Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

Disco: Running Commodity Operating Systems on Scalable M ultiprocessor s
Edouard Bugnion, Scott Devine, and Mendel Rosenblum

Computer Systems Laboratory
Stanford University
Stanford, CA 94305
{bugnion, devine, mendel}@cs.stanford.edu
http://www-flash.stanford.edu/Disco

In this paper we examine the problem of extending modern operat-cost. The use of commodity operating systems leads to systems that
ing systems to run efficiently on large-scale shared memory multi- are both reliable and compatible with the existing computing base.
processors without a large implementation effort. Our approach To demonstrate the approach, we have constructed a prototype
brings back an idea popular in the 1970s, virtual machine monitors.system targeting the Stanford FLASH shared memory multiproces-
We use virtual machines to run multiple commodity operating sys- sor [17], an experimental cache coherent non-uniform memory ar-
tems on a scalable multiprocessor. This solution addresses many afhitecture (ccNUMA) machine. The prototype, called Disco,
the challenges facing the system software for these machines. Weombines commaodity operating systems not originally designed for
demonstrate our approach with a prototype called Disco that cansuch large-scale multiprocessors to form a high performance sys-
run multiple copies of Silicon Graphics’ IRIX operating system on tem software base.
a multiprocessor. Our experience shows that the overheads of the Disco contains many features that reduce or eliminate the
monitor are small and that the approach provides scalability as wellproblems associated with traditional virtual machine monitors. Spe-
as the ability to deal with the non-uniform memory access time of cifically, it minimizes the overhead of virtual machines and enhanc-
these systems. To reduce the memory overheads associated withs the resource sharing between virtual machines running on the
running multiple operating systems, we have developed techniquesame system. Disco allows the operating systems running on differ-
where the virtual machines transparently share major data strucent virtual machines to be coupled using standard distributed sys-
tures such as the program code and the file system buffer cache. Wims protocols such as NFS and TCP/IP. It also allows for efficient
use the distributed system support of modern operating systems tgharing of memory and disk resources between virtual machines.
export a partial single system image to the users. The overall soluThe sharing support allows Disco to maintain a global buffer cache
tion achieves most of the benefits of operating systems customizedransparently shared by all the virtual machines, even when the vir-
for scalable multiprocessors yet it can be achieved with a signifi- tual machines communicate through standard distributed protocols.
cantly smaller implementation effort. Our experiments with realistic workloads on a detailed simu-
lator of the FLASH machine show that Disco achieves its goals.

. With a few simple modifications to an existing commercial operat-

1 Introduction ing system, the basic overhead of virtualization is at most 16% for

Scalable computers have moved from the research lab to the mar"ZIII our uniprocessor workloads. We show that a system with eight

ketplace. Multiple vendors are now shipping scalable systems Withvirtual machines can run some workloads 40% faster than on a
P : P pping Y commercial symmetric multiprocessor operating system by in-

configurations in the tens or even hundreds of processors. Unfortu- . o . .
natel%/ the system software for these machinrzas has often trailed coom'9 t_he src]:alablllty of the systerfn soft_/varg,_ W||t|hout surl;)stanﬁal-
P e . ; : o y increasing the system’s memory footprint. Finally, we show that
g]agggiriolnm;i?gmnsge:ge functionality and reliability expected by page placement and dynamic page migration and replication allow
Operating systems developers shoulder much of the blame forD'SCO to hide the NUMA-ness of the memory system, improving

P ; b - .~ the execution time by up to 37%.
the inability to deliver on the promises of these machines. Extensive In Section2, we provide a more detailed presentation of the

modifications to the operating system are required to efficientl . : -

support scalable mach?nes Tﬁe gize and comglexity of modern o)|/o-IorObIem being addressed. SectBJd_escr!bes an overview of the
- : L : approach and the challenges of using virtual machines to construct

erating systems have made these modifications a resource-intensi

undertakin Vhe system software for large-scale shared-memory multiproces-
9- sors. Sectiod presents the design and implementation of Disco

In this paper, we present an alternative approach for construct 4 sectiors shows experimental results. We end the paper with a

Ing the system software for th.es.e large computers. Ratherthan MaX4iscussion of related work in Sectiérand conclude in Sectiah
ing extensive changes to existing operating systems, we insert an

additional layer of software between the hardware and operating

system. This layer acts like a virtual machine monitor in that multi- 2 Problem Descri pt| on

ple copies of “commaodity” operating systems can be run on a single

scalable computer. The monitor also allows these commodity oper-This paper addresses the problems seen by computer vendors at-

ating systems to efficiently cooperate and share resources with eactempting to provide system software for their innovative hardware.

other. The resulting system contains most of the features of custont-or the purposes of this paper, the innovative hardware is scalable

scalable operating systems developed specifically for these mashared memory multiprocessors, but the issues are similar for any

chines at only a fraction of their complexity and implementation hardware innovation that requires significant changes in the system
software. For shared memory multiprocessors, research groups
have demonstrated prototype operating systems such as Hive [5]
and Hurricane [25] that address the challenges of scalability and
fault containment. Silicon Graphics has announced the Cellular

SOSP 16. IRIX kernel to support its shared memory machine, the

(c) ACM 1997. Origin2000[18]. These designs require significant OS changes, in-
cluding partitioning the system into scalable units, building a single

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Page 1

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

O e
o cientific App

oS SMP-0OS oS oS Thin OS
Disco
PE PE PE PE PE PE PE PE

I [[I

ccNUMA Multiprocessor

FIGURE 1. Architecture of Disco: Disco is a virtual machine monitor, a software layer between the hardware and multiple v
machines that run independent operating systems. This allows multiple copies of a commodity operating system to coexist witt
ized “thin” operating systems on the same hardware. The multiprocessor consists of a set of processing elements (PE) conn
high-performance interconnect. Each processing element contains a number of processors and a portion of the memory of the

system image across the units, as well as other features such as faultultiprocessors, we have developed a new twist on the relatively
containment [5] and ccNUMA management [26]. old idea of virtual machine monitors [13]. Rather than attempting to
With the size of the system software for modern computers in modify existing operating systems to run on scalable shared-mem-
the millions of lines of code, the changes for ccNUMA machines ory multiprocessors, we insert an additional layer of software be-
represent a significant development cost. These changes have amveen the hardware and the operating system. This layer of
impact on many of the standard modules that make up a moderrsoftware, called a virtual machine monitor, virtualizes all the re-
system, such as virtual memory management and the scheduler. Asources of the machine, exporting a more conventional hardware
a result, the system software for these machines is generally delivinterface to the operating system. The monitor manages all the re-
ered significantly later than the hardware. Even when the changesources so that multiple virtual machines can coexist on the same
are functionally complete, they are likely to introduce instabilities multiprocessor. Figuré shows how the virtual machine monitor
for a certain period of time. allows multiple copies of potentially different operating systems to
Late, incompatible, and possibly even buggy system software coexist.
can significantly impact the success of such machines, regardless of ~ Virtual machine monitors, in combination with commodity
the innovations in the hardware. As the computer industry maturesand specialized operating systems, form a flexible system software
users expect to carry forward their large base of existing applicationsolution for these machines. A large ccNUMA multiprocessor can
programs. Furthermore, with the increasing role that computersbe configured with multiple virtual machines each running a com-
play in today’s society, users are demanding highly reliable and modity operating system such as Microsoft's Windows NT or some
available computing systems. The cost of achieving reliability in variant of UNIX. Each virtual machine is configured with the pro-
computers may even dwarf the benefits of the innovation in hard-cessor and memory resources that the operating system can effec-
ware for many application areas. tively handle. The virtual machines communicate using standard
Computer hardware vendors that use “commaodity” operating distributed protocols to export the image of a cluster of machines.
systems such as Microsoft's Windows NT [9] face an even greater Although the system looks like a cluster of loosely-coupled
problem in obtaining operating system support for their ccNUMA machines, the virtual machine monitor uses global policies to man-
multiprocessors. These vendors need to persuade an independeage all the resources of the machine, allowing workloads to exploit
company to make changes to the operating system to support théhe fine-grain resource sharing potential of the hardware. For exam-
new hardware. Not only must these vendors deliver on the promiseple, the monitor can move memory between virtual machines to
of the innovative hardware, they must also convince powerful soft- keep applications from paging to disk when free memory is avail-
ware companies that running on their hardware is worth the effortable in the machine. Similarly, the monitor dynamically schedules

of the port [20]. virtual processors on the physical processors to balance the load
Given this situation, it is no small wonder that computer archi- across the machine.
tects frequently complain about the constraints and inflexibility of The use of commodity software leverage the significant engi-

system software. From their perspective, these software constrainteeering effort invested in these operating systems and allows
are an impediment to innovation. To reduce the gap between hardecNUMA machines to support their large application base. Since
ware innovations and the adaptation of system software, system dethe monitor is a relatively simple piece of code, this can be done
velopers must find new ways to develop their software more with a small implementation effort as well as with a low risk of in-
quickly and with fewer risks of incompatibilities and instabilities. troducing software bugs and incompatibilities.
The approach offers two different possible solutions to handle

. . . applications whose resource needs exceed the scalability of com-
3 A Returnto Virtual Machine Monitors modity operating systems. First, a relatively simple change to the
commodity operating system can allow applications to explicitly

To address the problem of providing system software for S‘C"j“ableshare memory regions across virtual machine boundaries. The mon-

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Page 2

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

itor contains a simple interface to setup these shared regions. Th®verheads. The overheads present in traditional virtual machine
operating system is extended with a special virtual memory seg-monitors come from many sources, including the additional excep-
ment driver to allow processes running on multiple virtual ma- tion processing, instruction execution and memory needed for vir-
chines to share memory. For example, a parallel database servdualizing the hardware. Operations such as the execution of
could put its buffer cache in such a shared memory region and haverivileged instructions cannot be safely exported directly to the op-
query engines running on multiple virtual machines. erating system and must be emulated in software by the monitor.

