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.5 86 ptr &= ~(SECTORSIZE - 1);

and 36.6 in OSTEP. 87

88 // read sectors
/* boot.c */ 89 for (; ptr < end_ptr; ptr += SECTORSIZE, ++src_s
#include "x86-64.h" 90 boot_readsect (ptr, src_sect);
#include "elf.h" 91 }
92

// boot.c 93 // clear bss segment
// 94 for (; end_ptr < memsz; ++end_ptr) {
// WeensyOS boot loader. Loads the kernel at address 0x40000 from 95 *(uint8_t*) end_ptr = 0;
// the first IDE hard disk. % }
// o}
// A BOOT LOADER is a tiny program that loads an operating system into 98
// memory. It has to be tiny because it can contain no more than 510 bytes 99
// of instructions: it is stored in the disk’s first 512-byte sector. 100 // boot_waitdisk
// w01 // Wait for the disk to be ready.
// When the CPU boots it loads the BIOS into memory and executes it. The 102 static void boot_waitdisk (void) {
// BIOS intializes devices and CPU state, reads the first 512-byte sector of 103 // Wait until the ATA status register says ready
// the boot device (hard drive) into memory at address 0x7C00, and jumps to 104 // & not busy (0x80 is off)
// that address. 105 while ((inb(0x1F7) & 0xCO) != 0x40) {
// 106 /* do nothing */
// The boot loader is contained in bootstart.S and boot.c. Control starts 107 }
// in bootstart.S, which initializes the CPU and sets up a stack, then 108}
// transfers here. This code reads in the kernel image and calls the 109
// kernel. 110
// 11 // boot_readsect (dst, src_sect)
// The main kernel is stored as an ELF executable image starting in the un2 // Read disk sector number ‘src_sect' into addres
// disk’s sector 1. 13 static void boot_readsect (uintptr_t dst, uint32_t sr

#define SECTORSIZE
#define ELFHDR

512
((elf_header*) 0x10000) // scratch space
void boot (void) __attribute__ ((noreturn));

static void boot_readsect (uintptr_t dst, uint32_t src_sect);
static void boot_readseg(uintptr_t dst, uint32_t src_sect,
size_t filesz, size_t memsz);

// boot
// Load the kernel and jump to it.
void boot (void) {
// read lst page off disk
// and check validity
boot_readseg( (uintptr_t) ELFHDR, 1, PAGESIZE,
while (ELFHDR->e_magic != ELF_MAGIC) {
/* do nothing */

(should include programs as well as header)

PAGESIZE) ;

}

// load each program segment
elf program* ph = (elf_program*) ((uint8_t*) ELFHDR + ELFHDR->e_phoff);
elf_program* eph = ph + ELFHDR->e_phnum;
for (; ph < eph; ++ph) {
boot_readseqg (ph->p_va, ph->p_offset / SECTORSIZE + 1,
ph->p_filesz, ph->p_memsz);
}

// jump to the kernel

typedef void (*kernel_entry_t) (void)
kernel_entry_t kernel_entry = (kernel_entry_t)
kernel_entry();

__attribute__ ((noreturn));
ELFHDR->e_entry;

}

// programmed I/O for "read sector"
boot_waitdisk();

outb (0x1F2, 1); //

outb (0x1F3, src_sect); //
outb (0x1F4, src_sect >> 8);
outb (0x1F5, src_sect >> 16);
outb (0x1F6, (src_sect >> 24) |
outb (0x1F7, 0x20); //

‘count = 1°
‘src_sect?,

send
send

0xEQ0) ;
send the command:

// then move the data into memory
boot_waitdisk();

insl (0x1F0, (void*) dst, SECTORSIZE/4); // read
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1 CS 202 73

2 Handout 10 (Class 16) 74

3 75 // boot_readseg(dst, src_sect, filesz, memsz)

4 1. Example use of I/O instructions: boot loader % // Load an ELF segment at virtual address ‘dst‘ from the IDE disk’s sector
5 7w // ‘src_sect'. Copies ‘filesz' bytes into memory at ‘dst' from sectors

6 Below is the WeensyOS boot loader . // ‘src_sect' and up, then clears memory in the range

7 9 // ‘[dst+filesz, dst+memsz) ‘.

