
1 Handout for CS 372H
2 Class 9
3 15 February 2011
4

5 1. Implementing threads
6

7 Per−thread state in thread control block:
8

9 typedef struct tcb {
10 unsigned long esp; /* Stack pointer of thread */
11 char *t_stack; /* Bottom of thread’s stack */
12 /* ... */
13 };
14
15 Machine−dependent thread−switch function:
16

17 void swtch(tcb *current, tcb *next);
18
19 Machine−dependent thread initialization function:
20

21 void thread_init(tcb *t, void (*fn) (void *), void *arg);
22

23 Implementation of swtch(current, next):
24

25 pushl %ebp; movl %esp, %ebp # Save frame pointer
26 pushl %ebx; pushl %esi; pushl %edi # Save callee−saved regs
27

28 movl 8(%ebp),%edx # %edx = current
29 movl 12(%ebp),%eax # %eax = next
30 movl %esp,(%edx) # %edx−>esp = %esp
31 movl (%eax),%esp # %esp = %eax−>esp
32

33 popl %edi; popl %esi; popl %ebx # Restore callee saved regs
34 popl %ebp # Restore frame pointer
35 ret # Resume execution
36

37

38 [thanks to David Mazieres]
39

Feb 14, 11 23:23 Page 1/8l09−handout.txt
40

41

42 2. Example to illustrate interleavings: say that thread A executes f()
43 and thread B executes g(). (Here, we are using the term "thread"
44 abstractly. This example applies to any of the approaches that fall
45 under the word "thread".)
46

47 a.
48

49 int x;
50

51 f() { x = 1; }
52

53 g() { x = 2; }
54

55 What are possible values of x after A has executed f() and B has
56 executed g()?
57

58 b.
59 int y = 12;
60

61 f() { x = y + 1; }
62 g() { y = y * 2; }
63

64 What are the possible values of x?
65

66 c.
67 int x = 0;
68 f() { x = x + 1; }
69 g() { x = x + 2; }
70

71 What are the possible values of x?
72

73 3. Linked list example
74

75 struct List_elem {
76 int data;
77 struct List_elem* next;
78 };
79

80 List_elem* head = 0;
81

82 insert(int data) {
83 List_elem* l = new List_elem;
84 l−>data = data;
85 l−>next = head;
86 head = l;
87 }
88

89 What happens if two threads execute insert() at once and we get the
90 following interleaving?
91

92 thread 1: l−>next = head
93 thread 2: l−>next = head
94 thread 2: head = l;
95 thread 1: head = l;
96

Feb 14, 11 23:23 Page 2/8l09−handout.txt

Printed by Michael Walfish

Monday February 14, 2011 1/4l09−handout.txt

97

98

99 4. Producer/consumer example:
100

101 /*
102 "buffer" stores BUFFER_SIZE items
103 "count" is number of used slots. a variable that lives in memory
104 "out" is next empty buffer slot to fill (if any)
105 "in" is oldest filled slot to consume (if any)
106 */
107

108 void producer (void *ignored) {
109 for (;;) {
110 /* next line produces an item and puts it in nextProduced */
111 nextProduced = means_of_production();
112 while (count == BUFFER_SIZE)
113 ; // do nothing
114 buffer [in] = nextProduced;
115 in = (in + 1) % BUFFER_SIZE;
116 count++;
117 }
118 }
119

120 void consumer (void *ignored) {
121 for (;;) {
122 while (count == 0)
123 ; // do nothing
124 nextConsumed = buffer[out];
125 out = (out + 1) % BUFFER_SIZE;
126 count−−;
127 /* next line abstractly consumes the item */
128 consume_item(nextConsumed);
129 }
130 }
131

132 /*
133 what count++ probably compiles to:
134 reg1 <−− count # load
135 reg1 <−− reg1 + 1 # increment register
136 count <−− reg1 # store
137

138 what count−− could compile to:
139 reg2 <−− count # load
140 reg2 <−− reg2 − 1 # decrement register
141 count <−− reg2 # store
142 */
143

144 What happens if we get the following interleaving?
145

146 reg1 <−− count
147 reg1 <−− reg1 + 1
148 reg2 <−− count
149 reg2 <−− reg2 − 1
150 count <−− reg1
151 count <−− reg2
152

Feb 14, 11 23:23 Page 3/8l09−handout.txt
153 5. Protecting the linked list......
154

155 Lock list_lock;
156

157 insert(int data) {
158 List_elem* l = new List_elem;
159 l−>data = data;
160
161 acquire(&list_lock);
162

163 l−>next = head; // A
164 head = l; // B
165

166 release(&list_lock);
167 }
168

Feb 14, 11 23:23 Page 4/8l09−handout.txt

Printed by Michael Walfish

Monday February 14, 2011 2/4l09−handout.txt

169 6. How can we implement list_lock, acquire(), and release()?
170

171 6a. Here is A BADLY BROKEN implementation:
172

173 struct Lock {
174 int locked;
175 }
176

177 void [BROKEN] acquire(Lock *lock) {
178 while (1) {
179 if (lock−>locked == 0) { // C
180 lock−>locked = 1; // D
181 break;
182 }
183 }
184 }
185

186 void release (Lock *lock) {
187 lock−>locked = 0;
188 }
189

190 What’s the problem? Two acquire()s on the same lock on different CPUs
191 might both execute line C, and then both execute D. Then both will
192 think they have acquired the lock. This is the same kind of race we
193 were trying to eliminate in insert(). But we have made a little
194 progress: now we only need a way to prevent interleaving in one place
195 (acquire()), not for many arbitrary complex sequences of code.
196