Second, the flexibility of the approach supports specialized Similarly, the access to 1/0 devices is virtualized, so requests must
operating systems for resource-intensive applications that do notbe intercepted and remapped by the monitor.
need the full functionality of the commodity operating systems. In addition to execution time overheads, running multiple in-
These simpler, specialized operating systems better support thelependent virtual machines has a cost in additional memory. The
needs of the applications and can easily scale to the size of the mazode and data of each operating system and application is replicated
chine. For example, a virtual machine running a highly-scalable in the memory of each virtual machine. Furthermore, large memory
lightweight operating system such as Puma [24] allows large scien-structures such as the file system buffer cache are also replicated re-
tific applications to scale to the size of the machine. Since the spesulting in a significant increase in memory usage. A similar waste
cialized operating system runs in a virtual machine, it can run occurs with the replication of file systems for the different virtual
alongside commodity operating systems running standard applicamachines.
tion programs. Similarly, other important applications such as data-
base and web servers could be run in highly-customized operatin
systems such as database accelerators.

Besides the flexibility to support a wide variety of workloads

esource Management. Virtual machine monitors frequently
xperience resource management problems due to the lack of infor-
mation available to the monitor to make good policy decisions. For

- ; S example, the instruction execution stream of an operating system’s
efficiently, this approach has a number of additional advantagesidle loop or the code for lock busy-waiting is indistinguishable at

over other system software designs targeted for cCNUMA ma- the monitor’s level from some important calculation. The result is

gwge\z}tﬁgpmgghﬂﬂnElgn%?g;efhgfgﬁatl)lgﬁgaetlsngr?gﬁgaeti,czg,llgs_that the monitor may schedule resources for useless computation
MA machines such as scalability and fault-containment. The virtual \évgélse #gte fklﬁllo(\:/\?Tvﬁgtnagonam:ﬁbﬁov;/:#'ne?'bi'irr?'lzrgi’vter:e S;%Z'tgr a
machine becomes the unit of scalability, analogous to the cell struc- pag 9 9 y y

ture of Hurricane, Hive, and Cellular IRIX. With this approach, \é;:itxgl Irr?aggglrgl iﬁeltnfgrrl]i?c?rtr;iasltlcr)rf:ii :te;%:rgzt%e;n\grtgglemage_
only the monitor itself and the distributed systems protocols need to -ng ! 9

scale to the size of the machine. The simplicity of the monitor cisions without the high-level knowledge that an operating system

makes this task easier than building a scalable operating system. would have.

The virtual machine also becomes the unit of fault contain- Communication and Sharing. Finally, running multiple inde-
ment where failures in the system software can be contained in th@pendent operating systems made sharing and communication diffi-
virtual machine without spreading over the entire machine. To pro-cult. For example under CMS on VM/370, if a virtual disk
vide hardware fault-containment, the monitor itself must be struc- containing a user’s files was in use by one virtual machine it could
tured into cells. Again, the simplicity of the monitor makes this not be accessed by another virtual machine. The same user could
easier than to protect a full-blown operating system against hard-not start two virtual machines, and different users could not easily
ware faults. share files. The virtual machines looked like a set of independent

NUMA memory management issues can also be handled bystand-alone systems that simply happened to be sharing the same
the monitor, effectively hiding the entire problem from the operat- hardware.
ing systems. With the careful placement of the pages of a virtual Although these disadvantages still exist, we have found their
machine’s memory and the use of dynamic page migration andimpact can be greatly reduced by combining recent advances in op-
page replication, the monitor can export a more conventional viewerating system technology with some new tricks implemented in the
of memory as a uniform memory access (UMA) machine. This al- monitor. For example, the prevalence of support in modern operat-
lows the non-NUMA-aware memory management policies of com- ing systems for interoperating in a distributed environment greatly
modity operating systems to work well, even on a NUMA machine. reduces the communication and sharing problems described above.

Besides handling ccNUMA multiprocessors, the approach In the following section we present techniques that allow the over-
also inherits all the advantages of traditional virtual machine mon- heads to be small compared to the benefits that can be achieved
itors. Many of these benefits are still appropriate today and somethrough this approach.
have grown in importance. By exporting multiple virtual machines,

a single ccNUMA multiprocessor can have multiple different oper-
ating systems simultanpeously running on it. Oldper versions oﬁ‘) the4 Disco: A Virtual Machine Monitor

system software can be kept around to provide a stable platform fo

keeping legacy applications running. Newer versions can be stage processor [17], a scalable cache-coherent multiprocessor. The

in carefully with critical applications residing on the older operating - : .
systems until the newer versions have proven themselves. This a FLASH multiprocessor consists of a collection of nodes each con-

proach provides an excellent way of introducing new and innova- ::?)Iﬂlr?gc?egr% Ceestf]zrr’vr\:;fk:r;?iengf)rg}fﬁpnﬂ:n ?:gizggiiggetqugﬁﬁ e?:rte
tive system software while still providing a stable computing base 9 gn-p)

for applications that favor stability over innovation. The machines use a directory to maintain cache coherency, provid-
ing to the software the view of a shared-memory multiprocessor

. . . with non-uniform memory access times. Although written for the

3.1 Challenges Facing Virtual Machines FLASH machine, the hardware model assumed by Disco is also

Unfortunately, the advantages of using virtual machine monitors available on a number of commercial machines including the Con-
come with certain disadvantages as well. Among the well-docu- V&X Exemplar [4], Silicon Graphics Origin20fI8], Sequent NU-
mented problems with virtual machines are the overheads due to th¥AQ [19], and DataGeneral NUMALiine.

virtualization of the hardware resources, resource management | NiS Section describes the design and implementation of Dis-
problems, and sharing and communication problems. co. We first describe the key abstractions exported by Disco. We

then describe the implementation of these abstractions. Finally, we

gi)isco is a virtual machine monitor designed for the FLASH multi-

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Page 3

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

discuss the operating system requirements to run on top of Disco. 4.2 Implementation of Disco

. Like most operating systems that run on shared-memory multipro-
4.1 Discos Interface cessors, Disco is implemented as a multi-threaded shared memory

Disco runs multiple independent virtual machines simultaneously Program. Disco differs from existing systems in that careful atten-
on the same hardware by virtualizing all the resources of the ma-tion has been given to NUMA memory placement, cache-aware
chine. Each virtual machine can run a standard operating systenﬁjata structures, and interprocessor communication patterns. For ex-

that manages its virtualized resources independently of the rest oRmple, Disco does not contain linked lists or other data structures
the system. with poor cache behavior. The small size of Disco, about 13,000

) i lines of code, allows for a higher degree of tuning than is possible
Processors. To match the FLASH machine, the virtual CPUs of \,iih million line operating systems.

Disco provide the abstraction of a MIPS R10000 processor. Disco To improve NUMA locality, the small code segment of Disco

correctly emulates all instructions, the memory management unit,c,rrently 72KB, is replicated into all the memories of FLASH ma-
and the trap architecture of the processor allowing unmodified ap-chine so that all instruction cache misses can be satisfied from the
plications and existing operating systems to run on the virtual ma-|c4| node. Machine-wide data structures are partitioned so that the

chine. Though required for the FLASH machine, the choice of the a5 that are accessed only or mostly by a single processor are in a
processor was unfortunate for Disco since the R10000 does not SUBnemory local to that processor.

port the complete virtualization of the kernel virtual address space. For the data structures accessed by multiple processors, very

Sectior4.3.1 dete}lls the OS changes needed to allow kernel-modesa,y |ocks are used and wait-free synchronization [14] using the

code to run on Disco. _ MIPS LL/SC instruction pair is heavily employed. Disco commu-
Besides the emulation of the MIPS processor, Disco extendspjcates through shared-memory in most cases. It uses inter-proces-

the architecture to support efficient access to some processor func5or interrupts for specific actions that change the state of a remote
tions. For example, frequent kernel operations such as enabling angjial processor, for example TLB shootdowns and posting of an

disabling CPU interrupts and accessing privileged registers can b&nterrupt to a given virtual CPU. Overall, Disco is structured more

performed using load and store instructions on special addressese 4 highly tuned and scalable SPLASH application [27] than like
This interface allows operating systems tuned for Disco to reduce, general-purpose operating system.

the overheads caused by trap emulation.

