexes
244

245 Mutex mutex;
246

247 void producer (void *ignored) {
248 for (;;) {
249 /* next line produces an item and puts it in nextProduced */
250 nextProduced = means_of_production();
251

252 acquire(&mutex);
253 while (count == BUFFER_SIZE) {
254 release(&mutex);
255 yield(); /* or schedule() */
256 acquire(&mutex);
257 }
258

259 buffer [in] = nextProduced;
260 in = (in + 1) % BUFFER_SIZE;
261 count++;
262 release(&mutex);
263 }
264 }
265

266 void consumer (void *ignored) {
267 for (;;) {
268
269 acquire(&mutex);
270 while (count == 0) {
271 release(&mutex);
272 yield(); /* or schedule() */
273 acquire(&mutex);
274 }
275

276 nextConsumed = buffer[out];
277 out = (out + 1) % BUFFER_SIZE;
278 count−−;
279 release(&mutex);
280

281 /* next line abstractly consumes the item */
282 consume_item(nextConsumed);
283 }
284 }
285

Feb 17, 11 16:22 Page 5/9l10−handout.txt
286

287 4c. Producer/consumer [bounded buffer] using mutexes and condition
288 variables
289

290 Mutex mutex;
291 Cond nonempty;
292 Cond nonfull;
293

294 void producer (void *ignored) {
295 for (;;) {
296 /* next line produces an item and puts it in nextProduced */
297 nextProduced = means_of_production();
298

299 acquire(&mutex);
300 while (count == BUFFER_SIZE)
301 cond_wait(&nonfull, &mutex);
302

303 buffer [in] = nextProduced;
304 in = (in + 1) % BUFFER_SIZE;
305 count++;
306 cond_signal(&nonempty);
307 release(&mutex);
308 }
309 }
310

311 void consumer (void *ignored) {
312 for (;;) {
313

314 acquire(&mutex);
315 while (count == 0)
316 cond_wait(&nonempty, &mutex);
317

318 nextConsumed = buffer[out];
319 out = (out + 1) % BUFFER_SIZE;
320 count−−;
321 cond_signal(&nonfull);
322 release(&mutex);
323

324 /* next line abstractly consumes the item */
325 consume_item(nextConsumed);
326 }
327 }
328

329

330 Question: why does cond_wait need to both release the mutex and
331 sleep? Why not:
332

333 while (count == BUFFER_SIZE) {
334 release(&mutex);
335 cond_wait(&nonfull);
336 acquire(&mutex);
337 }
338

Feb 17, 11 16:22 Page 6/9l10−handout.txt

Printed by Michael Walfish

Thursday February 17, 2011 3/5l10−handout.txt

339 4d. Producer/consumer [bounded buffer] with semaphores
340

341 Semaphore mutex(1); /* mutex initialized to 1 */
342 Semaphore empty(BUFFER_SIZE); /* start with BUFFER_SIZE empty slots */
343 Semaphore full(0); /* 0 full slots */
344

345 void producer (void *ignored) {
346 for (;;) {
347 /* next line produces an item and puts it in nextProduced */
348 nextProduced = means_of_production();
349
350 /*
351 * next line diminishes the count of empty slots and
352 * waits if there are no empty slots
353 */
354 sem_down(&empty);
355 sem_down(&mutex); /* get exclusive access */
356

357 buffer [in] = nextProduced;
358 in = (in + 1) % BUFFER_SIZE;
359

360 sem_up(&mutex);
361 sem_up(&full); /* we just increased the # of full slots */
362 }
363 }
364

365 void consumer (void *ignored) {
366 for (;;) {
367
368 /*
369 * next line diminishes the count of full slots and
370 * waits if there are no full slots
371 */
372 sem_down(&full);
373 sem_down(&mutex);
374

375 nextConsumed = buffer[out];
376 out = (out + 1) % BUFFER_SIZE;
377

378 sem_up(&mutex);
379 sem_up(&empty); /* one further empty slot */
380

381 /* next line abstractly consumes the item */
382 consume_item(nextConsumed);
383 }
384 }
385

386 Semaphores *can* (not always) lead to elegant solutions (notice
387 that the code above is fewer lines than 1c) but they are much
388 harder to use.
389

390 The fundamental issue is that semaphores make implicit (counts,
391 conditions, etc.) what is probably best left explicit. Moreover,
392 they *also* implement mutual exclusion.
393

394 For this reason, you should not use semaphores. This example is
395 here mainly for completeness and so you know what a semaphore
396 is. But do not code with them. Solutions that use semaphores in
397 this course will receive no credit.
398

Feb 17, 11 16:22 Page 7/9l10−handout.txt
399 5. Example of a monitor: MyBuffer
400

401 // This is pseudocode that is inspired by C++.
402 // Don’t take it literally.
403

404 class MyBuffer {
405 public:
406 MyBuffer();
407 ~MyBuffer();
408 void Enqueue(Item);
409 Item = Dequeue();
410 private:
411 int count;
412 int in;
413 int out;
414 Item buffer[BUFFER_SIZE];
415 Mutex* mutex;
416 Cond* nonempty;
417 Cond* nonfull;
418 }
419

420 void
421 MyBuffer::MyBuffer()
422 {
423 in = out = count = 0;
424 mutex = new Mutex;
425 nonempty = new Cond;
426 nonfull = new Cond;
427 }
428

429 void
430 MyBuffer::Enqueue(Item item)
431 {
432 mutex.acquire();
433 while (count == BUFFER_SIZE)
434 cond_wait(&nonfull, &mutex);
435

436 buffer[in] = item;
437 in = (in + 1) % BUFFER_SIZE;
438 ++count;
439 cond_signal(&nonempty, &mutex);
440 mutex.release();
441 }
442

443 Item
444 MyBuffer::Dequeue()
445 {
446 mutex.acquire();
447 while (count == 0)
448 cond_wait(&nonempty, &mutex);
449

450 Item ret = buffer[out];
451 out = (out + 1) % BUFFER_SIZE;
452 −−count;
453 cond_signal(&nonfull, &mutex);
454 mutex.release();
455 return ret;
456 }
457

Feb 17, 11 16:22 Page 8/9l10−handout.txt

Printed by Michael Walfish

Thursday February 17, 2011 4/5l10−handout.txt

458 int main(int, char**)
459 {
460 MyBuffer buf;
461 int dummy;
462 tid1 = thread_create(producer, &buf);
463 tid2 = thread_create(consumer, &buf);
464 thread_join(tid1);
465

466 // never reach this point
467 return −1;
468 }
469

470 void producer(void* buf)
471 {
472 MyBuffer* sharedbuf = reinterpret_cast<MyBuffer*>(buf);
473 for (;;) {
474 /* next line produces an item and puts it in nextProduced */
475 Item nextProduced = means_of_production();
476 sharedbuf−>Enqueue(nextProduced);
477 }
478 }
479

480 void consumer(void* buf)
481 {
482 MyBuffer* sharedbuf = reinterpret_cast<MyBuffer*>(buf);
483 for (;;) {
484 Item nextConsumed = sharedbuf−>Dequeue();
485

486 /* next line abstractly consumes the item */
487 consume_item(nextConsumed);
488 }
489 }
490

491 Key point: *Threads* (the producer and consumer) are separate from
492 *shared object* (MyBuffer). The synchronization happens in the
493 shared object.

Feb 17, 11 16:22 Page 9/9l10−handout.txt

Printed by Michael Walfish

Thursday February 17, 2011 5/5l10−handout.txt

