a . La{{/ "’
IW\& %?é — éLL ?ajejLaLjL/‘

a 2 j/t) owl\lkéﬁﬂe, —
a % cfu / device]ﬂ+Uac"Tm ! t (,
A\ MCJ\aAEcS - H/%Uﬂ/ ‘(L
= STE I
oAl : L
Q \oumj V5. l/\‘]'cf(u(z’l] wwe;&

n D\’l/AY Vs, ?(DBTC\MMC P\ i/ o
N "i So{’ ’|'uar< af(/L\I-)ﬁc:,’urf,: o\e\/ice A\'NU}

0 S ,\(/Lrg/\ou,s VS. Qsuyncronous o
06 Y%\Vma o "
[
) z /o aw‘\ikc)mrf To ()ewf

uo| [cut em. |
Devie V| T

/
-

5. COU/ Devie. 'l(\kf a.clion
A. Mechanis opwmmumw%m
() Cx \c(Jf ’f/o k\?huc, NS

Ouﬂ) (/\\b u:h«// N -~ - E%WF\F/:
examp 5’ AL adoo sos

(1) oo
LLL> ke \DGGJA "U"k‘-

[u,(.) cpl\fole Low cwsol

(l9> r’\aw\b" mﬁfrzA /0
Cxaw‘)le

(.0"50l€ ()u 4 0

(c) inTer LlfT)

U) via YL\/Sth\ memw7

E. Q"“V‘j Vs, 'l/l“\fﬂuﬁﬁ (\/5. LU$7/ Wa(?ll'rlz)
Teodedt

o TYM A ve D/oqfaMMfo‘ j:/ﬂ

— |)70 T XA

?roivr/.ambji/p" \J‘mj[we l\avc seen So j:nr
DMA: device M reads from /M;}U +)

! Wol'lla. o
memery, if\i]l(aL (J’M’C“'Je\/lce n
2 il | kA

(5 Ye Txir ed.
D 114

1 PoSSI\;{lﬂlI.C;"

{Drth, progemee 45 {plhy et

—

L\ , gevlce ArNer <

55/ kermol [

\)
| Mok

Ceﬂi/ \D\OC/\CO
WO N7

_\,\oAqwj -z as\/m\wwus

C .e A<\INC l.(OS)OL:t, /H‘”» i/_’_ef.(:ace_

)\//\(V7. =

‘\)Ve_scrd'ecl {’0 user - le\/el FroceSst.

5\/«\(.' l)\ob(‘S “'5\/“: fé‘%W/lj errdt, l/\\\CM'i Eﬁsk(a,‘(/

ead (§4, b s2)
wrile GJ, Lﬂ[, SZ>/'

