CS202 Handout 13

1. Attaching to a Debugger
1.1 Launch a process that is attached

void launch_attached(const char* path,
char* const argv[]) {
int pid = fork();
if (pid == 0) {
ptrace (PTRACE_TRACEME, 0, NULL, NULL);
execv(path, argv);
}

return pid;

1.2 Attach to a running process

void attach_to_process(pid_t pid) {
ptrace (PTRACE_ATTACH, pid, NULL, NULL);
}

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

1.3 Wait for a target after issuing a ptrace() to it

void wait_for_target(pid_t pid) {

int

status;

while (1) {
waitpid(pid, &status, 0);
if (WIFSTOPPED(status)) {

}
}

// The reason for the change was that pid stopped.

// We should have stopped because of

// either SIGTRAP or SIGSTOP.

assert (WSTOPSIG(status) == SIGTRAP
|| WSTOPSIG(status) == SIGSTOP);

break;

else if (WIFEXITED(status)) {

// The process exited before we could attach.
printf ("Process exited\n");

break;

if (WIFSTOPPED(status)) {

// In here, the debugger manipulates the target.

// As a simple example, tf the debugger wants to

// "continue" the target, it ezecutes the following:
ptrace (PTRACE_CONT, pid, NULL, NULL);

2. Interrupting the running target

void interrupt_target(pid_t pid) {
// kill() is a system call that sends 0S signals
kill(pid, SIGSTOP);
// Must use waitpid in order to
// wait for the signal to be
// delivered.

3. Other ptrace commands

All of these only make sense when the target process is
stopped, for instance due to the use of interrupt_target
from above.

// Ezecute a single instruction in the process.
ptrace (PTRACE_SINGLESTEP, pid, NULL, NULL);

// Get mon-floating point registers.

// This includes rsp, rip, rbp, etc.
struct user_regs_struct regs;

ptrace (PTRACE_GETREGS, pid, NULL, ®s);

// Get floating point registers.
struct user_fpregs_struct fpregs;
ptrace (PTRACE_GETFPREGS, pid, NULL, &fpregs);

// Set registers. This can be used to update
// register values.
ptrace (PTRACE_SETREGS, pid, NULL, ®s);

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

// Note: PTRACE_PEEKUSER and PTRACE_PUOKEUSER
// provide a more efficient way to read or
// write a single register.

// Read a word (8 bytes) from address “addr’

// in target process memory. Note, despite being
// called PTRACE_PEEKDATA, on Linux this can

// read any part of memory, including the

// text segment.

uint64_t val;

val = ptrace(PTRACE_PEEKDATA, pid, addr, NULL);

// Write a word (8 byte) to address “addr’ in
// target procss memory.
ptrace (PTRACE_POKEDATA, pid, addr, val);

// Get information on the signal that caused
// the target procss to stop.

siginfo_t sinfo;

ptrace (PTRACE_GETSIGINFO, pid, &sinfo, NULL);

4. Stack Frames and Unwinding

return address

r»

previous rbp

Locals and
variables

return address

previous rbp

Locals and
variables

return address

previous rbp

<+ %rbp

Locals and
variables

Printed by Michael Walfish

Nov 19, 25 5:23 target.c

Page 1/1

Nov 19, 25 6:09

debugger.c

Page 1/3

#include <sys/types.h>
#include <unistd.h>
#include <signal.h>
#include <stdio.h>

// After building this program, you can use
// $ objdump -d target > target.s

// to disassemble the binary. This tells us
// at what line of code is the second printf.
10 int main(int argc, char** argv)

1 |

12 int x = 10;

13 printf ("%s: x=%d\n", argv[0], x);

14 // When this program is run by the program "debugger",
15 // x will be changed mid-execution, to be set to 202.
16 printf ("%s:x=%d\n", argv[0], x);

17 return 0;

the value of

61

// debugger.c: Simple "debugging" program intended to show
// how one process (this one) can manipulate another

// one. This program is hard-coded to work with a

// target process called "target". It is also hard-coded

// to set a breakpoint before the target’s second printf,

// and at that point, to modify the variable ’‘x’ in the target
// to be equal to 202.

#include <unistd.h>
#include <sys/types.h>
#include <sys/ptrace.h>
#include <sys/wait.h>
#include <sys/user.h>
#include <stdio.h>
#include <assert.h>
#include <stdint.h>

void wait_for_target (int pid);

void continue_on (int pid);

void single_step (int pid);

uint64_t set_breakpoint (int pid, uint64_t addr);

void preserve_brkpoint_and_continue (int pid, uint64_t addr, uint64_t orig_inst);

void rewind_rip (int pid);
void set_x_in_target (int pid, uint32_t wval);
void show_target_breakpoint (int pid, uinté64_t addr);

// We inspect the target binary to learn at what address the value of ’x’ (in
// the target) is read from the stack prior to the second printf.

