HANDOUT - CS202 Review Session 5 for Lab4 (WeensyQOS)
Yuxia Zhan - Fall 2025
Contents of this handout

e S/W stack of lab4

e Address of the first row of the map.

e WeensyOS's user-space applications.
e p-fork under the hood.

¢ Chain-of-thought and important tools.
e Summary of 5 steps.

S/W stack

Figure 1: S/W stack of lab4.

i P-* applications /Your lab4 code here!
WeensyOS » x86-64 binary
QEMU » emulate x86-64 CPU interface
SIW _
Linux
Docker
_ Host OS ¥» Mac / Linux / Windows
H/W Host H/W » x86-86 / arm CPU

Read the "map"”

Figure 2: Address of the first row of the map.
Ox1f — 0Ox 0x 0x

0x ox _ffff 0x 0x 0x 3Hfff

0x00000000 Ofl1([---115((16|{17|"=-[31]|32(|33|-""|47(|48|[49|---|63
A ¢ A T

0x 1000 0x Ox 0x

0x 0xf,000 (0)' 0Ox 0x 3f,000

(translate hex to binary)

= @b ?777...77 0x 0010 1111 1111 1 ... 1

(align with virtual addr layout, 9 + 9 + 9 + 9 + 12 = 48 bits)

=> 0b (0) (0) (000000001) (01111 1111) (1111 1111 1111)

=> 0b (VPN1) (VPN2) (VPN3) (VPN4) (offset)

// x86-64.h

// Paged memory constants

#define PAGEOFFBITS 12 // # bits in page offset
#define PAGESIZE (1 << PAGEOFFBITS) // Size of page in bytes
#define PAGEINDEXBITS 9 // # bits in a page index
level

#define NPAGETABLEENTRIES (1 << PAGEINDEXBITS) // # entries in page table
page

#define PAGENUMBER(ptr) ((int) ((uintptr_t) (ptr) >> PAGEOFFBITS))
#define PAGEADDRESS(pn) ((uintptr_t) (pn) << PAGEOFFBITS)

// kernel.h

// Physical memory size

#define MEMSIZE_PHYSICAL 0x200000

// Number of physical pages

#define NPAGES (MEMSIZE_PHYSICAL / PAGESIZE)

// Virtual memory size
#define MEMSIZE_VIRTUAL 0x30000

2/5

Yuxia Zhan
1fff

Yuxia Zhan
1000

Yuxia Zhan

Yuxia Zhan

Yuxia Zhan
f,000

Yuxia Zhan
3f,000

Yuxia Zhan
0

Yuxia Zhan
0

Yuxia Zhan
0000 0000 1

Yuxia Zhan
0 1111 1111

Yuxia Zhan
1111 1111 1111

Yuxia Zhan

Yuxia Zhan
f,fff

Yuxia Zhan

Yuxia Zhan
3f,fff

Yuxia Zhan

Yuxia Zhan
0x2ff,fff

Yuxia Zhan
0x 0010 1111 1111 1 ... 1

WeensyOS's user-space applications

Figure 3: WeensyOS's user-space applications.

User- p-fork p-fork
space
p-fork p-fork
Kernel WeensyOS
User- | P-allocator p-allocator Steps 5 ~ 6
space
p-allocator p-allocator
Kernel WeensyOS
'o’sss ,
Steps 1~ 4 & User- | P-forkexit p-forkexit
space - -
p-forkexit p-forkexit
Kernel WeensyOS
Step 7
Figure 4: p-fork
line 12: fork line 14: fork
process A »| process A » process A p1= ip2 =
L3 process C p1= ip2=__
———>» process B line 14: fork » process B p1= ;p2 =
L——>» process D p1=__ ;p2=___

3/5

Yuxia Zhan

Chain-of-thought and important tools.

Key point: "How should you (on behalf of kernel) allocate physical pages or maintain the page table
such that you can balabala". And you can replace this "balabala" with:

e (step 1) isolate the kernel's memory from processes'

e (step 2) isolate the processes' memory from each other
)

o (step 4) make different processes have overlapping addr space

(
(
¢ (step 3) achieve a non identity-mapping between VPN and PPN
(
(

step 5) support fork() syscall
Chain-of-thought: mechanism design => where to put code => related struct and func
About "where to put code" column in Table 1:

¢ related to "initializing the kernel" => kernel()
e related to "initializing a new process" => process_setup()
¢ related to "handling syscalls (page_alloc / fork / exit)" => exceptions()'s case INT_SYS_xxx

Important tools:

e struct procandprocesses|]
e struct physical_pageinfo, pageinfoll], and assign_physical_page()

// kernel.c
int assign_physical_page(uintptr_t addr, int8_t owner)

e virtual_memory_map() and lookup_l4pagetable()

// k=hardware.c

int virtual_memory_map(x86_64_pagetablex pagetable, uintptr_t va,
uintptr_t pa, size_t sz, int perm,
x86_64_pagetablex (xallocator)(void))

static x86_64_pagetablex lookup_l4pagetable(

x86_64_pagetablex pagetable, uintptr_t va, int perm,
x86_64_pagetablex (xallocator)(void))

e virtual_memory_lookup() and struct vamapping

// k=hardware.c
vamapping virtual_memory_lookup(x86_64_pagetablex pagetable, uintptr_t
va)

4/5

Summary of 5 steps.

Table 1: Summary of 5 steps.

Mechanism design Where to put code Related variable / func
- . « during kernel initialization;
prohibit a process from accessing .)
. + while handling page_alloc syscall
kernel's pages . ? — e 3
Step 1 . by setti ission fl in PTE (think about a malicious user « “virtual_memory_map()
y setling permission tlags In ’ process asking for a page that
and owner field of pageinfo[]
belongs to kernel)
» “virtual_memory_map()’
o though you can write your own
« during process initialization code to create 4-levels of
Step 2 . e?ch process should have . Par‘ucularly, rgplace the line page table, but it's
distinct 4-levels of page tables processes|pid].p_pagetable = recommended to use this
kernel_pagetable;’ helper function to do so.
» “virtual_memory_lookup()’
» “assign_physical_page()’
whenever need to allocate a page |+ while handling page_alloc syscall
Step 3 for a process, find the next free and | (still, remember the malicious user |« “pageinfo[]’
available physical page for it process case)
« console_printf (for "out of memory"
set process's stack_bottom to be [+ during process initialization 2l bl .to u =9l "°.”“ iz
. .) references in "kernel.c’)
Step 4 the top of the virtual memory space |+ while handling page_alloc . . .
print "out of memory" when needed. | syscall (for "out of memory" print) « il |r.|tere§ted? O e 2
functions in “kernel.c™ and the
source code of ‘console " in ‘lib.c’
create a new process, with the
same copy of data as the parent
process . . . » “processes|[]
LD « "data" includes: all physical pages il ingionsee “virtual_memory_lookup()’
(including the pages for 4 level page
tables), registers (except for rax)

5/5

