CS202 Review Session 5 Based on previous notes of cs202 review session 5 and 6.

Yuxia Zhan - Fall 2025

Contents

1. Overview of Lab4

2. How to read the "map"

3. Dive into WeensyOS

4. Chain-of-thought and important tools
5. More details about steps 1~ 5

6. Debugging for Lab4

1. Overview of Lab4

As you learned from the class, kernel gives process the illusion that the process can use all the virtual

memory space, even when the physical memory space is smaller than the virtual memory space. So when

you see virtual mem is 3M while physical mem only has 2M, you shouldn't feel surprised.

The key point here is, how to allocate physical pages, and how to create and maintain page table for

each process. From my perspective, this lab will be much easier if you think all the steps from this
perspective. That is, all the steps are essentially asking you the following question:

"How should you (on behalf of kernel) allocate physical pages or maintain the page table such that

you can balabala".
And you can replace this "balabala" with:

step 1) isolate the kernel's memory from processes'

step 2) isolate the processes' memory from each other

step 3) achieve a non identity-mapping between VPN and PPN
)

step 5) support fork() syscall

(
(
(
o (step 4) make different processes have overlapping addr space
()
(step 6) [extra] let processes to share some pages

(

step 7) [extra] delete process's memory pages if it exits

Your job in this lab is to implement all these to shift from a "naive version of virtual memory mechanism" to

the version you learned in the class.

Figure 1: S/W stack of lab4.

SIW

—

p-* applications
WeensyOS

/Your lab4 code here!
» x86-64 binary

QEMU

Linux

Docker
Host OS

» emulate x86-64 CPU interface

» Mac / Linux / Windows

H/W

Host H/W

» x86-86 / arm CPU

Before we going into more details of Lab4, it would be helpful to review this s/w stack, you might see a more

detailed version in this Monday's class. After lab 2 and 3, you should be familiar with the stack below

"Linux", and what's new in this lab are QEMU and WeensyOS. QEMU is an application running on Linux, and

it emulates x86-64 interface for anything that runs on top of it. WeensyOS is an x86-64 binary, running on

top of QEMU. And the code you will write for this lab will be on WeensyOS level.

2. How to read the "map"

You will find there are two parts in this map, the upper part is showing the physical memory layout, while the

lower part shows the virtual memory layout for different processes. Let's focus on the upper part for now.

e Each of this character is a page.
e What is the page size? 4KB.

// x86-64.h

#define PAGEOFFBITS 12

#define PAGESIZE

// # bits in page offset

(1 << PAGEOFFBITS) // Size of page in bytes

e How many pages are there in the first row? 64.

e By counting or by calculating. (0x40,000 => 0x40 pages => 64 pages)

2/8

Figure 2: Address of the first row of the map.

0x 0x 0x 0x

0x 0x 0x 0x 0x

0x00000000 | O || 1 |-=-|15|[16|[17]---|31||32]||33|---|47 ||48||49|---|63

£ ff f

0Ox 0x Ox 0x

0x 0x (0)' 0x 0Ox

e What is the address of the first byte of the 0-th page? 0x000.
e What is the address of the last byte of the O-th page? Oxfff.
e What is the address of the first byte of the 63-th page? 0x3f000.

e What is the address of the last byte of the 63-th page? Ox3ffff. (That's why you will see the first
byte's address of second row is 0x40000).

e What's the page number corresponding to addr Ox4f1237? Ox4f.

// x86-64.h
#define PAGENUMBER(ptr) ((int) ((uintptr_t) (ptr) >> PAGEOFFBITS))

e What is the addr of the first byte of the 65-th page? 0x41,000

// x86-64.h
#define PAGEADDRESS(pn) ((uintptr_t) (pn) << PAGEOFFBITS)

e How many pages are there in total in physical memory space? 512 pages (0x200)

// kernel.h

// Physical memory size

#define MEMSIZE_PHYSICAL 0x200000

// Number of physical pages

#define NPAGES (MEMSIZE_PHYSICAL / PAGESIZE)

e How large is the virtual memory space? 768 pages (0x300)

3/8

// kernel.h
// Virtual memory size
#define MEMSIZE_VIRTUAL 0x300000

Calculate the VPN1 ~ 4.

