
New York University
CSCI-UA.0202-001: Operating Systems (Undergrad): Spring 2025

Midterm Exam

• Write your name and NetId on this cover sheet (where indicated, at the bottom).

• This exam is 75 minutes. Stop writing when “time” is called. You must turn in your exams; we will
not collect them. Do not get up or pack up in the final five minutes. The instructor will leave the room
78 minutes after the exam begins and will not accept exams outside the room.

• There are 9 problems in this booklet. Some may be harder than others, and some earn more points
than others. You may want to skim all questions before starting.

• This exam is closed book and notes. You may not use electronics: phones, tablets, calculators,
laptops, etc. You may refer to ONE two-sided 8.5x11” sheet with 10 point or larger Times New
Roman font, 1 inch or larger margins, and a maximum of 55 lines per side.

• Do not waste time on arithmetic. Write answers in powers of 2 if necessary.

• If you find a question unclear or ambiguous, state any assumptions you make.

• Follow the instructions: if they ask you to justify something, explain your reasoning and any important
assumptions. Write brief, precise answers. Rambling brain dumps will not work and will waste
time. Think before you start writing so that you can answer crisply. Be neat. If we can’t understand
your answer, we can’t give you credit!

• If the questions impose a sentence limit, we will not read past that limit. In addition, a response that
includes the correct answer, along with irrelevant or incorrect content, will lose points.

Do not write in the boxes below.

I (xx/8) II (xx/10) III (xx/7) IV (xx/17) V (xx/24) VI (xx/12) VII (xx/8) VIII (xx/14) Total (xx/100)

Name: Solutions

NetId:

page 2 of 19

I Call-preserved registers (8 points)

1. [8 points] Consider the following assembly code for a function f. Registers %r12 and %r13 are
call-preserved, otherwise known as callee-saved. This question asks how to restore these registers at
the end of a function.

1 f:

2 # prolog

3 pushq %rbp # push frame pointer

4 movq %rsp, %rbp # frame pointer <-- stack pointer

5
6 pushq %r12

7 pushq %r13

8
9 subq $64, %rsp

10
11 ;; ... body of the function....

12
13 # epilog

14 ;; YOUR CODE HERE

15
16
17
18 movq %rbp, %rsp

19 popq %rbp

20 ret

Assume that line 11 represents many lines of code, in which registers %r12 and %r13 are used for
computation. Thus, they no longer contain the values that they did on lines 6 and 7.

Furthermore, you cannot make any assumptions about what happens to %rsp (the stack pointer) in the
body of the function. By the time execution reaches line 14, %rsp might be the same as at line 9, or it
might be much lower.

The epilog of the function (starting in line 14) needs to restore the values of %r12 and %r13 to what
they were at the start of the function. You will do that below.

Write assembly instructions, in syntactically valid x86-64, to restore the values of %r12 and %r13
to the values that they held just before line 6. Use no more than six instructions. (In fact, it can
be done in two instructions.)

Name: Solutions NYU NetId:

page 3 of 19

Preferred solution:

movq -8(%rbp), %r12

movq -16(%rbp), %r13

The following would also have worked, say if you didn’t remember the syntax used above for base+offset
addressing:

movq %rbp, %rsp

subq $16, %rsp

popq %r13

popq %r12

Many students wrote

popq %r13

popq %r12

But that is not correct, because it presumes that, at the start of the epilog, the stack pointer is in the same
place as it was in line 9, which is not something that the function can assume (per the instructions).

The “fixed” location of %r12 and %r13 on the stack is the offset relative to the frame pointer (%rbp),
not the stack pointer. That is in fact one of the purposes of the frame pointer: to “hold a spot” so that
local variables (including call-preserved registers) have a fixed and well-known location so that they
can be referenced.

Name: Solutions NYU NetId:

page 4 of 19

II Buggy code (10 points)

2. [10 points] In lab 1, you worked with linked lists. Each node has the following structure:

struct list_node {

int value;

struct list_node* next;

};

Consider a function list_insert, which inserts a node (new_node) directly after an existing node
(prev) in an existing list. The caller is responsible for making sure that prev is non-NULL.

void list_insert(struct list_node* prev, struct list_node new_node)

{

assert(prev);

new_node.next = prev->next;

prev->next = &new_node;

}

The implementation above is buggy. State the bug and which line or lines must change to fix it.
Use no more than three sentences.

(This was a lightly modified version of a homework problem. There is no syntactic or type issue.)

