
1 / 8

CS202 Review Session 5 Based on previous notes of cs202 review session 5 and 6.

Yuxia Zhan - Fall 2025

Contents

�. Overview of Lab4

�. How to read the "map"

�. Dive into WeensyOS

�. Chain-of-thought and important tools

�. More details about steps 1 ~ 5

�. Debugging for Lab4

1. Overview of Lab4

As you learned from the class, kernel gives process the illusion that the process can use all the virtual

memory space, even when the physical memory space is smaller than the virtual memory space. So when

you see virtual mem is 3M while physical mem only has 2M, you shouldn't feel surprised.

The key point here is, how to allocate physical pages, and how to create and maintain page table for

each process. From my perspective, this lab will be much easier if you think all the steps from this

perspective. That is, all the steps are essentially asking you the following question:

"How should you (on behalf of kernel) allocate physical pages or maintain the page table such that

you can balabala".

And you can replace this "balabala" with:

(step 1) isolate the kernel's memory from processes'

(step 2) isolate the processes' memory from each other

(step 3) achieve a non identity-mapping between VPN and PPN

(step 4) make different processes have overlapping addr space

(step 5) support fork() syscall

(step 6) [extra] let processes to share some pages

(step 7) [extra] delete process's memory pages if it exits

Your job in this lab is to implement all these to shift from a "naive version of virtual memory mechanism" to

the version you learned in the class.

2 / 8

Figure 1: S/W stack of lab4.

Before we going into more details of Lab4, it would be helpful to review this s/w stack, you might see a more

detailed version in this Monday's class. After lab 2 and 3, you should be familiar with the stack below

"Linux", and what's new in this lab are QEMU and WeensyOS. QEMU is an application running on Linux, and

it emulates x86-64 interface for anything that runs on top of it. WeensyOS is an x86-64 binary, running on

top of QEMU. And the code you will write for this lab will be on WeensyOS level.

2. How to read the "map"

You will find there are two parts in this map, the upper part is showing the physical memory layout, while the

lower part shows the virtual memory layout for different processes. Let's focus on the upper part for now.

Each of this character is a page.

What is the page size? 4KB.

// x86-64.h
#define PAGEOFFBITS 12 // # bits in page offset
#define PAGESIZE (1 << PAGEOFFBITS) // Size of page in bytes

How many pages are there in the first row? 64.

By counting or by calculating. (0x40,000 => 0x40 pages => 64 pages)

3 / 8

Figure 2: Address of the first row of the map.

What is the address of the first byte of the 0-th page? 0x000.

What is the address of the last byte of the 0-th page? 0xfff.

What is the address of the first byte of the 63-th page? 0x3f000.

What is the address of the last byte of the 63-th page? 0x3ffff. (That's why you will see the first

byte's address of second row is 0x40000).

What's the page number corresponding to addr 0x4f123? 0x4f.

// x86-64.h
#define PAGENUMBER(ptr) ((int) ((uintptr_t) (ptr) >> PAGEOFFBITS))

What is the addr of the first byte of the 65-th page? 0x41,000

// x86-64.h
#define PAGEADDRESS(pn) ((uintptr_t) (pn) << PAGEOFFBITS)

How many pages are there in total in physical memory space? 512 pages (0x200)

// kernel.h
// Physical memory size
#define MEMSIZE_PHYSICAL 0x200000
// Number of physical pages
#define NPAGES (MEMSIZE_PHYSICAL / PAGESIZE)

How large is the virtual memory space? 768 pages (0x300)

4 / 8

// kernel.h
// Virtual memory size
#define MEMSIZE_VIRTUAL 0x300000

Calculate the VPN1 ~ 4.

Largest virtual addr: 0x2fffff
(translate hex to binary)
=> 0b 0010 1111 1111 1111 1111 1111
(align with virtual addr layout 9 + 9 + 9 + 9 + 12 = 48, so append 24 0s.)
=> 0b (0000 0000 0)(000 0000 00)(00 0000 001)(0 1111 1111)(1111 1111 1111)
=> 0b (VPN1)(VPN2)(VPN3)(VPN4)(offset)

How many L-1 page directory do you need to handle the mapping here? 1 (with only 1 PTE set)

L-2. 1 (with only 1 PTE set)

L-3. 1 (with 2 PTEs set)

L-4. 2.

The char represents the owner of the page. K for kernel, R for reserved, 1 ~ 4 for different processes. What

does '.' and ' ' stand for? what's the difference? Which flag is relevant in PTE?

'.' for empty but mapped

' ' for unmapped

bit-0, "P" flag.

You might notice there are two types of format to show a page, first is with black background, while the

second is with non-black background color. This is called "reverse video". What does reverse video mean?

process is allowed to access the corresponding address

In process 1's virtual memory space, you see a page with char 2,and with reverse video color, what does

that mean?

process 2 owns the page, and process 1 is allowed to access the page. Is it good or no?

