
1 / 5

HANDOUT - CS202 Review Session 5 for Lab4 (WeensyOS)

Yuxia Zhan - Fall 2025

Contents of this handout

S/W stack of lab4

Address of the first row of the map.

WeensyOS's user-space applications.

p-fork under the hood.

Chain-of-thought and important tools.

Summary of 5 steps.

S/W stack

Figure 1: S/W stack of lab4.

2 / 5

Read the "map"

Figure 2: Address of the first row of the map.

Largest virtual addr: 0x?????
(translate hex to binary)
=> 0b ???...??
(align with virtual addr layout, 9 + 9 + 9 + 9 + 12 = 48 bits)
=> 0b (_________)(_________)(_________)(_________)(____________)
=> 0b (VPN1)(VPN2)(VPN3)(VPN4)(offset)

// x86-64.h
// Paged memory constants
#define PAGEOFFBITS 12 // # bits in page offset
#define PAGESIZE (1 << PAGEOFFBITS) // Size of page in bytes
#define PAGEINDEXBITS 9 // # bits in a page index
level
#define NPAGETABLEENTRIES (1 << PAGEINDEXBITS) // # entries in page table
page
#define PAGENUMBER(ptr) ((int) ((uintptr_t) (ptr) >> PAGEOFFBITS))
#define PAGEADDRESS(pn) ((uintptr_t) (pn) << PAGEOFFBITS)

// kernel.h
// Physical memory size
#define MEMSIZE_PHYSICAL 0x200000
// Number of physical pages
#define NPAGES (MEMSIZE_PHYSICAL / PAGESIZE)

// Virtual memory size
#define MEMSIZE_VIRTUAL 0x30000

Yuxia Zhan
1fff

Yuxia Zhan
1000

Yuxia Zhan

Yuxia Zhan

Yuxia Zhan
f,000

Yuxia Zhan
3f,000

Yuxia Zhan
0

Yuxia Zhan
0

Yuxia Zhan
0000 0000 1

Yuxia Zhan
0 1111 1111

Yuxia Zhan
1111 1111 1111

Yuxia Zhan

Yuxia Zhan
f,fff

Yuxia Zhan

Yuxia Zhan
3f,fff

Yuxia Zhan

Yuxia Zhan
0x2ff,fff

Yuxia Zhan
0x 0010 1111 1111 1 ... 1

3 / 5

WeensyOS's user-space applications

Figure 3: WeensyOS's user-space applications.

Figure 4: p-fork

Yuxia Zhan

4 / 5

Chain-of-thought and important tools.

Key point: "How should you (on behalf of kernel) allocate physical pages or maintain the page table

such that you can balabala". And you can replace this "balabala" with:

(step 1) isolate the kernel's memory from processes'

(step 2) isolate the processes' memory from each other

(step 3) achieve a non identity-mapping between VPN and PPN

(step 4) make different processes have overlapping addr space

(step 5) support fork() syscall

Chain-of-thought: mechanism design => where to put code => related struct and func

About "where to put code" column in Table 1:

related to "initializing the kernel" => kernel()
related to "initializing a new process" => process_setup()
related to "handling syscalls (page_alloc / fork / exit)" => exceptions()'s case INT_SYS_xxx

Important tools:

struct proc and processes[]
struct physical_pageinfo, pageinfo[], and assign_physical_page()

// kernel.c
int assign_physical_page(uintptr_t addr, int8_t owner)

virtual_memory_map() and lookup_l4pagetable()

// k-hardware.c
int virtual_memory_map(x86_64_pagetable* pagetable, uintptr_t va,
 uintptr_t pa, size_t sz, int perm,
 x86_64_pagetable* (*allocator)(void))

static x86_64_pagetable* lookup_l4pagetable(
 x86_64_pagetable* pagetable, uintptr_t va, int perm,
 x86_64_pagetable* (*allocator)(void))

virtual_memory_lookup() and struct vamapping

// k-hardware.c
vamapping virtual_memory_lookup(x86_64_pagetable* pagetable, uintptr_t
va)

5 / 5

Summary of 5 steps.

Table 1: Summary of 5 steps.

