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1 CS 202 55
2 Handout 11 (Class 17) 56 Example use of swtch(): the yield() call.
3 57
4 1. User-level threads and swtch() 58 A thread is going about its business and decides that it’s executed for
5 59 long enough. So it calls yield(). Conceptually, the overall system needs
6 We’1ll study this in the context of user-level threads. 60 to now choose another thread, and run it:
7 61
8 Per-thread state in thread control block: 62 void yield() {
9 63
10 typedef struct tcb { 64 tcb* next = pick_next_thread(); /* get a runnable thread */
11 unsigned long saved_rsp; /* Stack pointer of thread */ 65 tcb* current = get_current_thread();
12 char *t_stack; /* Bottom of thread’s stack */ 66
13 /* .. %/ 67 swtch (current, next);
14 }; 68 —
15 69 /* when ’current’ is later rescheduled, it starts from here */
16 Machine-dependent thread initialization function: 70 }
17 71
18 void thread_init (tcb **t, void (*fn) (void *), void *arg); 72 3. How do context switches interact with I/O calls?
19 73
20 Machine-dependent thread-switch function: 74 This assumes a user-level threading package.
21 75
22 void swtch(tcb *current, tcb *next); 76 The thread calls something like "fake_blocking_read()". This looks
23 - 77 to the _thread_ as though the call blocks, but in reality, the call
24 Implementation of swtch(current, next): 78 is not blocking:
25 79
26 # gcc x86-64 calling convention: 80 int fake_blocking_read(int fd, char* buf, int num) {
27 # on entering swtch(): 81
28 # register %$rdi holds first argument to the function ("current") 82 int nread = -1;
29 # register %$rsi holds second argument to the function ("next") 83
30 84 while (nread == -1) {
31 # Save call-preserved (aka "callee-saved") regs of ’current’ 85
32 pushg %rbp 86 /* this is a non-blocking read() syscall */
33 pushg %$rbx 87 nread = read(fd, buf, num);
34 pushg $rl2 88
35 pushg %rl3 89 if (nread == -1 && errno == EAGAIN) {
36 pushqg %rl4 % /*
37 pushg $rl5 91 * read would block. so let another thread run
38 92 * and try again later (next time through the
39 # store old stack pointer, for when we swtch() back to "current" later 93 * loop) .
40 movqg %$rsp, (%rdi) # $rdi->saved_rsp = $%rsp 94 */
41 movqg (%rsi), S%rsp # Srsp = %$rsi->saved_rsp 95 yield();
42 9% }
43 # Restore call-preserved (aka "callee-saved") regs of ’next’ 97 }
44 popg %$rlb 98
45 popg %$rl4d — 99 return nread;
46 popg %$rl3.-— 100 }
47 popg %rl2 — 101
48 popg %rbx — 102
49 popg %rbp_'__ 103
50 104
51 # SOe execution, from where] "next" was when|it last entered swtch( 105
52 ret
53 °
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