Machine
RAM RAM RAM

L
®)
7p)
7p)
O
O
@)
pud

al

Printed by Michael Walfish

Mar 30, 25 13:24 handout11-2.txt Page 1/5 Mar 30, 25 13:24 handout11-2.txt Page 2/5
1 CS 202 73
2 Handout 11 (Class 16) 74
3 75 // boot_readseg(dst, src_sect, filesz, memsz)
4 1. Example use of I/O instructions: boot loader % // Load an ELF segment at virtual address ‘dst‘ from the IDE disk’s sector
5 7 // ‘src_sect'. Copies ‘filesz' bytes into memory at ‘dst' from sectors
6 Below is the WeensyOS boot loader s // ‘src_sect' and up, then clears memory in the range
7 7 // ‘[dst+filesz, dst+memsz) ‘.
8 It may be helpful to understand the overall picture 80 static void boot_readseg(uintptr_t ptr, uint32_t src_sect,
9 81 size_t filesz, size_t memsz) {
10 This code demonstrates I/0, specifically with the disk: the 82 uintptr_t end_ptr = ptr + filesz;
1 bootloader reads in the kernel from the disk. 83 memsz += ptr;
12 84
13 See the functions boot_waitdisk () and boot_readsect (). Compare to Figures 36 85 // round down to sector boundary
.5 86 ptr &= ~(SECTORSIZE - 1);
14 and 36.6 in OSTEP. 87
15 88 // read sectors
16 /* boot.c */ 89 for (; ptr < end_ptr; ptr += SECTORSIZE, ++src_sect) {
17 #include "x86-64.h" 90 boot_readsect (ptr, src_sect);
18 #include "elf.h" 91 }
19 92
20 // boot.c 93 // clear bss segment
21 // 94 for (; end_ptr < memsz; ++end_ptr) {
2 // WeensyOS boot loader. Loads the kernel at address 0x40000 from 95 *(uint8_t*) end_ptr = 0;
23 // the first IDE hard disk. % }
24 // 97 }
5 // A BOOT LOADER is a tiny program that loads an operating system into 98
26 // memory. It has to be tiny because it can contain no more than 510 bytes 99
27 // of instructions: it is stored in the disk’s first 512-byte sector. 100 // boot_waitdisk
28 // 01 // Wait for the disk to be ready.
20 // When the CPU boots it loads the BIOS into memory and executes it. The 102 static void boot_waitdisk (void) {
0 // BIOS intializes devices and CPU state, reads the first 512-byte sector of 103 // Wait until the ATA status register says ready (0x40 is on)
31 // the boot device (hard drive) into memory at address 0x7C00, and jumps to 104 // & not busy (0x80 is off)
2 // that address. 105 while ((inb(0x1F7) & 0xCO) != 0x40) {
s // 106 /* do nothing */
a // The boot loader is contained in bootstart.S and boot.c. Control starts 107 }
s // in bootstart.S, which initializes the CPU and sets up a stack, then 108}
3 // transfers here. This code reads in the kernel image and calls the 109
s // kernel. 110
8 // 111 // boot_readsect (dst, src_sect)
s // The main kernel is stored as an ELF executable image starting in the 12 // Read disk sector number ‘src_sect' into address ‘dst‘.
w0 // disk’s sector 1. 13 static void boot_readsect (uintptr_t dst, uint32_t src_sect) {

512
((elf_header¥*)

42 #define SECTORSIZE

43 #define ELFHDR 0x10000) // scratch space
45 void boot (void) __attribute_ ((noreturn));
46 static void boot_readsect (uintptr_t dst, uint32_t src_sect);

47 static void boot_readseg(uintptr_t dst, uint32_t src_sect,

48 size_t filesz, size_t memsz);

49

s0 // boot

st // Load the kernel and jump to it.

52 void boot (void) {

53 // read 1lst page off disk (should include programs as well as header)
54 // and check validity

55 boot_readseg((uintptr_t) ELFHDR, 1, PAGESIZE, PAGESIZE);

56 while (ELFHDR->e_magic != ELF_MAGIC) {

57 /* do nothing */

58 }

59

60 // load each program segment

61 elf program* ph = (elf_program*) ((uint8_t*) ELFHDR + ELFHDR->e_phoff);
62 elf_program* eph = ph + ELFHDR->e_phnum;

63 for (; ph < eph; ++ph) {

64 boot_readseqg (ph->p_va, ph->p_offset / SECTORSIZE + 1,

65 ph->p_filesz, ph->p_memsz);

66 }

67

68 // jump to the kernel

69 typedef void (*kernel_entry_t) (void) __attribute__ ((noreturn));

70 kernel_entry_t kernel_entry = (kernel_entry_ t) ELFHDR->e_entry;
71 kernel_entry();
72}

14
115
116
117
118
119

// programmed I/O for "read sector"
boot_waitdisk();

outb (0x1F2, 1); //

outb (0x1F3, src_sect); //
outb (0x1F4, src_sect >> 8);
outb (0x1F5, src_sect >> 16);
outb (0x1F6, (src_sect >> 24) |
outb (0x1F7, 0x20); //

‘count = 1°
‘src_sect?,

send
send

0xEQ0) ;
send the command:

// then move the data into memory
boot_waitdisk();

insl (0x1F0, (void*) dst, SECTORSIZE/4); // read

as an ATA argument
the sector number

0x20 =

read sectors

128 words from the disk

Sunday March 30, 2025

handout11-2.txt

1/3

Printed by Michael Walfish

Mar 30, 25 13:24 handout11-2.txt Page 3/5

Mar 30, 25 13:24 handout11-2.txt Page 4/5

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

2.

ys

Two more examples of I/O instructions
(a) Reading keyboard input
The code below is an excerpt from WeensyOS’s k-hardware.c

This reads a character typed at the keyboard (which shows up on the
"keyboard data port" (KEYBOARD_DATAREG)) .

