
1 / 7

CS202 Review Session 7 Based on previous notes of cs202 review session 7.

Yuxia Zhan - Fall 2025

Contents

�. Introduction

�. Lab5's file system design

�. Lab5's file system implementation

�. Lab5 Exercises in more details

�. Debug for Lab5

Introduction

In this week and last week's classes, you learned a lot about file system. And in the lab5, you have the

chance to dig into a real file system's code and complete some core functions inside this system. What's

even better is, you can run your implementation of ls in lab2 in this file system.

Let's recall what happens when you run ls in lab2. What outputted are the files and subdirectories inside a

directory. And if you recall more details, what's going on under the hood is that you use opendir(),
readdir() syscalls to get the content inside a directory.

But according to what you learned about the disk, there's no such thing called "xxx directory" or "xxx file"

inside a physical disk, there are only blocks of data. This "directory path and file name" thing is just some

nice abstraction provided by the kernel's file system, such that user (you as a human) don't have to

remember where data is physically located (e.g. on which platter or track of sector).

So, a file system is a way to provide an intuitive interface ("path and filename") to user to access data. The

main job of a file system is to maintain the mapping between the "path and filename" and the underlying

disk's blocks.

[Q&A] Recall the running example about disk in last Wed's class

(https://cs.nyu.edu/~mwalfish/classes/25fa/lectures/scribble20.pdf), what's the most important abstraction

(or say data structure) to maintain such mapping? Inode.

[Q&A] When you run ls lab2, what happens inside the kernel?

handle the syscall opendir(path)
file system searches for this path, starting from root directory's inode (inode 2)

follow the inode, and goes to the corresponding subdirectory

repeat until it arrives at the lab2's inode

[Q&A] When you run cat lab2/main.c, what happens inside the kernel?

same as above, additionally:

goes to main.c's inode, and follow the pointer to the corresponding data blocks

2 / 7

And because of the abstraction that file system makes, it doesn't matter whether the underlying storage is

a real disk, or a file, or the data in memory; it's even possible that this storage is not in your local machine,

as long as the "path and filename" abstraction remains unchanged, user can barely feel the difference.

In Linux, such a file system consists of two components, one is the VFS layer, the other is the different type

of file system's driver. As you can see in the figure, user can use exactly the same code (like the ls you

wrote in lab2) to read data from two storage of totally different file system types. One is the real disk, the

other is just a normal file.

Figure 1 - s/w stack of file system.

In this lab, you will use VFS and the FUSE kernel module as is, and only have to modify the user-space fs

driver part.

Before we go into more details about lab5, it's worth understanding how mount works in general, cause it

will help you know what the test scripts are doing, and hence can better help you to debug.

3 / 7

Figure 2 - mount.

Actually, you've been using mount even if you might not realize it. Every time you run the container, a

directory from your host OS is mounted to the container's Linux filesystem It's done by -v
"$maindir":/home/cs202-user/$destdir (ref:

https://docs.docker.com/reference/cli/docker/container/run/) inside cs202-run-docker script. This is why

you can modify the same file both inside and outside the container (i.e., in your host OS).

In this lab, you will use mount more explicitly. For example, build/fsdriver testfs.img mnt mounts

testfs.img at the mnt directory. You will complete fsdriver so that after testfs.img is mounted at mnt:

when a user create a new file in mnt, your fsdriver can find some valid blocks for this file, and

maintain the mapping accordingly

when a user reads from mnt (by passing in the path), your fsdriver can locate the corresponding

block (based on the mapping) in testfs.img and returns the data

when a user delete a file in mnt, your fsdriver can do the clean up work and maintain the mapping

accordingly

Lab5's file system design

[See https://cs.nyu.edu/~mwalfish/classes/25fa/labs/lab5.html] On-Disk File System Structure

For convenience, the file system design of this lab makes some simplifications compared to the file system

you learned in class.

There is only 1 region in which both inode and data block reside. Usually, they are divided into 2

separate regions: inode region and data block region. But we don't distinguish them in this lab.

Each inode is allocated its own disk block. Usually, if the inode region and data block region are

separated, indoes are packed in a single disk block.

[Q&A] What's the disadvantage of "allocating the whole disk block to an inode"?

Inefficient in space. Exercise 8.

The file system read in chunk of 4KB block size.

4 / 7

// fs_types.h
// The size of a block in the file system.
#define BLKSIZE 4096

// How many bits are present in a block.
#define BLKBITSIZE (BLKSIZE * 8)

Superblock is block 0. It holds metadata about the FS and pointer to the root directory.

// disk_map.c
super = (struct superblock *)diskmap; // = diskmap(0)
bitmap = diskblock2memaddr(1);

Bitmap is an array of bits. Each bit at index i indicates if block i is allocated or not. 1 indicates it's free

and 0 indicates it's used.

How many blocks are there in total? super->s_nblocks.
fsformat will format the underlying image, such that superblock contains the correct metadata

about this image.

// fs_types.h
struct superblock {
 uint32_t s_magic; // Magic number: FS_MAGIC.
 uint32_t s_nblocks; // Total number of blocks on disk.
 uint32_t s_root; // Inum of the root directory inode.
} __attribute__((packed));

Each inode contains:

pointers to 10 direct data block.

pointer to 1 indirect block.

How many direct blocks can be "addressed" by a indirect block? 4KB / 32bit = 4KB / 4B

= 1K = 1,024.

32bit is the size of "block number"

pointer to 1 double indirect block.

How many direct blocks can be "addressed" by a double indirect block? 1K * 1K = 1M =

1,048,576.

