
1 Handout for CS 372H
2 Class 9
3 16 February 2010
4

5 1. Say that thread A executes f() and thread B executes g(). (Here, we
6 are using the term "thread" abstractly. This example applies to any of
7 the approaches that fall under the word "thread".)
8

9 1a.
10

11 int x;
12

13 f() { x = 1; }
14

15 g() { x = 2; }
16

17 What are possible values of x after A has executed f() and B has
18 executed g()?
19

20 1b.
21 int y = 12;
22

23 f() { x = y + 1; }
24 g() { y = y * 2; }
25

26 What are the possible values of x?
27

28 1c.
29 int x = 0;
30 f() { x = x + 1; }
31 g() { x = x + 2; }
32

33 What are the possible values of x?
34

35 2. Linked list example
36

37 struct List_elem {
38 int data;
39 struct List_elem* next;
40 };
41

42 List_elem* head = 0;
43

44 insert(int data) {
45 List_elem* l = new List_elem;
46 l−>data = data;
47 l−>next = head;
48 head = l;
49 }
50

51 What happens if two threads execute insert() at once and we get the
52 following interleaving?
53

54 thread 1: l−>next = head
55 thread 2: l−>next = head
56 thread 2: head = l;
57 thread 1: head = l;
58

Feb 18, 10 9:32 Page 1/6l09−handout.txt
59 3. Producer/consumer example:
60

61 /*
62 "buffer" stores BUFFER_SIZE items
63 "count" is number of used slots. a variable that lives in memory
64 "out" is next empty buffer slot to fill (if any)
65 "in" is oldest filled slot to consume (if any)
66 */
67

68 void producer (void *ignored) {
69 for (;;) {
70 /* next line produces an item and puts it in nextProduced */
71 nextProduced = means_of_production();
72 while (count == BUFFER_SIZE)
73 ; // do nothing
74 buffer [in] = nextProduced;
75 in = (in + 1) % BUFFER_SIZE;
76 count++;
77 }
78 }
79

80 void consumer (void *ignored) {
81 for (;;) {
82 while (count == 0)
83 ; // do nothing
84 nextConsumed = buffer[out];
85 out = (out + 1) % BUFFER_SIZE;
86 count−−;
87 /* next line abstractly consumes the item */
88 consume_item(nextConsumed);
89 }
90 }
91

92 /*
93 what count++ probably compiles to:
94 reg1 <−− count # load
95 reg1 <−− reg1 + 1 # increment register
96 count <−− reg1 # store
97

98 what count−− could compile to:
99 reg2 <−− count # load

100 reg2 <−− reg2 − 1 # decrement register
101 count <−− reg2 # store
102 */
103

104 What happens if we get the following interleaving?
105

106 reg1 <−− count
107 reg1 <−− reg1 + 1
108 reg2 <−− count
109 reg2 <−− reg2 − 1
110 count <−− reg1
111 count <−− reg2
112

Feb 18, 10 9:32 Page 2/6l09−handout.txt

Printed by Michael Walfish

Thursday February 18, 2010 1/3l09−handout.txt

113 4. Protecting the linked list......
114

115 Lock list_lock;
116

117 insert(int data) {
118 List_elem* l = new List_elem;
119 l−>data = data;
120
121 acquire(&list_lock);
122

123 l−>next = head; // A
124 head = l; // B
125

126 release(&list_lock);
127 }
128

129 5. How can we implement list_lock, acquire(), and release()?
130

131 5a. Here is A BADLY BROKEN implementation:
132

133 struct Lock {
134 int locked;
135 }
136

137 void [BROKEN] acquire(Lock *lock) {
138 while (1) {
139 if (lock−>locked == 0) { // C
140 lock−>locked = 1; // D
141 break;
142 }
143 }
144 }
145

146 void release (Lock *lock) {
147 lock−>locked = 0;
148 }
149

150 What’s the problem? Two acquire()s on the same lock on different CPUs
151 might both execute line C, and then both execute D. Then both will
152 think they have acquired the lock. This is the same kind of race we
153 were trying to eliminate in insert(). But we have made a little
154 progress: now we only need a way to prevent interleaving in one place
155 (acquire()), not for many arbitrary complex sequences of code.
156

Feb 18, 10 9:32 Page 3/6l09−handout.txt
157 5b. Here’s a way that is correct but that is appropriate only in
158 some circumstances:
159