The problem is that (1) new node is passed by value, so changes that it makes are lost when the
function returns, and (2) prev->next is pointing to a local address within a stack frame, which will
have undefined behavior as soon as the function returns.

To fix it, the second parameter should be struct list node*, and the latter two lines should read:
new node->next = prev->next and prev->next = new node.

Name: Solutions NYU NetId:

page 5 of 19

III Using the Unix shell (7 points)

3. [7 points] Consider a server log file, log_file, in the following format:

2025-03-07 12:34:56 alice action:login status:success ip:192.168.1.101

2025-03-07 13:45:21 bob action:download status:failed ip:192.168.1.102

2025-03-07 14:15:33 charlie action:upload status:success ip:192.168.1.103

[thousands of lines in the same format as the above]

Your task is to construct a single line that, when typed at a Unix shell, extracts all successful actions
from the log file (that is, lines with status:success), sorts those lines by username alphabetically
(this is in the third field of the log file: alice, bob, charlie, and so on), takes only the first 50 entries,
and saves those 50 entries to a file called output.txt.

You may find it helpful to compose some of the following commands, though there may be more
commands below than you need:

head -n NUM NUM is a placeholder standing for a number. Reads from standard input, and writes
the first NUM lines to standard output.

find <starting point> -print Writes to standard output the name of all files starting at <starting point>.

grep "status:success" <file> Extracts lines containing status:success from file <file>,
and writes those lines to standard output.

sort -k NUM NUM is a placeholder standing for a number. This reads from standard input, and sorts
lines based on field NUM (the first field on the left is field 1), writing the results to standard output.

uniq Omits repeated, adjacent lines from standard input, and writes the results to standard output.

Write a single line at the shell to accomplish the task.

$

grep "status:success" log file | sort -k 3 | head -n 50 > output.txt

or

cat log file | grep "status:success" | sort -k 3 | head -n 50 > output.txt

Name: Solutions NYU NetId:

page 6 of 19

IV Lab 2: ls (17 points)

4. [17 points] In this problem, you will implement a simplified, non-recursive version of ls -n,
which in our ls lab counts the number of files in a given directory. We will break this into two steps,
outlined below and on the next page.

First step: Implement a function count_files(DIR* dir) that returns the number of files in an
open directory (non-recursively), or -1 if it encounters error. You can assume that dir is already open,
and you do not need to close it. You can include pseudofiles (“.”, “..”). We include some possibly
useful reference functions at the end of this question (two pages ahead).

Implement count files below in syntactically valid C.

Solution omitted because close to a lab assignment.

int count_files(DIR* dir)

{

// YOUR CODE HERE

}

Second step: Process the user’s input so that when the user types ls -n, the number of files in the
current directory, or “error” (in case of error), is printed. We include below an excerpt from the source
for lab 2. You should assume that you can call a function:

DIR* get_curr_dir();

This helper function returns a directory stream representing the current directory, or NULL on error.
You do not have to implement it.

Name: Solutions NYU NetId:

page 7 of 19

Please modify or add to the code below, with reference to line numbers, so that ls -n works as
described. Your modifications should be in syntactically valid C.

1 int main(int argc, char* argv[]) {

2 int opt;

3 err_code = 0;

4 bool list_long = false, list_all = false;

5 // We make use of getopt_long for argument parsing, and this

6 // (single-element) array is used as input to that function. The ‘struct

7 // option‘ helps us parse arguments of the form ‘--FOO‘.

8 struct option opts[] = {

9 {.name = "help", .has_arg = 0, .flag = NULL, .val = ’\a’}};

10
11 while ((opt = getopt_long(argc, argv, "1a", opts, NULL)) != -1) {

12 switch (opt) {

13 case ’\a’:

14 // Handle the case that the user passed in ‘--help‘. (In the

15 // long argument array above, we used ’\a’ to indicate this case.)

16 help();

17 break;
18 case ’1’:

19 // Safe to ignore since this is default behavior for our version

20 // of ls.

21 break;
22 case ’a’:

23 list_all = true;

24 break;
25 default:
26 printf("Unimplemented flag %d\n", opt);

27 break;
28 }

29 }

30
31 exit(err_code);

32 }

Name: Solutions NYU NetId:

page 8 of 19

/* Return information about the file given by pathname.