Physical Memory. Disco provides an abstraction of main memo- 4.2.1 Nrtual CPUs

ry residing in a contiguous physical address space starting at adt jke previous virtual machine monitors, Disco emulates the execu-
dress zero. This organization was selected to match the assumptiongon of the virtual CPU by using direct execution on the real CPU.
made by the operating systems we run on top of Disco. To schedule a virtual CPU, Disco sets the real machines’ registers
Since most commodity operating systems are not designed tag those of the virtual CPU and jumps to the current PC of the vir-
effectively manage the non-uniform memory of the FLASH ma- 3] CPU. By using direct execution, most operations run at the
chine, Disco uses dynamic page migration and replication to exportsame speed as they would on the raw hardware. The challenge of
a nearly uniform memory access time memory architecture to theysing direct execution is the detection and fast emulation of those
software. This allows a non-NUMA aware operating system to run gperations that cannot be safely exported to the virtual machine.
well on FLASH without the changes needed for NUMA memory These operations are primarily the execution of privileged instruc-
management. tions performed by the operating system such as TLB modification,

/0 Devices. Each virtual machine is created with a specified set and the direct access to physical memory and I/O devices.
of 1/0 devices, such as disks, network interfaces, periodic interrupt ~ FOr €ach virtual CPU, Disco keeps a data structure that acts
timers, clock, and a console. As with processors and physical memmuch like a process table entry in a traditional operating system.
ory, most operating systems assume exclusive access to their iydhis structure contains the saved registers and other state of a virtu-
devices, requiring Disco to virtualize each I/0 device. Disco must & CPU wheniitis not scheduled on a real CPU. To perform the em-
intercept all communication to and from I/O devices to translate or ulation of privileged instructions, Disco additionally maintains the
emulate the operation. privileged registers and TLB contents of the virtual CPU in this
Because of their importance to the overall performance and ef-Structure. _ _ _
ficiency of the virtual machine, Disco exports special abstractions On the MIPS processor, Disco runs in kernel mode with full
for the SCSI disk and network devices. Disco virtualizes disks by 8ccess to the machine’s hardware. When control is given to a virtual
providing a set of virtual disks that any virtual machine can mount. Machine to run, Disco puts Fhe processor in supervisor mode when
Virtual disks can be configured to support different sharing and per-funning the virtual machine’s operating system, and in user mode
sistency models. A virtual disk can either have modifications (i.e. Otherwise. Supervisor mode allows the operating system to use a
disk write requests) stay private to the virtual machine or they canProtected portion of the address space (the supervisor segment) but
be visible to other virtual machines. In addition, these modifications d0€s not give access to privileged instructions or physical memory.
can be made persistent so that they survive the shutdown of the virAPplications and kernel code can however still be directly executed

tual machine or non-persistent so that they disappear with each reSince Disco emulates the operations that cannot be issued in super-
boot. visor mode. When a trap such as page fault, system call, or bus error

To support efficient communication between virtual ma- Occurs, the processor traps to the mor_1itor that emulates the _effect of
chines, as well as other real machines, the monitor virtualizes acthe trap on the currently scheduled virtual processor. This is done
cess to the networking devices of the underlying system. EachbY updatlng some of.the perlleggd registers of the virtual processor
virtual machine is assigned a distinct link-level address on an inter-2nd jumping to the virtual machine’s trap vector.)
nal virtual subnet handled by Disco. Besides the standard network ~ Disco contains a simple scheduler that allows the virtual pro-
interfaces such as Ethernet and FDDI, Disco supports a special ne€Ssors to be time-shared across the physical processors of the ma-
work interface that can handle large transfer sizes without fragmen-chine. The scheduler cooperates with the memory management to
tation. For communication with the world outside the machine, Support affinity scheduling that increases data locality.

Disco acts as a gateway that uses the network interfaces of the ma-
chine to send and receive packets.

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Page 4

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

Node 0 o Node 1
| | | |
: VCPU 0O : : VCPU 1 :
| | | |
I ﬁ I I ﬁ 1 Virtual Pages
I o I
| n | | \ |
I , \/ \ I
| 1 1 v |
| ! i | Physical Pages
: : : : Machine Pages
| | | |

FIGURE 2. Transparent Page Replication. Disco uses the physical to machine mapping to replicate user and kernel pages. '
pages from VCPUs 0 and 1 of the same virtual machine both map the same physical page of their virtual machine. However, D
parently maps each virtual page to a machine page replica that is located on the local node.

4.2.2 Virtual Physical Memory A workload executing on top of Disco will suffer an increased
o . _ number of TLB misses since the TLB is additionally used for all op-
To virtualize physical memory, Disco adds a level of address trans-erating system references and since the TLB must be flushed on vir-
lation and maintainphysical-to-machine address mappings. Virtu- tyal CPU switches. In addition, each TLB miss is now more
al machines usphysical addresses that have memory starting at expensive because of the emulation of the trap architecture, the em-
address zero and continuing for the size of virtual machine’s mem-ylation of privileged instructions in the operating systems’s TLB-

ory. Disco maps these physical addresses to the #tttitne ad- miss handler, and the remapping of physical addresses described
dresses used by the memory system of the FLASH machine. above. To lessen the performance impact, Disco caches recent vir-

Disco performs this physical-to-machine translation using the tyal-to-machine translations in a second-level software TLB. On
software-reloaded translation-lookaside buffer (TLB) of the MIPS each TLB miss, Disco’s TLB miss handler first consults the second-
processor. When an operating system attempts to insert a virtual-totevel TLB. If it finds a matching virtual address it can simply place
physical mapping into the TLB, Disco emulates this operation by the cached mapping in the TLB, otherwise it forwards the TLB miss
translating the physical address into the corresponding machine adexception to the operating system running on the virtual machine.
dress and inserting this corrected TLB entry into the TLB. Once the The effect of this optimization is that virtual machines appear to
TLB entry has been established, memory references through thishave much larger TLBs than the MIPS processors.
mapping are translated with no additional overhead by the proces-
sor. 4.2.3 NUMA Memory Management

To quickly compute the corrected TLB entry, Disco keeps a
per virtual machin@map data structure that contains one entry for
each physical page of a virtual machine. Each pmap entry contain
a pre-computed TLB entry that references the physical page loca
tion in real memory. Disco merges that entry with the protection ' © i ; : . - .
bits of the original entry before inserting it into the TLB. The pmap chines since the commodity operating system is depending on Dis-

entry also contains backmaps pointing to the virtual addresses thaf® {© deal with the non-uniform memory access times. Disco must
y bs p g ; Ary to allocate memory and schedule virtual CPUs so that cache

away from the virtual machine by the monitor. misses generated b_y a virtual CPU will bg_satlsfled from local mem-
pry rather than having to suffer the additional latency of a remote

On MIPS processors, all user mode memory references mus he miss. T lish this. Di imol d .
be translated by the TLB but kernel mode references used by operc3che miss. To accomplish this, Disco Implements a dynamic page

ating systems may directly access physical memory and I/O devicedMgration anc_i page repll_catlon system [2.’7] that mo,ves or repllt_:ates
through the unmapped segment of the kernel virtual address spac®@9€s to maintain locality between a virtual CPU's cache misses
Many operating systems place both the operating system code angnd the memory pages to which the cache misses occur.

data in this segment. Unfortunately, the MIPS architecture bypasses Disco targets mac_hlnes that maintain cache-cc_)herence in har(_:i-
the TLB for this direct access segment making it impossible for Ware. On these machines, NUMA management, implemented ei-
Disco to efficiently remap these addresses using the TLB. HavingtNer in the monitor or in the operating system, is not required for

each operating system instruction trap into the monitor would lead COrrect execution, but rather an optimization that enhances data lo-

to unacceptable performance. We were therefore required to re-linga“ty' Disco uses a robust policy that moves only pages that will

Besides providing fast translation of the virtual machine’s physical
ddresses to real machine pages, the memory management part of

Disco must also deal with the allocation of real memory to virtual

machines. This is a particularly important task on ccNUMA ma-

the operating system code and data to a mapped region of the a ikely result in an eventual performance benf@]. Pages that are

dress space. This problem seems unique to MIPS as other archite ieavily accessed by only one node are migrated to that node. Pages

tures such as Alpha can remap these regions using the TLB. that are prima.rily read-shared are replicgted to the nodes most
The MIPS processors tag each TLB entry with an addressheav'ly accessing them. Pages that are w_rlte-shal_red are not_moved

space identifier (ASID) to avoid having to flush the TLB on MMU bec?‘us_e they_funqameptally cannot benefit from elthe_r migration or

context switches. To avoid the complexity of virtualizing the rePlication. Disco’s policy also limits the number of times a page

ASIDs, Disco flushes the machine’s TLB when scheduling a differ- @1 MOVe to avoid excessive overheads. o

ent virtual CPU on a physical processor. This approach speeds up Disco’s page migration and replication policy is driven by the

the translation of the TLB entry since the ASID field provided by cache miss counting facility provided by the FLASH hardware.
the virtual machine can be used directly. FLASH counts cache misses to each page from every physical pro-

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Page 5

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

Physical Memory of VM 1 Physical Memory of VM 2

Code | Data Buffer Cache Code | Data Buffer Cache

Private Pages

W Shared Pages

Data Code Buffer Cache Data

Free Pages

Machine Memory

FIGURE 3. Transparent Sharing of Pages. Read only pages brought in from disk such as the kernel text and the buffer cache
transparently shared between virtual machines. This creates a global buffer cache shared across virtual machines and help:
memory footprint of the system.

cessor. Once FLASH detects a hot page, the monitor chooses beAhen a virtual machine requests to read a disk block that is already
tween migrating and replicating the hot page based on the cachén main memory, Disco can process the request without going to
miss counters. To migrate a page, the monitor transparently changdisk. Furthermore, if the disk request is a multiple of the machine’s
es the physical-to-machine mapping. It first invalidates any TLB page size, Disco can process the DMA request by simply mapping
entries mapping the old machine page and then copies the data tothe page into the virtual machine’s physical memory. In order to
local machine page. To replicate a page, the monitor must firstpreserve the semantics of a DMA operation, Disco maps the page
downgrade all TLB entries mapping the machine page to ensureread-only into the destination address page of the DMA. Attempts
read-only accesses. It then copies the page to the local node and ups modify a shared page will result in a copy-on-write fault handled
dates the relevant TLB entries mapping the old machine page. Thénternally by the monitor.
resulting configuration after replication is shown in Figare Using this mechanism, multiple virtual machines accessing a
Disco maintains anemmap data structure that contains an en- shared disk end up sharing machine memory. The copy-on-write
try for each real machine memory page. To perform the necessargemantics means that the virtual machine is unaware of the sharing
TLB shootdowns during a page migration or replication, the mem- with the exception that disk requests can finish nearly instantly.
map entry contains a list of the virtual machines using the page andConsider an environment running multiple virtual machines for
the virtual addresses used to access them. A memmap entry alsscalability purposes. All the virtual machines can share the same

contains pointers to any replicated copies of the page. root disk containing the kernel and application programs. The code
irtual 1/ . and other read-only data stored on the disk will be DMA-ed into
4.2.4 Virtual 1/0 Devices memory by the first virtual machine that accesses it. Subsequent re-