197 6b. Here’s a way that is correct but that is appropriate only in
198 some circumstances:
199

200 Use an atomic instruction on the CPU. For example, on the x86,
201 doing
202 "xchg addr, %eax"
203 does the following:
204

205 (i) freeze all CPUs’ memory activity for address addr
206 (ii) temp = *addr
207 (iii) *addr = %eax
208 (iv) %eax = temp
209 (v) un−freeze memory activity
210

211 /* pseudocode */
212 int xchg_val(addr, value) {
213 %eax = value;
214 xchg (*addr), %eax
215 }
216

217 struct Lock {
218 int locked;
219 }
220

221 /* bare−bones version of acquire */
222 void acquire (Lock *lock) {
223 pushcli(); /* what does this do? */
224 while (1) {
225 if (xchg_val(&lock−>locked, 1) == 0)
226 break;
227 }
228 }
229

230 /* optimization in acquire; call xchg_val() less frequently */
231 void acquire(Lock* lock) {
232 pushcli();
233 while (xchg_val(&lock−>locked, 1) == 1) {
234 while (lock−>locked) ;
235 }
236 }
237

238 void release(Lock *lock){
239 xchg_val(&lock−>locked, 0);
240 popcli(); /* what does this do? */
241 }

Feb 14, 11 23:23 Page 5/8l09−handout.txt
242

243 The above is called a *spinlock* because acquire() waits in a
244 busy loop.
245

246 Unfortunately, insert() with these locks is only correct if each
247 CPU carries out memory reads and writes in program order. For
248 example, if the CPU were to execute insert() out of order so
249 that it did the read at A before the acquire(), then insert()
250 would be incorrect even with locks. Many modern processors
251 execute memory operations out of order to increase performance!
252 So we may have to use special instructions ("lock", "LFENCE",
253 "SFENCE", "MFENCE") to tell the CPU not to re−order memory
254 operations past acquire()s and release()s. The compiler may
255 also generate instructions in orders that don’t correspond to
256 the order of the source code lines, so we have to worry about
257 that too. One way around this is to make the asm instructions
258 volatile.
259

260 Moral of the above paragraph: if you’re implementing a
261 concurrency primitive, read the processor’s documentation about
262 how loads and stores get sequenced, and how to enforce that the
263 compiler *and* the processor follow program order.
264

265 The spinlock above is great for some things, not so great for
266 others. The main problem is that it *busy waits*: it spins,
267 chewing up CPU cycles. Sometimes this is what we want (e.g., if
268 the cost of going to sleep is greater than the cost of spinning
269 for a few cycles waiting for another thread or process to
270 relinquish the spinlock). But sometimes this is not at all what we
271 want (e.g., if the lock would be held for a while: in those
272 cases, the CPU waiting for the lock would waste cycles spinning
273 instead of running some other thread or process).
274

Feb 14, 11 23:23 Page 6/8l09−handout.txt

Printed by Michael Walfish

Monday February 14, 2011 3/4l09−handout.txt

275

276 6c. Here’s an object that does not involve busy waiting; it can work
277 as the list_lock mentioned in #5, above. Note: the "threads" here
278 can be user−level threads, kernel threads, or threads−inside−kernel.
279 The concept is the same in all cases.
280

281 struct Mutex {
282 bool is_held; /* true if mutex held */
283 thread_id owner; /* thread holding mutex, if locked */
284 thread_list waiters; /* queue of thread TCBs */
285 Lock wait_lock; /* as in 6b */
286 }
287

288 Now, instead of acquire(&list_lock) and release(&list_lock) as
289 in #5, we’d write, mutex_acquire(&list_mutex) and
290 mutex_release(&list_mutex). The implementation of the latter two
291 would be something like this:
292

293 void mutex_acquire(Mutex *m) {
294

295 acquire(&m−>wait_lock); /* we spin to acquire wait_lock */
296 while (m−>is_held) { /* someone else has the mutex */
297 m−>waiters.insert(current_thread)
298 release(&m−>wait_lock);
299 schedule(); /* run a thread that is on the ready list */
300 acquire(&m−>wait_lock); /* we spin again */
301 }
302 m−>is_held = true; /* we now hold the mutex */
303 m−>owner = self;
304 release(&m−>wait_lock);
305 }
306

307 void mutex_release(Mutex *m) {
308

309 acquire(&m−>wait_lock); /* we spin to acquire wait_lock */
310 m−>is_held = false;
311 m−>owner = 0;
312 wake_up_a_waiter(m−>waiters); /* select and run a waiter */
313 release(&m−>wait_lock);
314

315 }
316

317 [Please let me (MW) know if you see bugs in the above.]
318

Feb 14, 11 23:23 Page 7/8l09−handout.txt
319

320 7. Terminology
321

322 To avoid confusion, we will use the following terminology in this
323 course (you will hear other terminology elsewhere):
324

325 −−A "lock" is an abstract object that provides mutual exclusion
326

327 −−A "spinlock" is a lock that works by busy waiting, as in 6b
328

329 −−A "mutex" is a lock that works by having a "waiting" queue and
330 then protecting that waiting queue with atomic hardware
331 instructions, as in 6c. The most natural way to "use the hardware"
332 is with a spinlock, but there are others, such as turning off
333 interrupts, which works if we’re on a single CPU machine.

Feb 14, 11 23:23 Page 8/8l09−handout.txt

Printed by Michael Walfish

Monday February 14, 2011 4/4l09−handout.txt