On success, return 0. On error, return -1. */

int stat(const char* pathname, struct stat *statbuf);

/* Same as the macro that you were given in lab2. Take as

input ’info’ and prints the given ’ch’ if the permission ’mask’ exists,

or "-" otherwise. */

#define PRINT_PERM_CHAR(info, mask, ch) printf("%s", (info & mask) ? ch : "-");

/* Tests whether the argument refers to a directory */

bool is_dir(char* pathandname);

/* Get username for uid. Return 1 on error, 0 otherwise. */

static int uname_for_uid(uid_t uid, char* buf, size_t buflen);

/* Get group name for gid. Return 1 on error, 0 otherwise. */

static int group_for_gid(gid_t gid, char* buf, size_t buflen);

/* Open a directory */

DIR *opendir(const char *name);

/* Closes the directory stream associated with dirp. Returns 0 on success.

On error, -1 is returned, and errno is set to indicate the error. */

int closedir(DIR* dirp);

/* Read a directory entry, returning a pointer to a dirent. It returns NULL on reaching

the end of the directory stream or if an error occurred. If an error

occurred, errno is set to a non-zero value. */

struct dirent *readdir(DIR *dirp);

/* A function that you may have filled in when implementing lab 2 */

void list_file(char* pathandname, char* name, bool list_long);

/* A function that you may have filled in when implementing lab 2 */

void list_dir(char* dirname, bool list_long, bool list_all, bool recursive);

struct stat {

dev_t st_dev;

ino_t st_ino;

mode_t st_mode;

nlink_t st_nlink;

uid_t st_uid;

gid_t st_gid;

dev_t st_rdev;

off_t st_size;

blksize_t st_blksize;

blkcnt_t st_blocks;

}

Name: Solutions NYU NetId:

page 9 of 19

Additional space if needed

Name: Solutions NYU NetId:

page 10 of 19

V Producer-Consumer patterns (24 points)

5. [24 points] In this problem, you will implement a variant of the producer-consumer pattern that
we studied in class. Producer threads add items to one of two buffers: a red buffer or a blue buffer.
Consumer threads remove items in pairs: one item from the red buffer and one from the blue buffer, at
the same time. Pseudocode for the threads is below:

BufferWrapper bw;

// Data structure representing two items

struct ItemPair {

Item item1;

Item item2;

ItemPair(Item, Item);

};

void producer()

{

while (1) {

// next line produces an item and puts it in nextProduced

Item nextProduced = means_of_production();

if (get_random_bit() == 0)

bw.AddToRed(nextProduced);

else

bw.AddToBlue(nextProduced);

}

}

void consumer()

{

while (1)

ItemPair item_pair = bw.ConsumeTwo();

// next line abstractly consumes both items

consume_item(item_pair);

}

}

Name: Solutions NYU NetId:

page 11 of 19

Your job is to implement BufferWrapper. A few notes:

– You must implement the buffers as last-in, first-out (LIFO), which means that the most recently
added item to a buffer should also be the item to be removed next from that buffer. This is
sometimes known as a stack (in comparison to a queue), but if that confuses you, you can ignore
this point about vocabulary.

– The buffers are implemented as arrays, and have a maximum size.

– Each array requires an accompanying count, and the count also helps determine which item
should be consumed next.

– You must follow the class’s concurrency commandments.

– Do not wake threads unnecessarily.

Fill in variables and methods for the BufferWrapper object. There are six (6) places to fill in
code. Pseudocode is acceptable.

class BufferWrapper {

public:

BufferWrapper();

˜BufferWrapper();

void AddToRed(Item);

void AddToBlue(Item);

ItemPair ConsumeTwo();

private:

Item red_buffer[LIFO_SIZE]; // array of Items

Item blue_buffer[LIFO_SIZE]; // array of Items

// ADD MATERIAL HERE (1)

mutex M;

cond bothnonempty;

cond redspace;

cond bluespace;

int red_size;

int blue_size;

};

void

BufferWrapper::BufferWrapper()

{

// FILL THIS IN (2)

red_size = blue_size = 0;

mutex_init(&M);

cond_init(&bothnonempty);

cond_init(&redspace);

cond_init(&bluespace);

Name: Solutions NYU NetId:

page 12 of 19

}

void

BufferWrapper::˜BufferWrapper()

{

// FILL THIS IN (3)

mutex_destroy(&M)

cond_destroy(&bothnonempty);

cond_destroy(&redspace);

cond_destroy(&bluespace);

}

// Add the Item to the next free slot in the red buffer. If

// this buffer is full (there are already LIFO_SIZE elements),

// then block.