To virtualize access to I/O devices, Disco intercepts all device 9U€Sts Will simply map the page specified to the DMA engine with-
put transferring any data. The result is shown in Fiundere all

accesses from the virtual machine and eventually forwards them t . .
the physical devices. Disco could interpose on the programmed invirtual machines share these read-only pages. Effectively we get the

putioutput (PIOs) from the operating system device drivers by trap-MeMOry sharing patterns expected of a single shared memory mul-
ping into the monitor and emulating the functionality of the UPrOCessor operating system even though the system runs multiple
hardware device assumed by the version of the operating system W@dependent operating systems.
used. However we found it was much cleaner to simply add special To preserve the isolation of the virtual machines, disk writes

device drivers into the operating system. Each Disco device definedtSt P& kept private to the virtual machine that issues them. Disco
amonitor call used by the device driver to pass all command argu- 1095 the modified sectors so that the copy-on-write disk is never ac-
ments in a single trap tually modified. For persistent disks, these modified sectors would

Devices such as disks and network interfaces include a DMA P€ l09ged in a separate disk partition managed by Disco. To simpli-

map as part of their arguments. Disco must intercept such DMA re-fy _ourd_in?(plementation,_ we og_lykappligdk the r(]:onceg_tf_ogcopy-on-_
quests to translate the physical addresses specified by the operatinf't€ disks to non-persistent disks and kept the modified sectors in

systems into machine addresses. Disco's device drivers then inter"'ain memory whenever possible. . .
act directly with the physical device. The implementation of this memory and disk sharing feature

For devices accessed by a single virtual machine, Disco onIyOf Disco uses two data structures. For each disk device, Disco main-
needs to guarantee the exclusivity of this access and translate thinS & B-Tree indexed by the range of disk sectors being requested.
physical memory addresses of the DMA, but does not need to vir- hls_B-Tree IS use(_j to find the machine memory address of the Sec-
tualize the IO resource itself ’ tors in the global disk cache. A second B-Tree is kept for each disk

The interposition on all DMA requests offers an opportunity and virtual machine to find any modifications to the block made by

for Disco to share disk and memory resources among virtual ma_that virtual machine. We used B-Trees to efficiently support queries
on ranges of sectors [6].

chines. Disco’s copy-on-write disks allow virtual machines to share . S)
The copy-on-write mechanism is used for file systems such as

both main memory and disk storage resources. Disco’s virtual net- h disk wh dificati X ded 1o b ;
work devices allow virtual machines to communicate efficiently. the root disk whose modifications as not intended to be persistent

The combination of these two mechanisms. detailed in ©" shared across virtual machines. For persistent disks such as the

Section4.2.5 and Sectiod.2.6, allows Disco to Support a system- one containing user files, Disco enforces that only a single virtual

wide cache of disk blocks in memory that can be transparentlym"’lchlne can mount the.d'Sk at any given time. AS 8 re_sult, D'.S'CO
shared between all the virtual machines. does not need to virtualize the layout of the disk. Persistent disks

can be accessed by other virtual machines through a distributed file
4.2.5 Copy-on-write Disks system protocol such as NFS.

Disco intercepts every disk request that DMAs data into memory.

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Page 6

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

NFES Server NFS Client
N
\irtual Pages
Physical Pages

Machine Pages

FIGURE 4. Transparent Sharing of Pages Over NFS. This figure illustrates the case when the NFS reply, to a read request, inc
a data page. (1) The monitor’s networking device remaps the data page from the source’s machine address space to the desti
The monitor remaps the data page from the driver's mbuf to the clients buffer cache. This remap is initiated by the operatin
through a monitor call.

4.2.6 Virtual Network Interface is however independent of any specific operating system and we
])]) plan to support others such as Windows NT and Linux.
The copy-on-write mechanism for disks allows the sharing of mem- In their support for portability, modern operating systems

ory resources across virtual machines, but does not allow virtualpresent a hardware abstraction level (HAL) that allows the operat-

machines to communicate with each other. To communicate, virtu-ing system to be effectively “ported” to run on new platforms. Typ-

al machines use standard distributed protocols. For example, virtua|ca||y the HAL of modern operating systems changes with each

machines share files through NFS. As a result, shared data will enchew version of a machine while the rest of the system can remain

up in both the client’s and server’s buffer cache. Without special at-ynchanged. Our experience has been that relatively small changes

tention, the data will be duplicated in machine memory. We de- tg the HAL can reduce the overhead of virtualization and improve

signed a virtual subnet managed by Disco that allows virtual resource usage.

machines to communicate with each other, while avoiding replicat- Most of the changes made in IRIX were part of the A4l

ed data whenever possible. o . of the changes were simple enough that they are unlikely to intro-
The virtual subnet and networking interfaces of Disco also use duce a bug in the software and did not require a detailed understand-

copy-on-write mappings to reduce copying and to allow for memo- ing of the internals of IRIX. Although we performed these changes

ry sharing. The virtual device uses ethernet-like addresses and doeg the source level as a matter of convenience, many of them were

not limit the maximum transfer unit (MTU) of packets. A message simple enough to be performed using binary translation or augmen-
transfer sent between virtual machines causes the DMA unit to maRation techniques.

the page read-only into both the sending and receiving virtual ma-)
chine’s physical address spaces. The virtual network interface ac4.3.1 Necessary Changesfor MIPS Architecture
cepts messages that consist of scattered buffer fragments. O
implementation of the virtual network in Disco and in the operating
system’s device driver always respects the data alignment of th
outgoing message so that properly aligned message fragments th
span a complete page are always remapped rather than copied.
Using this mechanism, a page of data read from disk into the
file cache of a file server running in one virtual machine can be
shared with client programs that request the file using standard dis
tributed file system protocol such as NFS. As shown in Figure
Disco supports a global disk cache even when a distributed file sys
tem is used to connect the virtual machines. In practice, the combi
nation of copy-on-write disks and the access to persistent datsf"d PowerPC. . .
through the specialized network device provides a global buffer . Making these changes to IRIX required changing two header
cache that is transparently shared by independent virtual machinei'Ies that describe the virtual address space layout, changing the

U\r/irtual processors running in supervisor mode cannot efficiently
Access the KSEGO segment of the MIPS virtual address space, that
ggways bypasses the TLB. Unfortunately, many MIPS operating
systems including IRIX 5.3 place the kernel code and data in the
KSEGO segment. As a result, we needed to relocate the unmapped
segment of the virtual machines into a portion of the mapped super-
visor segment of the MIPS processor. This allowed Disco to emu-
late the direct memory access efficiently using the TLB. The need
for relocating the kernel appears to be unique to MIPS and is not
present in other modern architecture such as Alpha, x86, SPARC,

As a result, all read-only pages can be shared between virtua["King Options, as well as 15 assembly statemenltscare.s. Un-
machines. Although this reduces the memory footprint, this may ortunately, this meant t_hat we needed to re-compile and re-link the
adversely affect data locality as most sharers will access the pagéRlx kernel to run on Disco
remotely. However, Disco’s page replication policy selectively rep- 432 Device Drivers
licates the few “hot” pages that suffer the most cache misses. Pages
are therefore shared whenever possible and replicated only wheiDisco’s monitor call interface reduces the complexity and overhead
necessary to improve performance. of accessing I/0 devices. We implemented UART, SCSiI disks, and

4.3 Running Commaodity Operating Systems
Unlike other operating systems, IRIX is not structured with a well-

The “commodity” operating system we run on Disco is IRIX 5.3, & defined HAL. In this paperthe HAL includes all the platform and
UNIX SVR4 based operating system from Silicon Graphics. Disco processespecific functions of the operating system.

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Page 7

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

ethernet drivers that match this interface. Since the monitor call in-remap function offered by the HAL. This remap function has the se-
terface provides the view of an idealized device, the implementa-mantics of a bcopy routine but uses a monitor call to remap the page
tion of these drivers was straightforward. Since kernels are normal-whenever possible. Figudeshows how a data page transferred dur-
ly designed to run with different device drivers, this kind of change ing an NFS read or write call is first remapped from the source vir-
can be made without the source and with only a small risk of intro- tual machine to the destination memory buffer (mbuf) page by the
ducing a bug. monitor's networking device, and then remapped into its final loca-
The complexity of the interaction with the specific devices is tion by a call to the HAL’s remap function.
left to the virtual machine monitor. Fortunately, we designed the

virtual machine monitor’s internal device driver interface to simpli- 44 SPLASHOS: A Specialized Operating System
fy the integration of existing drivers written for commodity operat-

ing systems. Disco uses IRIX's original device drivers. The ability to run a thin or specialized operating system allows Dis-
co to support large-scale parallel applications that span the entire
4.3.3 Changestothe HAL machine. These applications may not be well served by a full func-

Having to take a trap on every privileged register access can Caustlon operating system. In fact, specialized operating systems such as

significant overheads when running kernel code such as synchroni?’ﬁé}"ijgfe]rssre commonly used to run scientific applications on par-

zation routines and trap handlers that frequently access privilegeoa -
) ! To illustrate this point, we developed a specialized library op-
registers. To reduce this overhead, we patched the HAL of IRIX to erating system [11], “SPLASHOS”, that runs directly on top of Dis-

e e e e ooago. SPLASHOS cantainsthe sevices needed 10 1 SPLASH-2
pping P pag pplications [27]: thread creation and synchronization routines,

space tha@ contains these regis_ters. _This optimiz_ation is_only applie libc” routines, and an NFS client stack for file I/O. The application
to instructions that read and write privileged registers without caus-; < inked with the library operating system and runs in the same ad-

ing other side-effects. Although for this experiment we performed dress space as the operating system. As a result, SPLASHOS does

tcgilzaégslﬁs Sg :&r(])?ngi(?z;:y Z fel‘i';;w'ﬁ:rl] It?]ceat'ﬁcifé tgg i?gifggsnot need to support a virtual memory subsystem, deferring all page
y y app P 9 faulting responsibilities directly to Disco.