// fs_types.h
// The number of blocks which are addressable from the direct
// block pointers, the indirect block, and the double-indirect
// block.
#define N_DIRECT 10
#define N_INDIRECT (BLKSIZE / 4)
#define N_DOUBLE ((BLKSIZE / 4) * N_INDIRECT)

5 / 7

Lab5's file system implementation

As we mentioned earlier, VFS will dispatch the file operations to FUSE kernel module, and that will be

handled accordingly by the fsdriver. You can find these file operations' handlers in fsdriver.c.

// fsdriver.c
struct fuse_operations fs_oper = {
 // ...
 .open = fs_open,
 .read = fs_read,
 .write = fs_write,
 // ...
};

Roughly speaking, fsdriver.c implements all these handlers (fs_*), and it will will invoke the following

helper functions to do the real job.

map_disk_image, diskblock2memaddr, and flush_block in disk_map.c
alloc_diskblock (Ex2), diskblock_is_free, free_diskblock in bitmap.c
inode_* in inode.c

in which, inode_block_walk and inode_get_block (Ex3) are the real working horses.

inode_truncate_blocks (Ex4)

inode_link and inode_unlink (Ex5)

dir_* and walk_path in in dir.c

Take fs_open as an example:

When user call open(path), this syscall is dispatched to FUSE module, and later handled by fs_open,
hence it has an additional input struct fuse_file_info fi.
Inside fs_open, it calls inode_open with

const char *path: the pointer to the path string

struct inode **pino: the double-pointer to the inode structure. [Q&A] what does this

double-pointer mean? how would you draw picture of the memory to indicate the pointer-to-

pointer?

alias | addr | data

pino | A | B
 | B | C
 | C | struct inode

Inside inode_open, it calls walk_path, with the path and pino.
walk_path can parse the path, and find the corresponding file's inode structure.

Eventually, fs_open sets the corresponding inode filed in fi

6 / 7

There is a caveat though, how can fsdriver access the underlying testfs.img? Considering that in the "real

disk" case, there will be a device driver, who is responsible for communicating with the disk, but apparently

it's not the case with "testfs.img", which itself is nothing more than a file.

We can find answer in map_disk_image.c, it uses mmap to reserve a portion of the running process's

virtual address space to provide read and write access to a file as if that file were an array in memory. This

abstraction does (almost) the same thing as a device driver: abstract the underlying disk storage as an

array of blocks.

To fill the gap between "array of blocks" (the real device driver) and "array of bytes" (mmap), fsdriver

utilizes a rather straight forward way: use diskblock2memaddr to simulate it.

fd = open(imgname, O_RDWR)
diskmap = mmap(NULL, diskstat.st_size, PROT_READ | PROT_WRITE, MAP_SHARED,
fd, 0)
super = (struct superblock *)diskmap;
bitmap = diskblock2memaddr(1);

Lab5 excises details

Ex2: alloc_diskblock in bitmap.c

bitmap is the bookkeeping for the blocks (just like the pageinfo[] is the bookkeeping for the

physical pages)

you can learn how to interpret and manipulate bitmap's value in free_diskblock

Ex3: inode_block_walk and inode_get_block in inode.c

Purpose of inode_block_walk(struct inode *ino, uint32_t filebno, uint32_t
**ppdiskbno, bool alloc)

Locate the global disk block number (ppdiskbno) corresponding to a local block

number (filebno) of an inode (ino)
What would you do if filebno is within the range of direct blocks?

What if filebno exceeds range of direct blocks?

What if filebno exceeds range of indirect blocks?

It might help to visualize the direct, indirect, and double-indirect block structures in the

memory, and how you would travel to a specific block using these data structures.

Allocate new block when needed (bool alloc), and remember to clear it before any

use.

Purpose of inode_get_block(struct inode *ino, uint32_t filebno, char
**blk)

Obtain the memory address of the filebno'th block for a given inode (ino).
Once you complete inode_block_walk, the implementation of this function will be

very succinct.

7 / 7

Ex4: inode_truncate_blocks in inode.c.

used to resize a file

Ex5: inode_link and inode_unlink in inode.c

when user calls ln target-file link-name, the inode_link will be invoked.

Again, recall the running example about disk in last Wed's class

(https://cs.nyu.edu/~mwalfish/classes/25fa/lectures/scribble20.pdf).

What does a hard link look like in disk? filename -> same inode.

What about a soft link? Allocate a new inode, which contains the target-file's path.

Debug for lab5

[Remember to run ./chmod-walk and sudo make grade]

�. Setup and pre-test (before mount): run test/testbasic.bash to

prepare the testfs.img
generate_test_msg: write simple content into build/msg
make_fsimg build/msg: pack build/msg to a well-formed testfs.img [Q&A] what

do you think need to be added to make testfs.img?

make_fsimg() {
 build/fsformat testfs.img 2048 $@ || fail "couldn't make test
image"
}

you can actually learn how is fs designed in fsformat.c (by initializing the disk); because

what you will have to write in fsdriver.c is to maintain such a design when there are more

modifications on the fs.

run build/fsdriver testfs.img mnt --test-ops
fsdriver.c/fs_test to test basic file operations, but don't mount

this can help you identify many bugs (if any) in you code before going to more

complicated tests under test directory

�. Test (after mount)

since after mounting the testfs.img into a certain directory, user can directly read / write this

directory, so to debug it, you will need two split panels in tmux, one for fsdriver, one for

invoking the file operations on the directory.

(tmux panel 1)

gdb build/fsdriver
and then run -d testfs.img mnt (to mount testfs.img to mnt)

(tmux panel 2) run scripts or commands that try to access mnt directory to read / write the

underlying testfs.img, e.g.,
your ls from lab2!

test*.bash under the test directory