void

BufferWrapper::AddToRed(Item item)

{

// FILL THIS IN (4)

M.acquire();

while (red_size == LIFO_SIZE)

cond_wait(&redspace, &M);

red_buffer[red_size] = item;

++red_size;

if (blue_size > 0)

cond_signal(&bothnonempty, &M);

M.release();

}

// Add the Item to the next free slot in the blue buffer. If

// this buffer is full (there are already LIFO_SIZE elements),

// then block.

void

BufferWrapper::AddToBlue(Item item)

{

// FILL THIS IN (5)

M.acquire();

while (blue_size == LIFO_SIZE)

cond_wait(&bluespace, &M);

blue_buffer[blue_size] = item;

++blue_size;

if (red_size > 0)

cond_signal(&bothnonempty, &M);

M.release();

}

Name: Solutions NYU NetId:

page 13 of 19

// Remove, and return, two Items, one each from the red

// buffer and the blue buffer. If the consumer cannot get one

// item from each of the buffers, it should block until there

// is at least one item in each buffer. Recall that you

// are removing in LIFO order.

ItemPair

BufferWrapper::ConsumeTwo()

{

// FILL THIS IN (6)

//

// Hint: you can make an ItemPair from two

// items i1 and i2 by writing "ItemPair(i1, i2);"

M.acquire();

while (red_size == 0 || blue_size == 0)

cond_wait(&bothnonempty, &M);

--red_size;

--blue_size;

Item ret1 = red_buffer[red_size];

Item ret2 = blue_buffer[blue_size];

cond_signal(&redspace, &M);

cond_signal(&bluespace, &M);

M.release();

return ItemPair(ret1, ret2);

}

Name: Solutions NYU NetId:

page 14 of 19

VI Mutex implementation (12 points)

6. [12 points] We went over a mutex implementation in class. It is on page 16 for reference. As
a hint, you do not need to understand the details of the “else” branch to do this question. Assume
a multi-CPU system, and assume that the hardware provides sequential consistency. Assume that
multiple threads use this mutex.

A developer makes a buggy modification, removing a call to release(&m->splock). This line is
prefaced with -, in the diff below:

--- fair-mutex.c 2025-02-12 09:50:10

+++ fair-mutex-mod1.c 2025-03-11 23:36:29

@@ -21,11 +21,10 @@

acquire(&m->splock);

// Check if the mutex is held; if not, current thread gets mutex and returns

if (m->owner == 0) {

m->owner = id_of_this_thread;

- release(&m->splock);

} else {

// Add thread to waiters.

STAILQ_INSERT_TAIL(&m->waiters, id_of_this_thread, qlink);

// Tell the scheduler to add current thread to the list

What kind of problem does the bug create? Circle the BEST answer below:

A Race condition

B Progress problem

B. Progress problem.

Now justify your answer above: (1) give a problematic execution or interleaving with reference
to specific lines of code, and (2) say why the execution or interleaving leads to a race condition
or progress problem. Use no more than three sentences.

After a thread T1 acquires an unheld mutex, it will spin forever in mutex release, when it tries to
acquire the spinlock. Similarly, after thread T1 acquires an unheld mutex, every other thread getting to
mutex acquire will spin endlessly (instead of entering the wait state).

Name: Solutions NYU NetId:

page 15 of 19

The developer tries something else: they apply the modification below. The modifications are shown
relative to the original on the next page (page 16), where lines prefaced with - are removed, and lines
prefaced with + are added. Unfortunately, the code is still buggy.

--- fair-mutex.c 2025-02-12 09:50:10

+++ fair-mutex-mod2.c 2025-03-11 23:38:21

@@ -18,13 +18,13 @@

void mutex_acquire(struct Mutex *m) {

- acquire(&m->splock);

-

// Check if the mutex is held; if not, current thread gets mutex and returns

if (m->owner == 0) {

m->owner = id_of_this_thread;

- release(&m->splock);

} else {

+

+ acquire(&m->splock);

+

// Add thread to waiters.

STAILQ_INSERT_TAIL(&m->waiters, id_of_this_thread, qlink);

What kind of problem does the new bug create? Circle the BEST answer below:

A Race condition

B Progress problem

A. Race condition. No issue with progress.

Now justify your answer above: (1) give a problematic execution or interleaving with reference
to specific lines of code, and (2) say why the execution or interleaving leads to a race condition
or progress problem. Use no more than three sentences.