Could overwrite ceriain iéirucons wilh the Special load and store,,__Alough one might find SPLASHOS o be an overly simpli-
P tic and limited operating system if it were to run directly on hard-

S0 't.\ll_vglrjwlglg?ltqgur;fi:ﬂtg? ﬁ:’:&geﬂg trr:eeséﬁ%;?:]igkagement decivare, t_he ability to run it in a virtual machine alo_ngside cqmmodity
sions, we have added code to the HAL to pass hints to the monitoroperatlng systems offers a powerful and attractive combination.
giving it higher-level knowledge of resource utilization. We insert-
ed a small number of monitor calls in the physical memory manage-5 Exper imental Results
ment module of the operating systems. The first monitor call
requests a zeroed page. Since the monitor must clear pages to elVe have implemented Disco as described in the previous section
sure the isolation of virtual machines anyway, the operating systemand performed a collection of experiments to evaluate it. We de-
is freed from this task. A second monitor call informs Disco that a scribe our simulation-based experimental setup in Section 5.1. The
page has been put on the operating system’s freelist without &irst set of experiments presented in Sections 5.2 and 5.3 demon-
chance of reclamation, so that Disco can immediately reclaim thestrate that Disco overcomes the traditional problems associated
memory. with virtual machines, such as high overheads and poor resource

To improve the utilization of processor resources, Disco as- sharing. We then demonstrate in Sections 5.4 and 5.5 the benefits
signs special semantics to the reduced power consumption mode aff using virtual machines, including improved scalability and data
the MIPS processor. This mode is used by the operating systentocality.
whenever the system is idle. Disco will deschedule the virtual CPU
until the mode is cleared or an interrupt is posted. A monitor call in- 5 1 Experimental Setup and Workloads
serted in the HAL's idle loop would have had the same effect.

Disco targets the FLASH machine, which is unfortunately not yet

4.3.4 Other Changesto IRIX available. As a result, we use the SimOS [22] machine simulator to
develop and evaluate Disco. SImOS is a machine simulator that

:t(i); Sc;mset;rflt'?ézrag)':;ﬁ ?ésiﬁg‘iliﬁj;r:]g\?vgfkogs\rﬁgjgaﬁ g;ﬁ otgekgmodels the hardware of MIPS-based multiprocessors in enough de-
gsy : pe, 4 tail to run essentially unmodified system software such as the IRIX

advantage of the remapping techniques if the packets contain prop- . .) . L
erly aligned, complete pages that are not written. We found that theoperatlng system and the Disco monitor. For this study, we config

operating svstem's networking subsystem naturally meets most O](ured SimOS to resemble a large-scale multiprocessor with perfor-
P g sy g subsy y mance characteristics similar to FLASH. Although SimOS contains
the requirements. For example, it preserves the alignment of dat

. : % imulation models of FLASH’s MIPS R10000 processors, these
pages, taking advantage of the scatter/gather options of netWork'n%imulation models are too slow for the workloads that we chose to
devices. Unfortunately, IRIX snbuf management is such that the

data pages of recently freed mbufs are linked together using the firs tudy. As a result, we model statically scheduled, non-superscalar
pag Y 9 9 Erocessors running at twice the clock rate. These simpler pipelines

word of the page. This guarantees that every packet transferred b an be modelled one order of magnitude faster than the R10000.

the monitor's networking device using remaps will automatically o', cessors have the on-chip caches of the MIPS R10000
trigger at least one copy-on-write fault on the receiving end. A sim- (32KB split instruction/data) and a 1MB board-level cache. In the
ple change to the mbuf freelist data structure fixed this problem. absence of memory system contention, the minimum latency of a

the i;]r?gmkiﬁmﬁ:gmgliénﬁgtigggic’i;N'f:ilsé %lﬂfixscgzﬁfse?/ae;axﬁg cache miss is 300 nanoseconds to local memory and 900 nanosec-
g 9 ' onds to remote memory.

\t/cguﬁ)gchkae\sg(;?;zgievi|un-frr:\?glet2fje?ﬁ£r§r?aerrilr¥ ag?rlﬁg f‘)i?eg%i.f; rr"S Although SimOS allows us to run realistic workloads and ex-
ybp g amine their behavior in detail with its non-intrusive annotation

cache across virtual machines. To have clients and servers transpafs . .nanism. the simulation slowdowns prevent us from examining
ently share the page, we specialized the calictipy to a new long running workloads in detail. Using realistic but short work-

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Page 8

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

Workload Environment Description Characteristics Ex_?ic;téon
Parallel compilation (-J2) of the | Multiprogrammed, short-lived,

Pmake Software Development GNU chess application system and I/O intensive processes 3.9 sec

Engineering| Hardware Development Verilog S|mula_1t|on (Chronologlc s Multiprogrammed, long running 35 sec
VCS) + machine simulation processes

Splash Scientific Computing Raytrace from SPLASH-2 Parallel applications 12.9 sec

Database |Commercial Database Sybase Re]a_nonal Database i (?ingle memory intensive process 2.0 sec
Server decision support workloa

Table 1. Workloads. Each workload is scaled differently for the uniprocessor and multiprocessor experiments. The reported
time is for the uniprocessor workloads running on IRIX without Disco. The execution time does not include the time to boot the
ramp-up the applications and enter a steady execution state. This setup time is at least two orders of magnitude longer a
using SimOS'’s fast emulation mode.

loads, we were able to study issues like the CPU and memory overRaytrace to a high of 16% in the pmake and database workloads.
heads of virtualization, the benefits on scalability, and NUMA For the compute-bound engineering and Raytrace workloads, the
memory management. However, studies that would require longoverheads are mainly due to the Disco trap emulation of TLB reload
running workloads, such as those fully evaluating Disco’s resourcemisses. The engineering and database workloads have an excep-
sharing policies, are not possible in this environment and will hencetionally high TLB miss rate and hence suffer large overheads. Nev-
have to wait until we have a real machine. ertheless, the overheads of virtualization for these applications are
Tablel lists the workloads of this study together with their less than 16%.
base simulated execution time. The workloads were chosen to be The heavy use of OS services for file system and process cre-
representative of four typical uses of scalable compute servers. Al-ation in the pmake workload makes it a particularly stressful work-
though the simulated execution times are small, the SIimOS envi-load for Disco. Tabl@ shows the effect of the monitor overhead on
ronment allowed us to study the workload’s behavior in great detail the top OS services. From this table we see the overheads can sig-
and determine that the small execution regions exhibit similar be-nificantly lengthen system services and trap handling. Short run-
havior to longer-running worklaods. We also used the fast mode ofning services such as the IRIX quick page fault handler, where the
SimOS to ensure that the workloads did not include any cold starttrap overhead itself is a significant portion of the service, show
effects. slowdowns over a factor of 3. Even longer running services such as
execve and open system call show slowdowns of 1.6.
5.2 Execution Overheads These slowdowns can be explained by the common path to en-
ter and leave the kernel for all page faults, system calls and inter-
To evaluate the overheads of running on Disco, we ran each workrupts. This path includes many privileged instructions that must be
load on a uniprocessor, once using IRIX directly on the simulatedindividually emulated by Disco. A restructuring of the HAL of
hardware, and once using Disco running IRIX in a single virtual |RIX could remove most of this overhead. For example, IRIX uses
machine on the same hardware. Figaishows this comparison. the same TLB wired entry for different purposes in user mode and
Overall, the overhead of virtualization ranges from a modest 3% forin the kernel. The path on each kernel entry and exit contains many

Relative Execution Time on Disco
% of Avg Time 0 - ® » 2 "
Operating System System per Slowdown 5 o =20 86| 83 .
. ; . c B B T 37 g o ®
Service Time I nvocation on p § = 5 £S= 5 S o oL
(IRIX) (IRIX) Disco v £ e | 025 R v O
| E W ac so =

- =

DEMAND_ZERO 30% 21pus 1.42 0.43 0.21 0.16 0.47 0.16
QUICK_FAULT 10% 5us 3.17 1.27 0.80 0.56 0.00 0.53
open 9% 42 pus 1.63 1.16 0.08 0.06 0.02 0.30
UTLB_MISS 7% 0.035ps 1.35 0.07 1.22 0.05 0.00 0.02
write 6% 12pus 2.14 1.01 0.24 0.21 0.31 0.17
read 6% 23pus 1.53 1.10 0.13 0.09 0.01 0.20
execve 6% 437ps 1.60 0.97 0.03 0.05 0.17 0.40

Table 2. Service Breakdown for the Pmake workload. This table breaks down the overheads of the virtualization for the se\
kernel services of the pmake workload. DEMAND_ZERO is demand zero page fault, QUICK_FAULT, is slow TLB refill, UTLE
is a fast TLB refill. Other than the UTLB_MISS service, the IRIX and IRIX on Disco configurations request the same number «
of each category. For each service, the execution time is expressed as a fraction of the IRIX time and separates the time
kernel, emulating TLB writes and privileged instructions, performing monitor call and emulating the unmapped segments. The
column is the sum of the relative execution times and measures the average slowdown for each service.