8 It may be helpful to understand the overall picture 80 static void boot_readseg(uintptr_t ptr, uint32_t src_sect,

9 81 size_t filesz, size_t memsz) {

10 This code demonstrates I/0, specifically with the disk: the 82 uintptr_t end_ptr = ptr + filesz;

1 bootloader reads in the kernel from the disk. 83 memsz += ptr;

12 84

13 See the functions boot_waitdisk () and boot_readsect (). Compare to Figures 36 85 // round down to sector boundary

ect) {

(0x40 is on)

s ‘dst*‘.
c_sect) |

as an ATA argument
the sector number
0x20 =

read sectors

128 words from the disk
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}
} else if (ch >= KEY_CAPSLOCK) {
modifiers = 1 << (ch - KEY_SHIFT);

ch = 0;

} else if (ch >= KEY_SHIFT) {
modifiers |= 1 << (ch - KEY_SHIFT);
ch = 0;

} else if (ch >= CKEY(0) && ch <= CKEY(21)) {

ch = complex_keymap[ch - CKEY(0)].map[modifiers & 3];
} else if (ch < 0x80 && (modifiers & MOD_CONTROL)) {

ch = 0;

return ch;
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120 2. Two more examples of I/O instructions 190
130 191 (b) Setting the cursor position
131 (a) Reading keyboard input 192
132 193 The code below is also excerpted from WeensyOS’s k-hardware.c. It
133 The code below is an excerpt from WeensyOS’s k-hardware.c 194 uses I/0O instructions to set a blinking cursor somewhere on a 25 x 80
134 195 screen.
135 This reads a character typed at the keyboard (which shows up on the 196
136 "keyboard data port" (KkEYBOARD_DATAREG)) . 197 // console_show_cursor (cpos)
137 198 // Move the console cursor to position ‘cpos‘, which should be between 0
138 /* Excerpt from WeensyOS x86-64.h */ 199 // and 80 * 25.
139 // Keyboard programmed I/O 200
140 #define KEYBOARD_STATUSREG 0x64 201 void console_show_cursor (int cpos) {
141 #define KEYBOARD_STATUS_READY  0x01 202 if (cpos < 0 || cpos > CONSOLE_ROWS * CONSOLE_COLUMNS) {
142 #define KEYBOARD_DATAREG 0x60 203 cpos = 0;
143 204 }
144 int keyboard_readc (void) { 205 outb (0x3D4, 14); // Command 14 = upper byte of position
145 static uint8_t modifiers; 206 outb (0x3D5, cpos / 256);
146 static uint8_t last_escape; 207 outb (0x3D4, 15); // Command 15 = lower byte of position
147 208 outb (0x3D5, cpos % 256);
148 if ((inb (KEYBOARD_STATUSREG) & KEYBOARD_STATUS_READY) == 0) { 209
149 return -1; 210 }
150 } 211
151 212
152 uint8_t data = inb (KEYBOARD_DATAREG) ; 213
153 uint8_t escape = last_escape; 214
154 last_escape = 0;
155
156 if (data == 0xE0) { // mode shift
157 last_escape = 0x80;
158 return O;
159 } else if (data & 0x80) { // key release: matters only for modifier ke
ys
160 int ch = keymap|[ (data & Ox7F) | escapel;
161 if (ch >= KEY_SHIFT && ch < KEY_CAPSLOCK) {
162 modifiers &= ~(1 << (ch - KEY_SHIFT));
163 }
164 return 0;
165 }
166
167 int ch = (unsigned char) keymap[data | escapel];
168
169 if (ch >= ’"a’ && ch <= "z") {
170 if (modifiers & MOD_CONTROL) {
171 ch —-= 0x60;
172 } else if (! (modifiers & MOD_SHIFT) != ! (modifiers & MOD_CAPSLOCK))
{
173 ch —-= 0x20;
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3.

Memory-mapped I/0

a. Here is a 32-bit PC’s physical memory map:

+ + <- OxFFFFFFFF (4GB)
32-bit
memory mapped
devices
IN/N/N/N/N/N/N/N/N/N
INININININININ/N/N/N
Unused

+ + <- depends on amount of RAM

Extended Memory

0x00100000 (1MB)
BIOS ROM

+—+
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+—+

A
]

<- 0x000F0000 (960KB)
16-bit devices,
expansion ROMs

0x000C0000 (768KB)
\ VGA Display

+
:
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|

+—t

AN
|

<- 0x000A0000 (640KB)

Low Memory

+ + <- 0x00000000

[Credit to Frans Kaashoek, Robert Morris, and Nickolai Zeldovich for
this picture]

b. Loads and stores to the device memory "go to hardware".

An example is in the console printing code from WeensyOS. Here is an
excerpt from link/shared.ld:

/* Compare the address below to the map above. */
PROVIDE (console = 0xB8000);

/
prints a character to the console at the specified
cursor position in the specified color.
Question: what is going on in the check

if (¢ == '\n’)

* ok % ok k%

?
* Hint: ’\n’ is "C" for "newline" (the user pressed enter).
*/

static void console_putc(printer* p, unsigned char c, int color) {

console_printer* cp = (console_printer*) p;
if (cp->cursor >= console + CONSOLE_ROWS * CONSOLE_COLUMNS) {
cp—>cursor = console;
}
if (¢ == "\n’") {
int pos = (cp->cursor - console) % 80;
for (; pos != 80; pos++) {
*cp->cursor++ = ’ ' | color;
}
} else {
*cp->cursor++ = C | color;

}
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