Largest virtual addr: Ox2fffff

(translate hex to binary)

=> @b 0010 1111 1111 1111 1111 1111

(align with virtual addr layout 9 + 9 + 9 + 9 + 12 = 48, so append 24 0s.)
=> 0b (0000 0000 0) (000 0000 00) (00 0000 001)(0 1111 1111)(1111 1111 1111)
=> Qb (VPN1) (VPN2) (VPN3) (VPN4) (offset)

How many L-1 page directory do you need to handle the mapping here? 1 (with only 1 PTE set)
L-2. 1 (with only 1 PTE set)

L-3. 1 (with 2 PTEs set)

L-4. 2.

The char represents the owner of the page. K for kernel, R for reserved, 1 ~ 4 for different processes. What
does '"and ' ' stand for? what's the difference? Which flag is relevant in PTE?

e ''for empty but mapped
e ''for unmapped
e bit-0, "P" flag.

You might notice there are two types of format to show a page, first is with black background, while the
second is with non-black background color. This is called "reverse video". What does reverse video mean?

e process is allowed to access the corresponding address

In process 1's virtual memory space, you see a page with char 2,and with reverse video color, what does
that mean?

e process 2 owns the page, and process 1is allowed to access the page. Is it good or no?
What's wrong with this "naive version of virtual memory"?

* no isolation
o process can see kernel's pages
o process 1can see process 2's pages
¢ not an efficient usage of physical pages
o identity-mapping from (process-1's VPN 256, PPN 256), (process-1's VPN 257, PPN 257) will
shift later in step 3 to (process1-'s VPN 256, PPN 28), (process-1's VPN 257, PPN 48)
o not using the whole virtual address space

So these exactly are the problems you are going to solve following the lab's steps !

3. Dive into WeensyOS

4/8

To figure out why after make run, the four processes are magically running, we should dive into the
kernel() func first.

[Walkthrough] briefly walk through the kernel () func and process_setup().

e processes[] and struct proc: pid and P_FREE
e process_setup(i, i — 1):init program data as pid-i

(o]

set L1 page table
o assign a new page for stack

(o]

map the pat for stack (naive version: identity-mapping)
P_RUNNABLE
run(&process[1]): only run one process

o

(o]

Actually, if you are interested, you can find the loaded programs (ramimage in k—loader.c, as well as
.gdbinit), each of them runs the same source file.

Remember the s/w stack we see in Figure 1? We can actually zoom in to the WeensyOS layer and get to this
[Figure 3]. And through out the lab4, you only needs to add code in kernel. c (except for part of step 6).
Besides, there will be 3 different user-space applications, we only cover p—allocator and p—fork here,
p-forkexit is only needed in Step 7 (extra credits).

Figure 3: WeensyOS's user-space applications.

User- p-fork p-fork
space
p-fork p-fork
Kernel WeensyOS
User- p-allocator p-allocator Steps 5~ 6
space
p-allocator p-allocator
Kernel WeensyOS
'Ofsss ,
Steps 1~ 4 & User- | P-forkexit p-forkexit
space : :
p-forkexit p-forkexit
Kernel WeensyOS

Step 7

[Walkthrough] p—allocator.c

e keeps asking for kernel to allocate pages
o different allocate rate (controlled by p, which is pid)
e yield() (this explains why kernel only has to run one process in the beginning
run(&process[1]))
5/8

[Walkthrough] p-fork.c
e process_setup(1, 4):initially, kernel only setups one process

Figure 4: p-fork

line 12: fork line 14: fork
process A » process A » process A p1= ip2 =
——>»| process C p1=__ p2=__
line 14: fork
»| process B » process B p1= ip2 =
——>»| process D p1= i p2 =

Fork appears twice in the source code, what happen under the hood?

e How many times does fork() get executed? 3.
e How many processes in total? 4.

4. Chain-of-thought and important tools

Just as mentioned earlier, all these steps are guiding you to do some improvement to the naive version of
virtual memory. So, the first step is to figure out what the improvement is, and what's the mechanism
design behind it. Usually, the lab's webpage tells you the design, either explicitly, or by showing you some
hints.