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Page 9

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

160 } — —~
|5 Idie 3 Il oisco 81
‘" 110 Il oisco i S 80t Buffer_Cache 77 H
8 Kernel o Bl RiX_Text |]
g 120 I user ‘g 70+ __ IRIX_Data .
= 100 108 g eof 4
N 100
= 51
£ 50 - -
S 80
= a0t 36 38 40
33
% 30 27 27 29 i
23 23
40 ol I |
20 10 - ,
0 IRIX DISCO IRIX DISCO IRIX DISCO IRIX DISCO 0 Vv M vV M vV M vV M vV M vV M
Pmake Engineering Raytrace Database IRIX 1VvM 2VMs 4VMs 8VMs 8VMs+NFS
FIGURE 5. Overhead of Virtualization. The figure compare: FIGURE 6. Data Sharingin Disco. This figure compares th
for four uniprocessor workloads, the execution time when rur memory footprints of the different configurations of Secta
IRIX directly on the simulated hardware with IRIX running i which run the pmake workload. For each configuration, '
Disco virtual machine. The execution time is separated bet breaks down the virtual footprint of the system and “M” and ac
the time spent in user programs, the IRIX kernel, Disco, an machine memory footprint. The virtual footprint is equivalen
idle loop. the amount of memory required in the absence of memory sh

optimizations.

privileged instructions that deal exclusively with this feature and
are individually emulated. mounted from different private exclusive disks.

We also notice the relatively high overhead of servicing kernel The last configuration runs eight virtual machines but accesses
TLB-faults that occur since Disco runs IRIX in mapped addressesworkload files over NFS rather than from private disks. One of the
rather than the unmapped addresses used when running directly ogight virtual machines also serves as the NFS server for all file sys-
the machine. This version of Disco only mapped 4KB page pairstems and is configured with 96 megabytes of memory. The seven
into the TLB. The use of larger pages, supported by the MIPS TLB, other virtual machines have only 32MB of memory. This results in
could significantly reduce this overhead. Even with these large more memory configured to virtual machines than is available on
slowdowns, the operating system intensive pmake workload with the real machine. This workload shows the ability to share the file
its high trap and system call rate has an overhead of only 16%. cache using standard distributed system protocols such as NFS.

Figure5 also shows a reduction in overall kernel time of some Figure6 compares the memory footprint of each configuration
workloads. Some of the work of the operating system is being han-at the end of the workload. The virtual physical footprint (V) is the
dled directly by the monitor. The reduction in pmake is primarily amount of memory that would be needed if Disco did not support
due to the monitor initializing pages on behalf of the kernel and any sharing across virtual machines. The machine footprint (M) is
hence suffering the memory stall and instruction execution over-the amount of memory actually needed with the sharing optimiza-
head of this operation. The reduction of kernel time in Raytrace, tions. Pages are divided between the IRIX data structures, the IRIX
Engineering and Database workloads is due to the monitor's sectext, the file system buffer cache and the Disco monitor itself.
ond-level TLB handling most TLB misses. Overall, we see that the effective sharing of the kernel text and

buffer cache limits the memory overheads of running multiple vir-
5.3 Memory Overheads tual machines. The read-shared data is kept in a single location in
memory.
To evaluate the effectiveness of Disco’s transparent memory shar- The kernel private data is however not shareable across virtual
ing and quantify the memory overheads of running multiple virtual machines. The footprint of the kernel private data increases with the
machines, we use a single workload running under six different sys-number of virtual machines, but remains overall small. For the eight
tem configurations. The workload consists of eight different in- virtual machine configuration, the eight copies of IRIX’s data struc-
stances of the basic pmake workload. Each pmake instance readsires take less than 20 megabytes of memaory.
and writes files from a different disk. In all configurations we use In the NFS configuration, the virtual buffer cache is larger than
an eight processor machine with 256 megabytes of memory and tethe comparable local configuration as the server holds a copy of all
disks. workload files. However, that data is transparently shared with the

The configurations differ in the number of virtual machines clients and the machine buffer cache is of comparable size to the
used and the access to the workload file systems. The first configuother configurations. Even using a standard distributed file system
ration (IRIX) runs IRIX on the bare hardware with all disks local. such as NFS, Disco can maintain a global buffer cache and avoid
The next four configurations split the workload across one (1VM), the memory overheads associated with multiple caching of data.
two (2VMs), four (4VMs), and eight virtual machines (8VMs).

Each VM has the virtual resources that correspond to an equal fracg 4 Scalabil ity

tion of the physical resources. As a result, the total virtual processor

and memory resources are equivalent to the total physical resource§o demonstrate the scalability benefits of using virtual machine
of the machine, i.e. eight processors and 256 MB of memory. Formonitors we ran the pmake workload under the six configurations
example, the 4VMs configuration consists of dual-processor virtual described in the previous section. IRIX5.3 is not a NUMA-aware
machines, each with 64 MB of memory. The root disk and work- kernel and tends to allocate its kernel data structures from a single
load binaries are mounted from copy-on-write disks and sharednode of FLASH causing large hot-spots. To compensate for this, we
among all the virtual machines. The workload file systems are changed the physical memory layout of FLASH so that machine

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Page 10

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

[} —
£ Idle
= 160+ Il o'sco R
5 S
3 140 136 - e |
S B Kernel B
[}
& User_stall
- 120 + User -
: -
£ 100 100
E 100 + 92 -
2 86
80 1~ B
64
60
60 - B
40 1 34 -
20 + -

IRIX 1M 2VM 4VM

8VM 8VM/nfs

IRIX SplashOS

pmake RADIX

FIGURE 7. Workload Scalability Under Disco. The perfor-
mance of the pmake and radix workloads on an eight-proc
ccNUMA machine is normalized to the execution time runi
IRIX on the bare hardware. Radix runs on IRIX directly on tc
the hardware and on a specialized OS (SPLASHOS) on t
Disco in a single virtual machine. For each workload the e»
tion is broken down into user time, kernel time, time synchro
tion time, monitor time, and the idle loop. All configurations

100 100 Il oi'sco
100 - remote|

- local

exec

67
62

60 + -
. — |

Normalized Execution Time
o]
o
T
|

40 +-

20 - B

16% 78% 100% 6% 76% 100%
IRIX DISCO UMA IRIX DISCO UMA
Engineering Raytrace

FIGURE 8. Performance Benefits of Page Migration anc
Replication. For each workload, the figure compares the exe
tion time of IRIX on NUMA, IRIX on Disco on NUMA with pagt
migration and replication, and IRIX on an bus-based UMA,
execution time is divided between instruction execution time
cal memory stall time, remote memory stall time, and Disco o
head. The percentage of cache misses satisfied locally is s
below each bar.

the same physical resources, eight processors and 256l

memory, but use a different number of virtual machines. crease in the idle time that is pl’imal’ily due to the serialization of

NFS requests on the single server that manages all eight disks. Even
)) , , with the overheads of the NFS protocol and the increase in idle
pages are allocated to nodes in a round-robin fashion. This roundyime this configuration executes faster than the base IRIX time.
robin allocation eliminates hot spots and results in significantly bet- The other workload of Figur compares the performance of

ter performance for the IRIX runs. Since Disco is NUMA-aware, the radix sorting algorithm, one of the SPLASH-2 applications [27].
we were able to use the actual layout of machine memory, which al-Radix has an unfortunate interaction with the lazy evaluation poli-
locates consecutive pages to each node. To further simplify thegies of the IRIX virtual memory system. IRIX defers setting up the
comparison, we disabled dynamic page migration and replicationpage table entries of each parallel thread until the memory is
for the Disco runs. o touched by the thread. When the sorting phase starts, all threads suf-
_ Figure7 shows the execution time of each workload. Even at for many page faults on the same region causing serialization on the
just eight processors, IRIX suffers from high synchronization and yarious spinlocks and semaphores used to protect virtual memory
memory system overheads for system-intensive workloads such agata structures. The contention makes the execution of these traps
this. For example, about one quarter of the overall time is spent ingjgnificant in comparison to the work Radix does for each page
the kernel synchronization routines and the 67% of the remainingyoched. The result is Radix spends one half of its time in the oper-
kernel time is spent stalled in the memory system on communica—ating system.

tion misses. The version of IRIX that we used has a known primary Although it would not have been difficult to modify Radix to
scalability bottleneckmemlock, the spinlock that protects the mem- getyp its threads differently to avoid this problem, other examples
ory management data structures of IRIX [23]. Other operating Sys-are not as easy to fix. Rather than modifying Radix, we ran it on top
tems such as NT also have comparable scalability problems, evet Sp| ASHOS rather than IRIX. Because it does not manage virtu-
with small numbers of processors [21]. _ al memory, SPLASHOS does not suffer from the same perfor-
_Using a single virtual machine leads to higher overheads thanmance problems as IRIX. Figufeshows the drastic performance

in the comparable uniprocessor Pmake workload. The increase igmprovements of running the application in a specialized operating
primarily due to additional idle time. The execution of the operating system (on top of Disco) over using a full-blown operating system
system in general z_md.of the critical regions in particular is slower wwithout Disco). Both configurations suffer from the same number
on top of Disco, which increases the contention for semaphores angh page faults, whose processing accounts for most of the system
spinlocks in the operating system. For this workload, the increasedjme This system time is one order of magnitude larger for IRIX
idle time is due to additional contention on certain semaphores thatnan it is for SPLASHOS on top of Disco. The NUMA-aware allo-

protect the virtual memory subsystem of IRIX, forcing more pro- cation policy of Disco also reduces hot spots and improves user stall
cesses to be descheduled. This interaction causes a non-linear effeghe.

in the overheads of virtualization.
However, partitioning the problem into different virtual ma- . . . C
chines significantly improves the scalability of the system. With 5.5 Dynamic Page Migration and Replication
only two virtual machines, the scalability benefits already outweigh To show the benefits of Disco's page migration and replication im-
the overheads of the virtualization. When using eight virtual ma- plementation, we concentrate on workloads that exhibit poor mem-
chines, the execution time is reduced to 60% of its base executiorpry system behavior, specifically the Engineering and Raytrace
time, primarily because of a significant reduction in the kernel stall workloads. The Engineering workload consists of six Verilog sim-
time and kernel synchronization. ulations and six memory system simulations on eight processors of
We see significant performance improvement even when ac-the same virtual machine. The Raytrace workload spans 16 proces-
cessing files using NFS. In the NFS configuration we see an in-sors. Because Raytrace’s largest available data set fully fits in a

