
Pr
oc

es
so

r

DDR

RAM

PCI-E

N
IC

Machine

Core
LLC

SS
D

PCI-E

G
PU

Core

Core

Core

RAM RAM RAM

1 CS 202
2 Handout 10 (Class 16)
3

4 1. Example use of I/O instructions: boot loader
5

6 Below is the WeensyOS boot loader
7

8 It may be helpful to understand the overall picture
9

10 This code demonstrates I/O, specifically with the disk: the
11 bootloader reads in the kernel from the disk.
12

13 See the functions boot_waitdisk() and boot_readsect(). Compare to Figures 36
.5

14 and 36.6 in OSTEP.
15

16 /* boot.c */
17 #include "x86−64.h"
18 #include "elf.h"
19

20 // boot.c
21 //
22 // WeensyOS boot loader. Loads the kernel at address 0x40000 from
23 // the first IDE hard disk.
24 //
25 // A BOOT LOADER is a tiny program that loads an operating system into
26 // memory. It has to be tiny because it can contain no more than 510 bytes
27 // of instructions: it is stored in the disk’s first 512−byte sector.
28 //
29 // When the CPU boots it loads the BIOS into memory and executes it. The
30 // BIOS intializes devices and CPU state, reads the first 512−byte sector of
31 // the boot device (hard drive) into memory at address 0x7C00, and jumps to
32 // that address.
33 //
34 // The boot loader is contained in bootstart.S and boot.c. Control starts
35 // in bootstart.S, which initializes the CPU and sets up a stack, then
36 // transfers here. This code reads in the kernel image and calls the
37 // kernel.
38 //
39 // The main kernel is stored as an ELF executable image starting in the
40 // disk’s sector 1.
41

42 #define SECTORSIZE 512
43 #define ELFHDR ((elf_header*) 0x10000) // scratch space
44

45 void boot(void) __attribute__((noreturn));
46 static void boot_readsect(uintptr_t dst, uint32_t src_sect);
47 static void boot_readseg(uintptr_t dst, uint32_t src_sect,
48 size_t filesz, size_t memsz);
49

50 // boot
51 // Load the kernel and jump to it.
52 void boot(void) {
53 // read 1st page off disk (should include programs as well as header)
54 // and check validity
55 boot_readseg((uintptr_t) ELFHDR, 1, PAGESIZE, PAGESIZE);
56 while (ELFHDR−>e_magic != ELF_MAGIC) {
57 /* do nothing */
58 }
59

60 // load each program segment
61 elf_program* ph = (elf_program*) ((uint8_t*) ELFHDR + ELFHDR−>e_phoff);
62 elf_program* eph = ph + ELFHDR−>e_phnum;
63 for (; ph < eph; ++ph) {
64 boot_readseg(ph−>p_va, ph−>p_offset / SECTORSIZE + 1,
65 ph−>p_filesz, ph−>p_memsz);
66 }
67

68 // jump to the kernel
69 typedef void (*kernel_entry_t)(void) __attribute__((noreturn));
70 kernel_entry_t kernel_entry = (kernel_entry_t) ELFHDR−>e_entry;
71 kernel_entry();
72 }

Oct 29, 25 0:01 Page 1/5handout10−2.txt

73

74

75 // boot_readseg(dst, src_sect, filesz, memsz)
76 // Load an ELF segment at virtual address ‘dst‘ from the IDE disk’s sector
77 // ‘src_sect‘. Copies ‘filesz‘ bytes into memory at ‘dst‘ from sectors
78 // ‘src_sect‘ and up, then clears memory in the range
79 // ‘[dst+filesz, dst+memsz)‘.
80 static void boot_readseg(uintptr_t ptr, uint32_t src_sect,
81 size_t filesz, size_t memsz) {
82 uintptr_t end_ptr = ptr + filesz;
83 memsz += ptr;
84

