Printed by Michael Walfish

Feb 26, 10 8:50 [12—handout.txt Page 1/7 Feb 26, 10 8:50 [12—-handout.txt Page 2/7
1 Handout for CS 372H 63 /l'lockp is a gnode**. | points to our local gnode.
> Class 12 64 void acquire(lock* lockp, gnode* 1) {
3 25 February 2010 65
4 66 I->next = NULL,
s 1. CAS/CMPXCHG 67 gnode* predecessor;
6 68
7 Useful operation: compare—and-swap, known as CAS. Says: "atomically 69 /I next line makes lockp point to | (that is, it sets *lockp <——1)
8 check whether a given memory cell contains a given value, and if it 70 /I and returns the old value of *lockp. Uses atomic operation
9 does, then replace the contents of the memory cell with this other 7 /I XCHG. see 109 handout for implementation of xchg_val.
10 value; in either case, return the original value in the memory 72
1 location”. 7 predecessor = xchg_val(lockp, 1); //"A"
12 74 If (predecessor = NULL) { // queue was non—-empty
13 On the X86, we implement CAS with the CMPXCHG instruction, but note 5 I->someoneelse_locked = true;
14 that this instruction is not atomic by default, so we need the LOCK 7 predecessor—>next = I; /1"B"
15 prefix. 7 while (I->someoneelse_locked) ; // spin
16 78 }
17 Here's pseudocode: 79 /I we hold the lock!
18 80 }
19 int cmpxchg_val(int* addr, int oldval, int newval) { 81
20 LOCK: // remember, this is pseudocode 82 What's going on?
21 int was = *addr; 83
22 if (raddr == oldval) 84 ——If the lock is unlocked, then *lockp == NULL.
23 *addr = newval; 85
24 return was; 86 ——If the lock is locked, and there are no waiters, then *lockp
25 87 points to the gnode of the owner
26 88
27 Here's inline assembly: 89 ——If the lock is locked, and there are waiters, then *lockp points
28 % to the gnode at the tail of the waiter list.
29 uint32_t cmpxchg_val(uint32_t* addr, uint32_t oldval, uint32_t newval) { o1
30 uint32_t was; %2 —-Here’s the code for release:
a1 asm volatile("lock cmpxchg %3, %0" 93
32 2 "+m" (*addr), "=a" (was) [void release(lock* lockp, gnode* 1) {
3 :"a" (oldval), "r* (newval) % if (I->next) {// no known successor
34 :"ec"); % if (cmpxchg_val(lockp, I, NULL) ==1){ //"C"
35 return was; 97 /I swap successful: lockp was pointing to I, so now
36 98 /I *lockp == NULL, and the lock is unlocked. we can
a7 £ /I go home now.
33 2. MCS locks 100 return;
39 101
40 Citation: Mellor—-Crummey, J. M. and M. L. Scott. Algorithms for 102 II'if we get here, then there was a timing issue: we had
2 Scalable Synchronization on Shared-Memory Multiprocessors, ACM 103 /I no known successor when we first checked, but now we
42 Transactions on Computer Systems, Vol. 9, No. 1, February, 1991, 104 I/l have a successor: some CPU executed the line "A"
43 pp.21-65. 105 /I above. Wait for that CPU to execute line "B" above.
44 106 while (lI->next) ;
5 Each CPU has a gnode structure in *local* memory. Here, local can 107 }
46 mean local memory in NUMA machine or its own cache line that other 108 /I handing the lock off to the next waiter is as simple as
47 CPUs are not allowed to cache (i.e., the cache line is in exclusive 109 /I just setting that waiter's "someoneelse_locked" flag to false
48 mode): 110 I->next—>someoneelse_locked = false;
49 111 }
50 typedef struct gnode { 112
51 struct gnode* next; 113 What's going on?
52 bool someoneelse_locked; 114
53 } gnode; 115 ——If I->next == NULL and *lockp == 1, then no one else is
54 116 waiting for the lock. So we set *lockp == NULL.
55 typedef gnode* lock; // alock is a pointer to a gnode 117
56 118 —=If I->next == NULL and *lockp != I, then another CPU is in
57 —-The lock itself is literally the tail of the list of CPUs holding 119 acquire (specifically, it executed its atomic operation, namely
58 or waiting for the lock. 120 line "A", before we executed ours, namely line "C"). So wait for
59 121 the other CPU to put the list in a sane state, and then drop
60 —-While waiting, a CPU spins on its local "locked" flag. Here's the 122 down to the next case:
61 code for acquire: 123
62 124 —=If I->next != NULL, then we know that there is a spinning
125 waiter (the oldest one). Hand it the lock by setting its flag to
126 false.
127
Friday February 26, 2010 I112-handout.txt 1/4