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Page 11

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

) ; ciently and export a single system image, effectively hiding the dis-
. Engineering Raytrace tributed system from the user. In Hive, the cells are also used to
Action num/sec | avgtime | num/sec | avgtime contain faults within cell boundaries. In addition, these systems in-
corporate resource allocators and schedulers for processors and
Migration 2461 67 s 909| 102ps memory that can handle the scalability and the NUMA aspects of
Replication 2208 57 us 2671 73us the machine. This approach is innovative, but requires a large de-
)) velopment effort.
Table 3. Action taken on hot pages. This table shows the nut The virtual machines of Disco are similar to the cells of Hive
ber of migrations and replications per second and their aver and Cellular-IRIX in that they support scalability and form system
tency for the two workloads. software fault containment boundaries. Like these systems, Disco

can balance the allocation of resources such as processors and
1MB cache, we ran the Raytrace experiments with a 256KB cachememory between these units of scalability. Also like these systems,
to show the impact of data locality. Disco handles the NUMA memory management by doing careful
Figure8 shows the overall reduction in execution time of the page migration and replication. The benefit of Disco over the OS
workload. Each workload is run under IRIX, IRIX on Disco with intensive approach is in the reduction in OS development effort. It
migration and replication, and IRIX on a UMA memory system. provides a large fraction of the benefits of these systems at a frac-
The UMA memory system has a latency of 300ns equivalent to thetion of the cost. Unlike the OS-intensive approach that is tied to a
local latency of the NUMA machine. As a result, the performance particular operating system, Disco is independent of any particular
on the UMA machine determines a lower bound for the execution OS, and can even support different OSes concurrently.
time on the NUMA machine. The comparison between Disco and The second approach is to statically partition the machine and
the NUMA IRIX run shows the benefits of page migration and rep- run multiple, independent operating systems that use distributed
lication while the comparison with the UMA IRIX run shows how system protocols to export a partial single system image to the us-
close Disco got to completely hiding the NUMA memory system ers. An example of this approach is the Sun Enterprise10000 ma-
from the workload. chine that handles software scalability and hardware reliability by
Disco achieves significant performance improvements by en- allowing users to hard partition the machine into independent fail-
hancing the memory locality of these workloads. The Engineering ure units each running a copy of the Solaris operating system. Users
workload sees a 33% performance improvement while Raytracestill benefit from the tight coupling of the machine, but cannot dy-
gets a 38% improvement. Both user and kernel modes see a sulmamically adapt the partitioning to the load of the different units.
stantial reduction in remote stall time. Disco increases data locality This approach favors low implementation cost and compatibility
by satisfying a large fraction of the cache misses from local memo-over innovation.
ry with only a small increase in Disco’s overhead. Like the hard partitioning approach, Disco only requires min-
Although Disco cannot totally hide all the NUMA memory la- imal OS changes. Although short of providing a full single system
tencies from the kernel, it does greatly improve the situation. Com-image, both systems build a partial single system image using stan-
paring Disco’s performance with that of the optimistic UMA where dard distributed systems protocols. For example, a single file sys-
all cache misses are satisfied in 300 nanoseconds, Disco comem image is built using NFS. A single system administration
within 40% for the Engineering workload and 26% for Raytrace. interface is built using NIS. System administration is simplified in
Our implementation of page migration and replication in Dis- Disco by the use of shared copy-on-write disks that are shared by
co is significantly faster than a comparable kernel many virtual machines.
implementatiorf26]. This improvement is due to Disco’s stream- Yet, unlike the hard partitioning approach, Disco can share all
lined data structures and optimized TLB shootdown mechanisms.the resources between the virtual machines and supports highly dy-
As aresult, Disco can be more aggressive in its policy decisions andvamic reconfiguration of the machine. The support of a shared buff-
provide better data locality. Tab#dists the frequency and latency er cache and the ability to schedule all the resources of the machine

of page migrations and replications for both workloads. between the virtual machines allows Disco to excel on workloads
that would not perform well with a relatively static partitioning.
Furthermore, Disco provides the ability for a single application to
6 Related Work 1 4 i 4

span all resources of the machine using a specialized scalable OS.

We start by comparing Disco’s approach to building svstem soft- Digital’s announced Galaxies operating system, a multi-kernel
Y paring PP g sy version of VMS, also partitions the machine relatively statically

ware for large-scale shared-memory multiprocessors with other rec;ike the Sun machine, with the additional support for segment driv-

search and commercial projects that target the same class o rs that allow applications to share memory across partitions. Gal-

I?)ac?trr]llgr? Z \s/\t/eerrghsgft(\:/\?er\?g le'lsrt(r?utgEl(r:icr)l totgg:]una;l umee}sChlli?rfaTron\;\fgrcszoamn_axies reserves a portion of the physical memory of the machine for
Y 9 gues. Y, this purpose. A comparable implementation of application-level

pare our implementation of dynamic page migration and repllcatlonShared memory between virtual machines would be simple and

with previous work. would not require having to reserve memory in advance.

Disco is a compromise between the OS-intensive and the OS-
6.1 System Software for Scalable Shared Memory light approaches. Given an infinite OS development budget, the OS
Machines is the right place to deal with issues such as resource management.

The high-level knowledge and greater control available in the oper-

Two opposite approaches are currently being taken to deal with theyting system can allow it to export a single system image and devel-
system software challenges of scalable shared-memory multipro-Op better resource management mechanisms and policies.
cessors. The first one is to throw a large OS development effort aleg tynately, Disco is capable of gradually getting out of the way as
the problem and effectively address these challenges in the operaghe OS improves. Operating systems with improved scalability can
ing system. Examples of this approach are the Hive [5] and Hurri-jst request larger virtual machines that manage more of the ma-
cane [25] research prototypes and the Cellular-IRIX system ¢hine's resources. Disco provides an adequate and low-cost solu-

recently announced by SGI. These multi-kernel operating systemsjon that enables a smooth transition and maintains compatibility
handle the scalability of the machine by partitioning resources intoyith commodity operating systems.

“cells” that communicate to manage the hardware resources effi-

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Page 12

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

6.2 Virtual Machine Monitors ciency is preserved by allowing inner virtual machines to directly

. access the underlying microkernel of the machine. Ford et al. show
Disco is a virtual machine monitor that implements in software a nat specialized system functions such as checkpointing and migra-
virtual machine identical to the underlying hardware. The approachtjon require complete state encapsulation. Like Fluke, Disco totally

itself is far from being novel. Golberg's 1974 survey paper [13] lists encapsulates the state of virtual machines, and can therefore trivial-
over 70 research papers on the topic and IBM's VM/370 [15] sys- |y implement these functions.

tem was introduced in the same period. Disco shares the same ap-
proach and features as these systems, and includes many of t
same performance optimizations as VM/370 [8]. Both allow the si-rEA ccNUMA Memory Management
multaneous execution of independent operating systems by virtual-Disco provides a complete ccNUMA memory management facility
izing all the hardware resources. Both can attach 1/0O devices tothat includes page placement as well as a dynamic page migration
single virtual machines in an exclusive mode. VM/370 mapped vir- and page replication policy. Dynamic page migration and replica-
tual disks to distinct volumes (partitions), whereas Disco has thetion was first implemented in operating systems for machines that
notion of shared copy-on-write disks. Both systems support a com-were not cache-coherent, such as the IBM Ace [2] or the BBN But-
bination of persistent disks and temporary disks. Interestingly, terfly [7]. In these systems, migration and replication is triggered by
Creasy argues in his 1981 paper that the technology developed tpage faults and the penalty of having poor data locality is greater
interconnect virtual machines will later allow the interconnection of due to the absence of caches.
real machines [8]. The opposite occurred and Disco benefits today ~ The implementation in Disco is most closely related to our
from the advances in distributed systems protocols. kernel implementation in [26]. Both projects target the FLASH
The basic approach used in Disco as well as many of its per-multiprocessor. Since the machine supports cache-coherency, page
formance optimizations were present in VM/370 and other virtual movement is only a performance optimization. Our policies are de-
machines. Disco differs in its support of scalable shared-memoryrived from this earlier work. Unlike the in-kernel implementation
multiprocessors, handling of modern operating systems, and thehat added NUMA awareness to an existing operating system, our
transparent sharing capabilities of copy-on-write disks and the glo-implementation of Disco was designed with these features in mind

bal buffer cache. _ _ _ from the beginning, resulting in lower overheads.
The idea of virtual machines remains popular to provide back-

ward compatibility for legacy applications or architectures. Mi-

crosoft's Windows 95 operating system [16] uses virtual machines :

to run older Windows 3.1 and DOS applications. Disco differs in Conclusions

that it runs all the system software in a virtual machine and not just__)

the legacy applications. DAISY [10] uses dynamic compilation This paper tackles the problem of developlr]g system sowaare for

techniques to run a single virtual machine with a different instruc- scalable shared memory multiprocessors without a massive devel-

tion set architecture than the host processor. Disco exports the sarf@Pment effort. Our solution involves adding a level of indirection

instruction set as the underlying hardware and can therefore use diP€tween commodity operating systems and the raw hardware. This

rect execution rather than dynamic compilation. Ievel_ of indirection uses another old idea, _/|rtual machln_e mo_nltors,
Virtual machine monitors have been recently used to provide {0 hide the novel aspects of the machine such as its size and

fault-tolerance to sensitive applications [3]. Bressoud and NUMA-ness. , , ,

Schneider’s system virtualizes only certain resources of the ma- | & prototype implementation called Disco, we show that

chine, specifically the interrupt architecture. By running the OS in Many of the problems of traditional virtual machines are no longer

supervisor mode, it disables direct access to I/O resources and physignificant. Our experiments show that the overheads imposed by

ical memory, without having to virtualize them. While this is suffi- the virtualization are modest both in terms of processing time and

cient to provide fault-tolerance, it does not allow concurrent virtual memory footprint. Disco uses a combination of innovative emula-
machines to coexist. tion of the DMA engine and standard distributed file system proto-

cols to support a global buffer cache that is transparently shared

. . across all virtual machines. We show how the approach provides a
6.3 Other System Software Structuring Techniques simple solution to the scalability, reliability and NUMA manage-