If the mutex is currently unheld, and two threads on two processors try to acquire it at the same time, they
could both read m->owner as 0, and both execute the “if” block, and then both exit mutex acquire,
thereby defeating the purpose: this is most definitely not mutual exclusion. The now-removed spinlock
acquisition would have prevented that.

Name: Solutions NYU NetId:

page 16 of 19

void mutex_acquire(struct Mutex *m) {

acquire(&m->splock);

// Check if the mutex is held; if not, current thread gets mutex and returns

if (m->owner == 0) {

m->owner = id_of_this_thread;

release(&m->splock);

} else {

// Add thread to waiters.

STAILQ_INSERT_TAIL(&m->waiters, id_of_this_thread, qlink);

// Tell the scheduler to add current thread to the list

// of blocked threads. The scheduler needs to be careful

// when a corresponding sched_wakeup call is executed to

// make sure that it treats running threads correctly.

sched_mark_blocked(&id_of_this_thread);

// Unlock spinlock.

release(&m->splock);

// Stop executing until woken.

sched_swtch();

// When we get to this line, we are guaranteed to hold the mutex. This

// is because we can get here only if context-switched-TO, which itself

// can happen only if this thread is removed from the waiting queue,

// marked "unblocked", and set to be the owner (in mutex_release()

// below).

}

}

void mutex_release(struct Mutex *m) {

// Acquire the spinlock in order to make changes.

acquire(&m->splock);

// Assert that the current thread actually owns the mutex

assert(m->owner == id_of_this_thread);

// Check if anyone is waiting.

m->owner = STAILQ_GET_HEAD(&m->waiters);

// If so, wake them up.

if (m->owner) {

sched_wakeone(&m->owner);

STAILQ_REMOVE_HEAD(&m->waiters, qlink);

}

// Release the internal spinlock

release(&m->splock);

}

Name: Solutions NYU NetId:

page 17 of 19

VII Scheduling (8 points)

7. [8 points] Which of these scheduling disciplines are guaranteed not to starve processes, regardless
of the workload? Recall that a discipline is susceptible to starvation if there exists a workload that
could forever prevent at least one job from ever getting processor time. Assume as a technical point
that the system has infinite capacity to hold waiting jobs (if this assumption confuses you, you can
ignore it).

Choose ALL that apply:

A FCFS/FIFO

B Round-robin

C Priority

D SJF

E STCF

F Stride

G Lottery

H CFS

I None of the above (meaning that for each scheduling discipline there are workloads that result in
starvation)

J All of the above, if jobs are I/O bound

K All of the above, if jobs are CPU bound

A, B, F, G, H

Name: Solutions NYU NetId:

page 18 of 19

VIII Virtual memory (14 points)

8. [7 points] Determine the number of page table entries (PTEs) that are needed for a machine
architecture where virtual addresses are 20 bits and the page size is 211 bytes (=2KB). (This question
refers to last-level PTEs, so the number of levels of mapping is irrelevant. If this parenthetical confuses
you, you can ignore it.)

How many PTEs are needed to map the entire address space? Show your work.

There are 9 (= 20−11) bits to reference the VPN, which means there are 29 possible VPNs, which
means 29 = 512 entries are needed.

9. [7 points] This question assumes the x86-64 paging architecture that we covered in class: page
size of 212 = 4096 bytes, four levels of page tables, virtual addresses are 64 bits but the upper 16 bits
are not used.

Consider a virtual address whose bottom 48 bits are as follows:

0xffff ffff f000

To map the virtual address above to a physical address, which entry (by 0-based index) in the given
process’s L1 (top-level) page table would be used? “0-based” means that the entries are numbered
starting from 0 (the first entry is index 0, the second entry is index 1, and so on).

Choose the BEST answer:

A 0

B 1

C 2

D 202

E 511

F 512

G 1023

H 1024

G With only the bottom 48 bits, we don’t have enough information to answer.

E. The index into the L1 page table is determined by the upper 9 bits, which are all 1s. That indexes
into the last entry in the L1 page table, which has index 511.

Name: Solutions NYU NetId:

page 19 of 19

Additional space if needed

End of Midterm

Name: Solutions NYU NetId:

	I Call-preserved registers (8 points)
	II Buggy code (10 points)
	III Using the Unix shell (7 points)
	IV Lab 2: ls (17 points)
	V Producer-Consumer patterns (24 points)
	VI Mutex implementation (12 points)
	VII Scheduling (8 points)
	VIII Virtual memory (14 points)