160 Use an atomic instruction on the CPU. For example, on the x86,
161 doing
162 "xchg addr, %eax"
163 does the following:
164

165 (i) freeze all CPUs’ memory activity for address addr
166 (ii) temp = *addr
167 (iii) *addr = %eax
168 (iv) %eax = temp
169 (v) un−freeze memory activity
170

171 /* pseudocode */
172 int xchg_val(addr, value) {
173 %eax = value;
174 xchg (*addr), %eax
175 }
176

177 struct Lock {
178 int locked;
179 }
180

181 void acquire (Lock *lock) {
182 pushcli(); /* what does this do? */
183 while (1) {
184 if(xchg_val(&lock−>locked, 1) == 0)
185 break;
186 }
187 }
188

189 void release(Lock *lock){
190 xchg_val(&lock−>locked, 0);
191 popcli(); /* what does this do? */
192 }
193

194 The above is called a *spinlock* because acquire() waits in a
195 busy loop.
196

197 Unfortunately, insert() with these locks is only correct if each
198 CPU carries out memory reads and writes in program order. For
199 example, if the CPU were to execute insert() out of order so
200 that it did the read at A before the acquire(), then insert()
201 would be incorrect even with locks. Many modern processors
202 execute memory operations out of order to increase performance!
203 So we may have to use special instructions ("lock", "LFENCE",
204 "SFENCE", "MFENCE") to tell the CPU not to re−order memory
205 operations past acquire()s and release()s. The compiler may
206 also generate instructions in orders that don’t correspond to
207 the order of the source code lines, so we have to worry about
208 that too. One way around this is to make the asm instructions
209 volatile.
210

211 Moral of the above paragraph: if you’re implementing a
212 concurrency primitive, read the processor’s documentation about
213 how loads and stores get sequenced, and how to enforce that the
214 compiler *and* the processor follow program order.
215

216 The spinlock above is great for some things, not so great for
217 others. The main problem is that it *busy waits*: it spins,
218 chewing up CPU cycles. Sometimes this is what we want (e.g., if
219 the cost of going to sleep is greater than the cost of spinning
220 for a few cycles waiting for another thread or process to
221 relinquish the spinlock). But sometimes this is not at all what we
222 want (e.g., if the lock would be held for a while: in those
223 cases, the CPU waiting for the lock would waste cycles spinning
224 instead of running some other thread or process).
225

Feb 18, 10 9:32 Page 4/6l09−handout.txt

Printed by Michael Walfish

Thursday February 18, 2010 2/3l09−handout.txt

226 5c. Here’s a lock that does not involve busy waiting. Note: the
227 "threads" here can be user−level threads, kernel threads, or
228 threads−inside−kernel. The concept is the same in all cases.
229

230 struct Mutex {
231 bool is_locked; /* true if locked */
232 thread_id owner; /* thread holding lock, if locked */
233 thread_list waiters; /* queue of thread TCBs */
234 spinlock wait_lock; /* exactly as in 5b */
235 }
236

237 Now, mutex.acquire() looks something like this:
238

239 wait_lock.acquire()
240 while (is_locked) {
241 waiters.insert(current_thread)
242 wait_lock.release()
243 schedule(); /* run a thread that is on the ready list */
244 wait_lock.acquire();
245 }
246 is_locked = 1;
247 owner = self;
248 wait_lock.release();
249

250 And mutex.release() looks something like this:
251

252 wait_lock.acquire()
253 is_locked = 0;
254 owner = 0;
255 wake_up_a_waiter(); /* selects a waiter and runs it */
256 wait_lock.release()
257

258 [Please let me (MW) know if you see bugs in the above.]
259

Feb 18, 10 9:32 Page 5/6l09−handout.txt
260 6. Terminology
261

262 To avoid confusion, we will use the following terminology in this
263 course (you will hear other terminology elsewhere):
264

265 −−A "lock" is an abstract object that provides mutual exclusion
266

267 −−A "spinlock" is a lock that works by busy waiting, as in 5b
268

269 −−A "mutex" is a lock that works by having a "waiting" queue and
270 then protecting that waiting queue with atomic hardware
271 instructions, as in 5c. The most natural way to "use the hardware"
272 is with a spinlock, but there are others, such as turning off
273 interrupts, which works if we’re on a single CPU machine.

Feb 18, 10 9:32 Page 6/6l09−handout.txt

Printed by Michael Walfish

Thursday February 18, 2010 3/3l09−handout.txt

