gé Lgfﬁlﬁ sec hilecture © device drivers
l -

v 2. §ync)'\c0nou5 VS, G
Y Ugr-leve! thicading, miro
G/S Cov_"od' Sk’l"]’IJ\ES USgr—lt’\lc' ’H\reao\{r\3>
Sw+ck 0
)/lau ()
To
Q/é : (oo‘?ﬁt‘&f\‘wﬁ muHi’H\rcaJM
r/? er&m?’h\\f/ uSe,r-(evel mul“h reaJing

2.)%. Se&, Wha’&\)oar(l ‘Y/rom ?F\'OF c\lass

1‘ . User- \e\fc\ ’H\reﬁJ\'r\g 0‘7/5@“«9%‘\@

T

e

12

Umk(\ fon - (fé@@\v(

CQo e
C\'C

_ﬂ/ A0 €

User _level 1 M’ﬂdlvng [
- pockeqe. [

|

O J

—

Hho

5 Coded suitdhes (wer space) o —
| B
gw[n[c(\ rej Sfes scTiR

11 shek
T B

TL.M

USU‘/\(NJ e Q«Akrj ?Mkdjﬁ

’_—_dm /L;\aokwa

4

Printed by Michael Walfish

Nov 02, 25 9:05 swtch.txt Page 1/2 Nov 02, 25 9:05 swtch.txt Page 2/2
1 CS 202 55
2 Handout 11 (Class 17) 56 Example use of swtch(): the yield() call.
3 57
4 1. User-level threads and swtch() 58 A thread is going about its business and decides that it’s executed for
5 59 long enough. So it calls yield(). Conceptually, the overall system needs
6 We’1ll study this in the context of user-level threads. 60 to now choose another thread, and run it:
7 61
8 Per-thread state in thread control block: 62 void yield() {
9 63
10 typedef struct tcb { 64 tcb* next = pick_next_thread(); /* get a runnable thread */
11 unsigned long saved_rsp; /* Stack pointer of thread */ 65 tcb* current = get_current_thread();
12 char *t_stack; /* Bottom of thread’s stack */ 66
13 /* .. %/ 67 swtch (current, next);
14 }; 68 —
15 69 /* when ’current’ is later rescheduled, it starts from here */
16 Machine-dependent thread initialization function: 70 }
17 71
18 void thread_init (tcb **t, void (*fn) (void *), void *arg); 72 3. How do context switches interact with I/O calls?
19 73
20 Machine-dependent thread-switch function: 74 This assumes a user-level threading package.
21 75
22 void swtch(tcb *current, tcb *next); 76 The thread calls something like "fake_blocking_read()". This looks
23 - 77 to the _thread_ as though the call blocks, but in reality, the call
24 Implementation of swtch(current, next): 78 is not blocking:
25 79
26 # gcc x86-64 calling convention: 80 int fake_blocking_read(int fd, char* buf, int num) {
27 # on entering swtch(): 81
28 # register %$rdi holds first argument to the function ("current") 82 int nread = -1;
29 # register %$rsi holds second argument to the function ("next") 83
30 84 while (nread == -1) {
31 # Save call-preserved (aka "callee-saved") regs of ’current’ 85
32 pushg %rbp 86 /* this is a non-blocking read() syscall */
33 pushg %$rbx 87 nread = read(fd, buf, num);
34 pushg $rl2 88
35 pushg %rl3 89 if (nread == -1 && errno == EAGAIN) {
36 pushqg %rl4 % /*
37 pushg $rl5 91 * read would block. so let another thread run
38 92 * and try again later (next time through the
39 # store old stack pointer, for when we swtch() back to "current" later 93 * loop) .
40 movqg %$rsp, (%rdi) # $rdi->saved_rsp = $%rsp 94 */
41 movqg (%rsi), S%rsp # Srsp = %$rsi->saved_rsp 95 yield();
42 9% }
43 # Restore call-preserved (aka "callee-saved") regs of ’next’ 97 }
44 popg %$rlb 98
45 popg %$rl4d — 99 return nread;
46 popg %$rl3.-— 100 }
47 popg %rl2 — 101
48 popg %rbx — 102
49 popg %rbp_'__ 103
50 104
51 # SOe execution, from where] "next" was when|it last entered swtch(105
52 ret
53 °
: A WO [Zx F10O 20
- M ° b
777 (ET-6 ar veT-gdAr . .
1V (i s : ’
) .
// / f\>E in Swidn) j ‘forop . A() y\glA()
b /< 1
- (.
Y /s Fox swich ()
— ‘ /
/-2 ’ WIen=7)
. C o(C
/ o e 13 !
- '
4 / AR\ — >
ﬁ OX‘F,.’FIULP 4

A .

£

c
A >
¢ A‘&AD 12 (nexl)

Sunday Ncrm 02,2025

'/-(5\7

ixd _ cea |

Lecnm
A 10

|,

&t

oL £ 500

Sawé\ %

%,50@1&

Oxt oo

— N./T—»v—

Oct..$ 500

Ox’F.,JCQOO

o\xFJ (00