201/0.86

DRAM

255/1.75 282/0.84

273/1.46

s
» 23—
A

DRAM

The AMD 16-core system topology. Memory access latency is in cycles and listed before the backslash.
Memory bandwidth is in bytes per cycle and listed after the backslash. The measurements reflect the
latency and bandwidth achieved by a core issuing load instructions. The measurements for accessing the
L1 or L2 caches of a different core on the same chip are the same. The measurements for accessing any
cache on a different chip are the same. Each cache line is 64 bytes, L1 caches are 64 Kbytes 8-way set
associative, L2 caches are 512 Kbytes 16-way set associative, and L3 caches are 2 Mbytes 32-way set
associative.

[Reprinted with permission from S. Boyd-Wickizer et al. Corey: An Operating System for Many Cores.
Proceedings of Usenix Symposium on Operating Systems Design and Implementation (OSDI),
December 2008.]

2800 _Splin Iloék I_'I_ T T T T T T T T T T ‘:_ i
b HCS lock — e
i A+
? F
+ 1500 [yu .
d A
5 ¥
® 1eee | -
g A
o A
K A
S "
2 see .
@ e e A H 3K
a AT T =
-
c ____.4.-"';_

e 21"’;—-‘1‘- 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3456 7 8 9 1011121314 1516
Cores

Time required to acquire and release a lock on a 16-core AMD machine when varying number of cores
contend for the lock. The two lines show Linux kernel spin locks and MCS locks (on Corey). A spin
lock with one core takes about 11 nanoseconds; an MCS lock about 26 nanoseconds.

[Reprinted with permission from S. Boyd-Wickizer et al. Corey: An Operating System for Many Cores.
Proceedings of Symposium on Operating Systems Design and Implementation (OSDI), December
2008.]

Printed by Michael Walfish

Feb 26, 10 8:50

[12-handout.txt

Page 3/7 Feb 26, 10 8:50

[12-handout.txt

Page 4/7

128 3. Simple deadlock example
129

130 T1:

131 acquire(mutexA);
132 acquire(mutexB);
133

134 /I do some stuff
135

136 release(mutexB);
137 release(mutexA);
138

139 T2:

140 acquire(mutexB);
141 acquire(mutexA);
142

143 /I do some stuff
144

145 release(mutexA);
146 release(mutexB);
147

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

1s 4. More subtle deadlock example

Let M be a monitor (shared object with methods protected by mutex)
Let N be another monitor

class M {
private:
Mutex mutex_m;

/I instance of monitor N
N another_monitor;

/I Assumption: no other objects in the system hold a pointer
/I to our "another_monitor"

~M();
void methodA();
) void methodB();

class N {
private:
Mutex mutex_n;
Cond cond_n;
int navailable;

~NQ;
void* alloc(int nwanted);
void free(void®);

int
N::alloc(int nwanted) {
acquire(&mutex_n);
while (navailable < nwanted) {
wait(&cond_n, &mutex_n);
/I peel off the memory

navailable —= nwanted;
release(&mutex_n);

}

void
N::free(void* returning_mem) {

acquire(&mutex_n);
/I put the memory back
navailable += returning_mem;
broadcast(&cond_n, &mutex_n);
release(&mutex_n);
}
void
M::methodA() {
acquire(&mutex_m);
void* new_mem = another_monitor.alloc(int nbytes);

/I do a bunch of stuff using this nice
/I chunk of memory n allocated for us

release(&mutex_m);

Friday February 26, 2010

I12-handout.txt

2/4

Printed by Michael Walfish

Feb 26, 10 8:50

[12-handout.txt

Page 5/7 Feb

26, 10 8:50 [12-handout.txt

Page 6/7

221
222
223
224

235

}

void
M::methodB() {

acquire(&mutex_m);
/I do a bunch of stuff
another_monitor.free(some_pointer);

release(&mutex_m);

}
QUESTION: What's the problem?