85 // round down to sector boundary
86 ptr &= ~(SECTORSIZE − 1);
87

88 // read sectors
89 for (; ptr < end_ptr; ptr += SECTORSIZE, ++src_sect) {
90 boot_readsect(ptr, src_sect);
91 }
92

93 // clear bss segment
94 for (; end_ptr < memsz; ++end_ptr) {
95 *(uint8_t*) end_ptr = 0;
96 }
97 }
98

99

100 // boot_waitdisk
101 // Wait for the disk to be ready.
102 static void boot_waitdisk(void) {
103 // Wait until the ATA status register says ready (0x40 is on)
104 // & not busy (0x80 is off)
105 while ((inb(0x1F7) & 0xC0) != 0x40) {
106 /* do nothing */
107 }
108 }
109

110

111 // boot_readsect(dst, src_sect)
112 // Read disk sector number ‘src_sect‘ into address ‘dst‘.
113 static void boot_readsect(uintptr_t dst, uint32_t src_sect) {
114 // programmed I/O for "read sector"
115 boot_waitdisk();
116 outb(0x1F2, 1); // send ‘count = 1‘ as an ATA argument
117 outb(0x1F3, src_sect); // send ‘src_sect‘, the sector number
118 outb(0x1F4, src_sect >> 8);
119 outb(0x1F5, src_sect >> 16);
120 outb(0x1F6, (src_sect >> 24) | 0xE0);
121 outb(0x1F7, 0x20); // send the command: 0x20 = read sectors
122

123 // then move the data into memory
124 boot_waitdisk();
125 insl(0x1F0, (void*) dst, SECTORSIZE/4); // read 128 words from the disk
126 }
127

128

Oct 29, 25 0:01 Page 2/5handout10−2.txt

Printed by Michael Walfish

Wednesday October 29, 2025 1/3handout10−2.txt

129 2. Two more examples of I/O instructions
130

131 (a) Reading keyboard input
132

133 The code below is an excerpt from WeensyOS’s k−hardware.c
134

135 This reads a character typed at the keyboard (which shows up on the
136 "keyboard data port" (kEYBOARD_DATAREG)).
137

138 /* Excerpt from WeensyOS x86−64.h */
139 // Keyboard programmed I/O
140 #define KEYBOARD_STATUSREG 0x64
141 #define KEYBOARD_STATUS_READY 0x01
142 #define KEYBOARD_DATAREG 0x60
143

144 int keyboard_readc(void) {
145 static uint8_t modifiers;
146 static uint8_t last_escape;
147

148 if ((inb(KEYBOARD_STATUSREG) & KEYBOARD_STATUS_READY) == 0) {
149 return −1;
150 }
151

152 uint8_t data = inb(KEYBOARD_DATAREG);
153 uint8_t escape = last_escape;
154 last_escape = 0;
155

156 if (data == 0xE0) { // mode shift
157 last_escape = 0x80;
158 return 0;
159 } else if (data & 0x80) { // key release: matters only for modifier ke

ys
160 int ch = keymap[(data & 0x7F) | escape];
161 if (ch >= KEY_SHIFT && ch < KEY_CAPSLOCK) {
162 modifiers &= ~(1 << (ch − KEY_SHIFT));
163 }
164 return 0;
165 }
166

167 int ch = (unsigned char) keymap[data | escape];
168

169 if (ch >= ’a’ && ch <= ’z’) {
170 if (modifiers & MOD_CONTROL) {
171 ch −= 0x60;
172 } else if (!(modifiers & MOD_SHIFT) != !(modifiers & MOD_CAPSLOCK))

{
173 ch −= 0x20;
174 }
175 } else if (ch >= KEY_CAPSLOCK) {
176 modifiers ^= 1 << (ch − KEY_SHIFT);
177 ch = 0;
178 } else if (ch >= KEY_SHIFT) {
179 modifiers |= 1 << (ch − KEY_SHIFT);
180 ch = 0;
181 } else if (ch >= CKEY(0) && ch <= CKEY(21)) {
182 ch = complex_keymap[ch − CKEY(0)].map[modifiers & 3];
183 } else if (ch < 0x80 && (modifiers & MOD_CONTROL)) {
184 ch = 0;
185 }
186