What's wrong with this "naive version of virtual memory"?

no isolation

process can see kernel's pages

process 1 can see process 2's pages

not an efficient usage of physical pages

identity-mapping from (process-1's VPN 256, PPN 256), (process-1's VPN 257, PPN 257) will

shift later in step 3 to (process1-'s VPN 256, PPN 28), (process-1's VPN 257, PPN 48)

not using the whole virtual address space

So these exactly are the problems you are going to solve following the lab's steps !

3. Dive into WeensyOS

5 / 8

To figure out why after make run, the four processes are magically running, we should dive into the

kernel() func first.

[Walkthrough] briefly walk through the kernel() func and process_setup().

processes[] and struct proc: pid and P_FREE

process_setup(i, i - 1): init program data as pid-i

set L1 page table

assign a new page for stack

map the pat for stack (naive version: identity-mapping)

P_RUNNABLE

run(&process[1]): only run one process

Actually, if you are interested, you can find the loaded programs (ramimage in k-loader.c, as well as
.gdbinit), each of them runs the same source file.

Remember the s/w stack we see in Figure 1? We can actually zoom in to the WeensyOS layer and get to this

[Figure 3]. And through out the lab4, you only needs to add code in kernel.c (except for part of step 6).

Besides, there will be 3 different user-space applications, we only cover p-allocator and p-fork here,

p-forkexit is only needed in Step 7 (extra credits).

Figure 3: WeensyOS's user-space applications.

[Walkthrough] p-allocator.c

keeps asking for kernel to allocate pages

different allocate rate (controlled by p, which is pid)

yield() (this explains why kernel only has to run one process in the beginning

run(&process[1]))

6 / 8

[Walkthrough] p-fork.c

process_setup(1, 4): initially, kernel only setups one process

Figure 4: p-fork

Fork appears twice in the source code, what happen under the hood?

How many times does fork() get executed? 3.

How many processes in total? 4.

4. Chain-of-thought and important tools

Just as mentioned earlier, all these steps are guiding you to do some improvement to the naive version of

virtual memory. So, the first step is to figure out what the improvement is, and what's the mechanism

design behind it. Usually, the lab's webpage tells you the design, either explicitly, or by showing you some

hints.

Next is to find the right place to put your code. You will need to figure out the phase the mechanism design

plan to do some modification - is it during kernel initialization, or during process initialization, or during

kernel handling the syscalls?

related to "initializing the kernel" => kernel()
related to "initializing a new process" => process_setup()
related to "handling syscalls (page_alloc / fork / exit)" => exceptions()'s case INT_SYS_xxx

Finally, you need to get yourself familiar with related tools that will be needed during coding. These include

data structures, helper functions (and their parameters) and some macros. Of course you can choose to

write your own implementations of these tools, but that's not recommended. You will find it much much

faster if you can first take some time fully understand them and then directly use them.

Important data structures

[walkthrough] struct proc and processes[]

[walkthrough] struct physical_pageinfo and pageinfo[]

Recall that it is a bookkeeping for physical pages' state, not the pages themselves, and not the page tables.

Important helper functions

7 / 8

You don't need to modify them, but you do need to understand them if you want to use them correctly.

[walkthrough] assign_physical_page()

allocate a physical page to a process, by maintaining the bookkeeping pageinfo[].

[walkthrough] virtual_memory_map()

read the comments

add or modify a mapping in page table

set the permission flags in the page table

by reading it, you will know how your allocator function should look like, i.e., the signature

x86_64_pagetable* (*allocator)(void)
actually, you can use to create a 4-level page tables.

the pagetable passed in is the L1 page table (or called L1 page directory)

cur_index123 is concatenating: VPN1 || VPN 2 || VPN3.

if (cur_index123 != last_index123): if any of VPN1, VPN 2, VPN3 changes, will call

lookup_l4pagetable

lookup_l4pagetable func: pass in L1 page table , and return the corresponding L4 page

table for virt-addr

for (int i = 0; i <= 2; ++i) is to traverse L1~L3 page directory, if during

traverse, no page table is found for next level (i.e., L1's PTE_P will check if L2 page table

is present), it will allocate a new physical page to for a new page table.

the allocator is actually used here! as in x86_64_pagetable* new_pt =
allocator()

after getting the L4 page table, it will set the PTE with corresponding perm.

[walkthrough] virtual_memory_lookup()

traverse the page table, to fetch the struct vamapping of a virt-addr

Other useful macros

We covered some of them so far, you can find the others either in the lab's website or in the header files:

lib.h (memset and memcpy), kernel.h and part of x86-64.h.

5. More details of steps 1 ~ 5.

8 / 8

Table 1: Summary of 5 steps.

6. Debugging for Lab4

Usually, to see if you implement these steps correct is by visually compare the map to the reference images

you see in the website. You can also use log_printf and you will find the output of these print statements

in /tmp/log.txt. For those errors that hard to debug, you can use gdb.

tmux (split windows)

to run QEMU (with W-OS booted) + gdb at the same time