Next is to find the right place to put your code. You will need to figure out the phase the mechanism design
plan to do some modification - is it during kernel initialization, or during process initialization, or during
kernel handling the syscalls?

e related to "initializing the kernel" => kernel()
¢ related to "initializing a new process" => process_setup()
e related to "handling syscalls (page_alloc / fork [exit)" => exceptions()'s case INT_SYS_xxx

Finally, you need to get yourself familiar with related tools that will be needed during coding. These include
data structures, helper functions (and their parameters) and some macros. Of course you can choose to
write your own implementations of these tools, but that's not recommended. You will find it much much
faster if you can first take some time fully understand them and then directly use them.

Important data structures
[walkthrough] struct procandprocesses]|]
[walkthrough] struct physical_pageinfo and pageinfol]

Recall that it is a bookkeeping for physical pages' state, not the pages themselves, and not the page tables.

Important helper functions
6/8

You don't need to modify them, but you do need to understand them if you want to use them correctly.
[walkthrough] assign_physical_page()

¢ allocate a physical page to a process, by maintaining the bookkeeping pageinfol[].
[walkthrough] virtual_memory_map()

e read the comments

[e]

add or modify a mapping in page table
o set the permission flags in the page table

o by reading it, you will know how your allocator function should look like, i.e., the signature
x86_64_pagetablex (xallocator) (void)
o actually, you can use to create a 4-level page tables.

e the pagetable passed inis the L1 page table (or called L1 page directory)
e cur_index123is concatenating: VPN1 || VPN 2 || VPN3.

e if (cur_index123 != last_index123):if any of VPN1, VPN 2, VPN3 changes, will call
lookup_1l4pagetable

o lookup_Tl4pagetable func: pass in L1 page table, and return the corresponding L4 page
table for virt-addr

» for (int 1 = 0; 1 <= 2; ++1i) isto traverse L1~L3 page directory, if during
traverse, no page table is found for next level (i.e., L1's PTE_P will check if L2 page table
is present), it will allocate a new physical page to for a new page table.

» the allocator is actually used here! as in x86_64_pagetablex new_pt =
allocator()

e after getting the L4 page table, it will set the PTE with corresponding perm.

[walkthrough] virtual_memory_Tlookup()

o traverse the page table, to fetch the struct vamapping of a virt-addr
Other useful macros

We covered some of them so far, you can find the others either in the lab's website or in the header files:
1ib.h (memset and memcpy), kernel. h and part of x86-64. h.

5. More details of steps 1 ~ 5.

718

Table 1: Summary of 5 steps.

Mechanism design Where to put code Related variable / func
. . « during kernel initialization;
prohibit a process from accessing .)
. + while handling page_alloc syscall
kernel's pages . > e 3
Step 1 . by setti ission fl in PTE (think about a malicious user « “virtual_memory_map()
Y setling permission flags in ’ process asking for a page that
and owner field of pageinfo[]
belongs to kernel)
» “virtual_memory_map()’
o though you can write your own
« during process initialization code to create 4-levels of
Step 2 . e?ch process should have . Par‘ucularly, rgplace the line page table, but it's
distinct 4-levels of page tables processes|pid].p_pagetable = recommended to use this
kernel_pagetable;’ helper function to do so.
» “virtual_memory_lookup()’
» “assign_physical_page()’
whenever need to allocate a page |+ while handling page_alloc syscall
Step 3 for a process, find the next free and | (still, remember the malicious user |« “pageinfo[]’
available physical page for it process case)
« console_printf (for "out of memory"
set process's stack_bottom to be [+ during process initialization 2l bl .to u =9l "°.”“ iz
. .) references in "kernel.c’)
Step 4 the top of the virtual memory space |+ while handling page_alloc . . .
print "out of memory" when needed. | syscall (for "out of memory" print) « il |ptere§ted? O e 2
functions in “kernel.c™ and the
source code of ‘console " in ‘lib.c’
create a new process, with the
same copy of data as the parent
process . . . » “processes|[]
LD « "data" includes: all physical pages il ingionsee “virtual_memory_lookup()’
(including the pages for 4 level page
tables), registers (except for rax)

6. Debugging for Lab4

Usually, to see if you implement these steps correct is by visually compare the map to the reference images

you see in the website. You can also use Log_printf and you will find the output of these print statements

in /tmp/log. txt. For those errors that hard to debug, you can use gdb.

e tmux (split windows)
e torun QEMU (with W-OS booted) + gdb at the same time

8/8