/* Excerpt from WeensyOS x86-64.h */
// Keyboard programmed I/O

#define KEYBOARD_STATUSREG 0x64
#define KEYBOARD_STATUS_READY 0x01
#define KEYBOARD_DATAREG 0x60

int keyboard_readc (void) {
static uint8_t modifiers;
static uint8_t last_escape;

if ((inb (KEYBOARD_STATUSREG) & KEYBOARD_STATUS_READY) == 0) {
return -1;

}

uint8_t data = inb (KEYBOARD_DATAREG) ;

uint8_t escape = last_escape;
last_escape = 0;
if (data == 0xE0) { // mode shift

last_escape = 0x80;
return 0;

} else if (data & 0x80) { // key release: matters only for modifier ke
int ch = keymapl (data & Ox7F) | escapel;
if (ch >= KEY_SHIFT && ch < KEY_CAPSLOCK) {
modifiers &= ~(1 << (ch - KEY_SHIFT));

}
return 0;

}
int ch = (unsigned char) keymap[data | escapel;

if (ch >= ’"a’ && ch <= "z") {
if (modifiers & MOD_CONTROL) {

ch —-= 0x60;
} else if (! (modifiers & MOD_SHIFT) != ! (modifiers & MOD_CAPSLOCK))
ch -= 0x20;

}
} else if (ch >= KEY_CAPSLOCK) {
modifiers = 1 << (ch - KEY_SHIFT);

ch = 0;

} else if (ch >= KEY_SHIFT) {
modifiers |= 1 << (ch - KEY_SHIFT);
ch = 0;

} else if (ch >= CKEY(0) && ch <= CKEY(21)) {

ch = complex_keymap[ch - CKEY(0)].map[modifiers & 3];
} else if (ch < 0x80 && (modifiers & MOD_CONTROL)) {

ch = 0;

return ch;

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

(b) Setting the cursor position
The code below is also excerpted from WeensyOS’s k-hardware.c. It
uses I/0O instructions to set a blinking cursor somewhere on a 25 x 80

screen.

// console_show_cursor (cpos)

// Move the console cursor to position ‘cpos‘, which should be between 0

// and 80 * 25.

void console_show_cursor (int cpos) {

if (cpos < 0 || cpos > CONSOLE_ROWS * CONSOLE_COLUMNS) {
cpos = 0;
}
outb (0x3D4, 14); // Command 14 = upper byte of position
outb (0x3D5, cpos / 256);
outb (0x3D4, 15); // Command 15 = lower byte of position
(

outb (0x3D5, cpos % 256);

Sunday March 30, 2025

handout11-2.txt

2/3

Mar 30, 25 13:24 handout11-2.txt Page 5/5
215 3. Memory-mapped I/0

216

217 a. Here is a 32-bit PC’s physical memory map:
218

219 + + <— OXFFFFFFFF (4GB)
220 32-bit

221 memory mapped

222 devices

223

224 IN/N/N/N/N/N/N/N/N/N

225

226 ININININ/NININ/N/N/N

227

228 Unused

229
230
231

+ + <- depends on amount of RAM

Extended Memory

BIOS ROM

+—+

—————————————————— Jlr <- 0x00100000 (1MB)

<- 0x000F0000 (960KB)
l16-bit devices,
expansion ROMs
Fom T <- 0x000C0000 (768KB)

\ VGA Display

<- 0x000A0000 (640KB)

Low Memory

+ + <- 0x00000000

[Credit to Frans Kaashoek, Robert Morris, and Nickolai Zeldovich for
this picture]

b. Loads and stores to the device memory "go to hardware".

An example is in the console printing code from WeensyOS. Here is an
excerpt from link/shared.ld:

/* Compare the address below to the map above. */
PROVIDE (console = 0xB8000);

/
prints a character to the console at the specified
cursor position in the specified color.
Question: what is going on in the check

if (¢ == '\n’)

* ok Ok ok ok

?
* Hint: ’\n’ is "C" for "newline" (the user pressed enter).
*/

static void console_putc(printer* p, unsigned char c, int color) {

console_printer* cp = (console_printer*) p;
if (cp->cursor >= console + CONSOLE_ROWS * CONSOLE_COLUMNS) {
cp—->cursor = console;
}
if (¢ == "\n’") {
int pos = (cp->cursor - console) % 80;
for (; pos != 80; pos++) {
*cp->cursor++ = ’ ' | color;
}
} else {
*cp->cursor++ = C | color;

}

Sunday March 30, 2025

handout11-2.txt

Printed by Michael Walfish

3/3