187 return ch;
188 }
189

Oct 29, 25 0:01 Page 3/5handout10−2.txt

190

191 (b) Setting the cursor position
192

193 The code below is also excerpted from WeensyOS’s k−hardware.c. It
194 uses I/O instructions to set a blinking cursor somewhere on a 25 x 80
195 screen.
196

197 // console_show_cursor(cpos)
198 // Move the console cursor to position ‘cpos‘, which should be between 0
199 // and 80 * 25.
200

201 void console_show_cursor(int cpos) {
202 if (cpos < 0 || cpos > CONSOLE_ROWS * CONSOLE_COLUMNS) {
203 cpos = 0;
204 }
205 outb(0x3D4, 14); // Command 14 = upper byte of position
206 outb(0x3D5, cpos / 256);
207 outb(0x3D4, 15); // Command 15 = lower byte of position
208 outb(0x3D5, cpos % 256);
209

210 }
211

212

213

214

Oct 29, 25 0:01 Page 4/5handout10−2.txt

Printed by Michael Walfish

Wednesday October 29, 2025 2/3handout10−2.txt

215 3. Memory−mapped I/O
216

217 a. Here is a 32−bit PC’s physical memory map:
218

219 +−−−−−−−−−−−−−−−−−−+ <− 0xFFFFFFFF (4GB)
220 | 32−bit |
221 | memory mapped |
222 | devices |
223 | |
224 /\/\/\/\/\/\/\/\/\/\
225

226 /\/\/\/\/\/\/\/\/\/\
227 | |
228 | Unused |
229 | |
230 +−−−−−−−−−−−−−−−−−−+ <− depends on amount of RAM
231 | |
232 | |
233 | Extended Memory |
234 | |
235 | |
236 +−−−−−−−−−−−−−−−−−−+ <− 0x00100000 (1MB)
237 | BIOS ROM |
238 +−−−−−−−−−−−−−−−−−−+ <− 0x000F0000 (960KB)
239 | 16−bit devices, |
240 | expansion ROMs |
241 +−−−−−−−−−−−−−−−−−−+ <− 0x000C0000 (768KB)
242 | VGA Display |
243 +−−−−−−−−−−−−−−−−−−+ <− 0x000A0000 (640KB)
244 | |
245 | Low Memory |
246 | |
247 +−−−−−−−−−−−−−−−−−−+ <− 0x00000000
248

249 [Credit to Frans Kaashoek, Robert Morris, and Nickolai Zeldovich for
250 this picture]
251

252

253 b. Loads and stores to the device memory "go to hardware".
254

255 An example is in the console printing code from WeensyOS. Here is an
256 excerpt from link/shared.ld:
257

258 /* Compare the address below to the map above. */
259 PROVIDE(console = 0xB8000);
260

261 /*
262 * prints a character to the console at the specified
263 * cursor position in the specified color.
264 * Question: what is going on in the check
265 * if (c == ’\n’)
266 * ?
267 * Hint: ’\n’ is "C" for "newline" (the user pressed enter).
268 */
269 static void console_putc(printer* p, unsigned char c, int color) {
270 console_printer* cp = (console_printer*) p;
271 if (cp−>cursor >= console + CONSOLE_ROWS * CONSOLE_COLUMNS) {
272 cp−>cursor = console;
273 }
274 if (c == ’\n’) {
275 int pos = (cp−>cursor − console) % 80;
276 for (; pos != 80; pos++) {
277 *cp−>cursor++ = ’ ’ | color;
278 }
279 } else {
280 *cp−>cursor++ = c | color;
281 }
282 }
283

284

Oct 29, 25 0:01 Page 5/5handout10−2.txt

Printed by Michael Walfish

Wednesday October 29, 2025 3/3handout10−2.txt