// That is the address below. That’s a hack. A real debugger would infer

// the address by examining debugging information (symbol tables and so on).
#define STACK_LOAD 0x4018a7

int main(int argc, char** argv)
{
int pid = fork();
if (pid == 0) {
ptrace (PTRACE_TRACEME, 0, NULL, NULL);
if (execl ("target", "target", NULL) < 0)
perror ("exec()") ;

}

if (pid < 0)
perror ("failed to fork\n") ;

wait_for_target (pid);
// When setting a breakpoint, we have to keep around the
// original contents of the target’s code at the memory location.
uint64_t original = set_breakpoint (pid, STACK_LOAD) ;
show_target_breakpoint (pid, STACK_LOAD) ;
continue_on (pid);
set_x_in_target (pid, 202);
preserve_brkpoint_and_continue (pid, STACK_LOAD, original);
return 0O;
}
void wait_for_target (int pid)
{
int status;
while (1) |
waitpid(pid, &status, 0);
if (WIFSTOPPED (status)) {
if (WSTOPSIG(status) != SIGTRAP &&

WSTOPSIG (status) != SIGSTOP) {
printf ("target stopped due to signal: %d\n", WSTOPSIG (status));

Wednesday November 19, 2025

1/2

Printed by Michael Walfish

12}

15 {

134}
138 // Read %rip (with all other registers), decrement it in the local

138 void rewind_rip(int pid)
139 {

14 void preserve_brkpoint_and_continue (int pid, uinté64_t addr, uint64_t orig_inst)

116 // Write the original instruction back so it can execute

117 if (ptrace (PTRACE_POKEDATA, pid, addr, orig_inst) < 0)

118 perror ("ptrace pokedata") ;

119

120 // Right here, $%rip is one past the instruction we wish to re-execute.
121 // The function below puts $%$rip where it should be.

122 rewind_rip (pid);

123

124 // Execute the restored instruction

125 single_step (pid);

126

127 // At this point, the target is past the breakpoint, so

128 // set the breakpoint again, and continue. If this were a real debugger
129 // we would have to capture the return value of set_breakpoint, to be able
130 // to (again) restore the original instruction, in case it’s

131 // different versus when we first captured it.

132 set_breakpoint (pid, addr);

133 continue_on (pid);

17 // data structure, and then set all of the registers, with the updated $rip.

140 struct user_regs_struct regs;

141 if (ptrace (PTRACE_GETREGS, pid, NULL, ®s) < 0)

142 perror ("ptrace getregs") ;

143

144 printf ("%%rip in target is 0x%Il1x but we want it to be 0x%x\n", regs.rip, STACK_LOAD) ;
145

146 regs.rip——;

Nov 19, 25 6:09 debugger.c Page 2/3 Nov 19, 25 6:09 debugger.c Page 3/3
74 break; 147

75 } else if (WIFEXITED (status)) { 148 if (ptrace (PTRACE_SETREGS, pid, NULL, ®s) < 0)

76 printf ("target exited\n") ; 149 perror ("ptrace setregs") ;

77 break; 150 }

78 } 151

79 } 152 // This function sets the variable ’x’ in the target, which

8 } 153 // lives at the address 4 bytes below the frame pointer.

81 154 // Although what we are trying to do is conceptually

82 void continue_on (int pid) 155 // straightforward, the code winds up being complicated

83 { 156 // by the fact that PEEK_DATA and POKE_DATA read only in 64-bit

84 if (ptrace (PTRACE_CONT, pid, NULL, NULL) < 0) 157 // quantities. So the code has to take care to preserve the stuff "before"
85 perror ("ptrace continue") ; 158 // and "after" the relevant slot, which is only 32 bits.

86 159 void set_x_in_target (int pid, uint32_t newval)

87 wait_for_target (pid); 160

88} 161 struct user_regs_struct regs;

89 162 uint64_t x_in_stack;

90 163 if (ptrace (PTRACE_GETREGS, pid, NULL, ®s) < 0)

91 void single_step (int pid) 164 perror ("ptrace getregs") ;

92 165

93 if (ptrace (PTRACE_SINGLESTEP, pid, NULL, NULL) < 0) 166 // Read all 64 bits from the relevant location in the target’s stack frame
9 perror ("ptrace singlestep") ; 167 // and display the bottom 32 bits.

95 168 x_in_stack = ptrace (PTRACE_PEEKDATA, pid, regs.rbp - 4, NULL);

9 wait_for_target (pid); 169 printf ("Checking: *(%%rbp—4): %ldn", x_in_stack & Oxffffffff);

97 } 170

98 171 // Zero out the bottom four bytes and then set those bytes to be newval.
99 uint64_t set_breakpoint (int pid, uinté64_t addr) 172 X_in_stack &= ~(uint64_t)Oxffffffff;

100 { 173 x_in_stack |= newval;

101 uint64_t orig_instruction = ptrace (PTRACE_PEEKDATA, pid, addr, NULL); 174

102 175 // Write 64 bits into the target’s stack frame

103 // The next lines insert an instruction in the target that raises an 176 if (ptrace (PTRACE_POKEDATA, pid, (uinté4_t)regs.rbp - 4, x_in_stack) < 0)
104 // exception. Specifically, on x86, Oxcc is a special instruction that 177 perror ("ptrace pokedata") ;

105 // causes the CPU to raise the "breakpoint exception". 178

106 uint64_t orig_upper_bytes = orig_instruction & ~(uint64_t)Oxff; 179 x_in_stack = ptrace (PTRACE_PEEKDATA, pid, regs.rbp - 4, NULL);

107 180 printf ("Checking: *(%%rbp—4): %ld\n", x_in_stack & Oxffffffff);

108 if (ptrace (PTRACE_POKEDATA, pid, addr, orig_upper_bytes \ Oxcc) < 0) 181}

109 perror ("ptrace pokedata") ; 182

110 188 void show_target_breakpoint (int pid, uint64_t addr)

111 return orig_instruction; 184 {

uint64_t instruction = ptrace (PTRACE_PEEKDATA, pid, addr, NULL);
printf ("instruction at addr 0x%Ix is now: 0x%Ix\n", addr, instruction);

Wednesday November 19, 2025

22

	CS202 Handout 13
	1. Attaching to a Debugger
	1.1 Launch a process that is attached
	1.2 Attach to a running process
	1.3 Wait for a target after issuing a ptrace() to it

	2. Interrupting the running target
	3. Other ptrace commands
	4. Stack Frames and Unwinding