As an operating system structuring technique, Disco could be de-ment problems otherwise faced by the system software of large-
scribed as a microkernel with an unimaginative interface. Ratherscale machines.
than developing the clean and elegant interface used by microker- Although Disco was designed to exploit shared-memory mul-
nels, Disco simply mirrors the interface of the raw hardware. By tiprocessors, the techniques it uses also apply to more loosely-cou-
supporting different commodity and specialized operating systems,pled environments such as networks of workstations (NOW).
Disco also shares with microkernels the idea of supporting multiple Operations that are difficult to retrofit into clusters of existing op-
operating system personalities [1]. erating systems such as checkpointing and process migration can be
It is interesting to compare Disco with Exokernel [11], a soft- €asily supported with a Disco-like monitor. As with shared-memo-
ware architecture that allows application-level resource manage-Ty multiprocessors, this can be done with a low implementation cost
ment. The Exokernel safely multiplexes resources between userand using commodity operating systems.
level library operating systems. Both Disco and Exokernel support This return to virtual machine monitors is driven by a current
specialized operating systems such as ExOS for the Aegis exokertrend in computer systems. While operating systems and applica-
nel and SplashOS for Disco. These specialized operating system§0n programs continue to grow in size and complexity, the ma-
enable superior performance since they are freed from the genera}hine-|eve| interface has remained fairly simple. Software written
overheads of commodity operating systems. Disco differs from Ex- {0 operate at this level remains simple, yet provides the necessary
okernel in that it virtualizes resources rather than multiplexes them,compatibility to leverage the large existing body of operating sys-
and can therefore run commodity operating systems without signif-t€ms and application programs. We are interested in further explor-
icant modifications. ing the use of virtual machine monitors as a way of dealing with the
The Fluke system [12] uses the virtual machine approach toincreasing complexity of modern computer systems.
build modular and extensible operating systems. Recursive virtual
machines are implemented by their nested process model, and effi-

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Page 13

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

[13] Robert P Goldbeg. Survey of Mtual Machine Research.
IEEE Computer Magazing&(6), pp. 34-45, Jun. 1974.

[14] Maurice Herlihy Wait-free synchronization. IACM Trans-
actions on Pogramming Languages and System®RTAS)
13(1) pp. 124-149. Jan. 1991.

Acknowledgments

The authors would like to thank John Chapin, John Gerth, Mike

Nelson, Rick Rashid, Steve Ofsthun, Volker Strumpen, and our

shepherd Rich Draves for their feedback. Our colleagues Kinshuk

Govil, Dan Teodosiu, and Ben Verghese participated in many lively

discussions on Disco and carefully read drafts of the paper. [15] IBM Corporation. IBM \Mrtual Machine /370 Planning
This study is part of the Stanford FLASH project, funded by Guide. 1972.

ARPA grant DABT63-94-C-0054. Ed Bugnion is supported in part ; : : ;

by an NSF Graduate Research Fellowship. Mendel Rosenblum i416] Adrian King. Inside ihdows 95, Microsoft Press, 1995.

partially supported by an NSF Young Investigator Award. [17] Jefrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein,
Richard Simoni, Kourosh Gharachorloo, John Chapin, David
Nakahira, Joel BaxteMark Horowitz, Anoop Gupta, Mendel

References Rosenblum, and John HennesBlye Stanford FLASH Multi-
) . processarin Proceedings of the 21st International Sympo-
[1] Michael J. Accetta, Robert.\Baron, Wliam J. Bolosky sium on Computer Ahitectue (ISCA) pp. 302-313, Apr
David B. Golub, Richard.FRashid, Aadis evananian, and 1994.

Michael Young. Mach: A New Kernel Foundation for UNIX))) o
development. InProceedings of the Summer 86 USENIX [18]Jim Laudon and Daniel Lenoski. The SGI Origin: A
Confeence pp. 99-12. Jun. 86. ccNUMA Highly Scalable Servem Proceedings of the 24th

-)) International Symposium on Computerciitectue (ISCA)
[2] William J. Bolosky Robert P Fitzgerald, and Michael L.

: ; ; pp. 241-251. Jun. 1997.
Scott. Simple But Eéctive Techniques for NUMA Memory)
Management. InProceedings of the 12th Symposium on [19] Tom Lovett and Russel Clapp. §G: A CC-NUMA Com-
Operating Systems Principles (SO$P) 18-31. Dec. 1989. puter System for the Commercial MarketplacePhoceed-

. . ings of the 23t International Symposium on Computer
[38] Thomas C. Bressoud and Fred B. Schneittpervisor Architectue (ISCA) pp. 308-317. Jun. 1996.
based Fault-tolerance. Rroceedings of the 15th Symposium .) .
on Operating Systems Principles (SOSPp. 1-1. Dec. [20] Mike Perez, Compag Corporation. Interview “Scalable hard-
1995. ware evolves, but what about the network OS?" lENY
Dec. 1995.

[21] Sharon E. Perl and Richard L. Sites. Studies wfddivs NT
using Dynamic Executionr@ces. InProceedings of the 2nd
Symposium on Operating System Design and Implementation
(OSDI), pp. 169-183. Oct. 1996.

[22] Mendel Rosenblum, Edouard Bugnion, Scott Devine and
Steve Herrod. Using the SImOS Machine Simulator to study
Complex Computer System8CM Transactions on Model-
ling and Computer Simulation OMACS) 7(1), pp. 78-103.
Jan. 1997.

[23] Mendel Rosenblum, Edouard Bugnion, Steven A. Herrod,
Emmett Wtchel and Anoop Gupta. The Impact of Architec-
tural Tends on Operating System PerformancePioceed-
ings of the 15th Symposium on Operating Systems Principles
(SOSP) pp. 285-298. Dec. 1995.

[24] Lance ShulerChu Jong, Rolf Riesen, David van Dresger

[4] Tony Brewer and Greg Astfalk. The evolution of the HP/Con-
vex Exemplarin Proceedings of COMPCON Spring ‘9.
81-96. 1997

[5] John Chapin, Mendel Rosenblum, Scott Devinghankar
Lahiri, Dan Teodosiu, and Anoop Gupta. Hive: Fault contain-
ment for shared-memory Multiprocessors.Proceedings of
the 15th Symposium on Operating Systems Principles
(SOSP)pp. 12-25. Dec. 1995.

[6] Thomas H. Cormen, Charles E. Leiserson and Ronald L.
Rivest. Introduction to Algorithms. McGraw-Hill. 1990.

[7] Alan L. Cox and Robert J. FowleFhe Implementation of a
Coherent Memory Abstraction on a NUMA Multiprocessor:
Experiences with Platinum. IRroceedings of the 12th Sym-
posium on Operating Systems Principles (SO8p)32-44.
Dec. 1989.

[8] R. J. CreasyThe Origin of the VM/370 ime-Sharing Sys-
tem.IBM J. Res. Develop5(5) pp. 483-490, 1981.

[9] Helen Custerlnside Whdows NT Microsoft Press. 1993.

[10] Kermal Ebcioglu and Erik R. Altman. DAISYDynamic
Compilation for 100% Architectural Compatibilityn Pro-

ceedings of the 24th International Symposium on Computer

Architectue (ISCA) pp. 26-37. Jun. 1997.
[11] Dawson R. EnglerM. Frans Kaashoek, and J. ©dle Jr

Exokernel: An Operating System Architecture for Applica-

tion-level Resource Management.RProceedings of the 15th
Symposium on Operating Systems Principles (SPSR51-
266. Dec. 1995.

[12] Bryan Ford, Mike Hibler Jay Lepreau, Patrickullmann,

B. Maccabe, L.A. Fisk and.M. Stallcup. The Puma Operat-
ing System for Massively Parallel ComputersPmceedings
of the Intel Supeomputer User Grup Confeence,1995.

[25] Ron Unrau, Orran KriegeBenjamin Gamsa and Michael

Stumm. Hierarchical Clustering: A Structure for Scalable
Multiprocessor Operating System Desigournal of Super-
computing 9(1), pp. 105-134. 1995.

[26] Ben \emhese, Scott Devine, Anoop Gupta, and Mendel

Rosenblum. Operating System Support for Improving Data
Locality on CC-NUMA Compute Servers. Rroceedings of
the 7th International Confence on Achitectural Support for
Programming Languages and Operating Systems (ASPLOS)
pp. 279-289. Oct. 1996.

Godmar Back, Stephen Clawson. Microkernels meet Recur-[27] Steven Cameron ¥, Moriyoshi Ohara, Evanofrie, Jas-

sive Mrtual Machines. IrProceedings of the 2nd Symposium

on Operating System Design and Implementation (Q$pI)
137-151. Oct. 1996.

Disco: Running Commodity Operating Systems on Scalable Mudépsors

winder Pal Singh, and Anoop Gupta. The SPLASH-2 pro-
grams: Characterization and Methodological Considerations.
In Proceeedings of the 22nd Annual International Symposium
on Computer Athitectue (ISCA) pp. 24-36. May 1995.

Page 14