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

5. Performance v complexity trade—off with locks

/*
* linux/mm/filemap.c

* Copyright (C) 1994-1999 Linus Torvalds
*
/

/*
* This file handles the generic file mmap semantics used by
* most "normal” filesystems (but you don’t /have/ to use this:
* the NFS filesystem used to do this differently, for example)
*

#include <linux/config.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/aio.h>
#include <linux/capability.h>
#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
#include <linux/hash.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include "filemap.h"

/*

* FIXME: remove all knowledge of the buffer layer from the core VM
*,

#include <linux/buffer_head.h> /* for generic_osync_inode */

#include <asm/uaccess.h>
#include <asm/mman.h>

static ssize_t
generic_file_direct_lO(int rw, struct kiocb *iocb, const struct iovec *iov,
loff_t offset, unsigned long nr_segs);

/*

* Shared mappings implemented 30.11.1994. It's not fully working yet,
* though.

*

* Shared mappings now work. 15.8.1995 Bruno.

*

* finished 'unifying’ the page and buffer cache and SMP-threaded the
* page—cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
*

* SMP-threaded pagemap—-LRU 1999, Andrea Arcangeli <andrea@suse.de>
*,

1%

* Lock ordering:
*

—>i_mmap_lock (vmtruncate)

—>private_lock (__free_pte—>__set_page_dirty_buffers)

->swap_lock (exclusive_swap_page, others)
—>mapping—>tree_lock

—>i_mmap_lock (truncate—>unmap_mapping_range)

->mmap_sem
—>i_mmap_lock

*

*

*

*

*

* —>_mutex
*

*

*

*

* —>page_table_lock or pte_lock (various, mainly in memory.c)
*

—>mapping—>tree_lock (arch—-dependent flush_dcache_mmap_lock)

Friday February 26, 2010

I12-handout.txt

3/4

Printed by Michael Walfish

Feb 26, 10 8:50 [12-handout.txt Page 7/7

310 *

s * —->mmap_sem

sz * —>lock_page (access_process_vm)

a1z *

314 * =>mmap_sem

a5 * —>i_mutex (msync)

36 *

a7 * —>i_mutex

sis * —>i_alloc_sem (various)

319 *

20 * —>inode_lock

21 * —>sb_lock (fs/fs—writeback.c)

22 * —>mapping—>tree_lock (__sync_single_inode)

323 *

324 * —>i_mmap_lock

s * —>anon_vma.lock (vma_adjust)

36 *

327 * =>anon_vma.lock

28 * —>page_table_lock or pte_lock (anon_vma_prepare and various)
30 *

o * —>page_table_lock or pte_lock

331 * —>swap_lock (try_to_unmap_one)

2 * —>private_lock (try_to_unmap_one)

s * —>tree_lock (try_to_unmap_one)

s * —>zone.lru_lock (follow_page->mark_page_accessed)
s * —>zone.lru_lock (check_pte_range—>isolate_Iru_page)
e * —>private_lock (page_remove_rmap->set_page_dirty)
w7 * —>tree_lock (page_remove_rmap->set_page_dirty)
s * —>inode_lock (page_remove_rmap—>set_page_dirty)
39 * —>inode_lock (zap_pte_range—>set_page_dirty)

a0 * —>private_lock (zap_pte_range—>__set_page_dirty_buffers)
a1 *

a2 * —>task—>proc_lock

a3 * —>dcache_lock (proc_pid_lookup)

a4 ¥/

345

a6 [*

47 * Remove a page from the page cache and free it. Caller has to make
s * sure the page is locked and that nobody else uses it — or that usage
a9 *is safe. The caller must hold a write_lock on the mapping’s tree_lock.
s0 ¥/

51 void __remove_from_page_cache(struct page *page)

353 struct address_space *mapping = page—>mapping;

36 [point of this item on the handout: fine—grained locking leads to complexity]

Friday February 26, 2010 I112-handout.txt 4/4

