Machine
RAM RAM RAM

L
®)
7p)
7p)
O
O
@)
pud

al

Printed by Michael Walfish

14
15
16
17
18
19
20
21

22
23

24
25
26

27

28

29

30

31

32

33

34

35

36

37

38

39
40
a1
42
43
44
45
6
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72

.5 86 ptr &= ~(SECTORSIZE - 1);

and 36.6 in OSTEP. 87

88 // read sectors
/* boot.c */ 89 for (; ptr < end_ptr; ptr += SECTORSIZE, ++src_s
#include "x86-64.h" 90 boot_readsect (ptr, src_sect);
#include "elf.h" 91 }
92

// boot.c 93 // clear bss segment
// 94 for (; end_ptr < memsz; ++end_ptr) {
// WeensyOS boot loader. Loads the kernel at address 0x40000 from 95 *(uint8_t*) end_ptr = 0;
// the first IDE hard disk. % }
// o}
// A BOOT LOADER is a tiny program that loads an operating system into 98
// memory. It has to be tiny because it can contain no more than 510 bytes 99
// of instructions: it is stored in the disk’s first 512-byte sector. 100 // boot_waitdisk
// w01 // Wait for the disk to be ready.
// When the CPU boots it loads the BIOS into memory and executes it. The 102 static void boot_waitdisk (void) {
// BIOS intializes devices and CPU state, reads the first 512-byte sector of 103 // Wait until the ATA status register says ready
// the boot device (hard drive) into memory at address 0x7C00, and jumps to 104 // & not busy (0x80 is off)
// that address. 105 while ((inb(0x1F7) & 0xCO) != 0x40) {
// 106 /* do nothing */
// The boot loader is contained in bootstart.S and boot.c. Control starts 107 }
// in bootstart.S, which initializes the CPU and sets up a stack, then 108}
// transfers here. This code reads in the kernel image and calls the 109
// kernel. 110
// 11 // boot_readsect (dst, src_sect)
// The main kernel is stored as an ELF executable image starting in the un2 // Read disk sector number ‘src_sect' into addres
// disk’s sector 1. 13 static void boot_readsect (uintptr_t dst, uint32_t sr

#define SECTORSIZE
#define ELFHDR

512
((elf_header*) 0x10000) // scratch space
void boot (void) __attribute__ ((noreturn));

static void boot_readsect (uintptr_t dst, uint32_t src_sect);
static void boot_readseg(uintptr_t dst, uint32_t src_sect,
size_t filesz, size_t memsz);

// boot
// Load the kernel and jump to it.
void boot (void) {
// read lst page off disk
// and check validity
boot_readseg((uintptr_t) ELFHDR, 1, PAGESIZE,
while (ELFHDR->e_magic != ELF_MAGIC) {
/* do nothing */

(should include programs as well as header)

PAGESIZE) ;

}

// load each program segment
elf program* ph = (elf_program*) ((uint8_t*) ELFHDR + ELFHDR->e_phoff);
elf_program* eph = ph + ELFHDR->e_phnum;
for (; ph < eph; ++ph) {
boot_readseqg (ph->p_va, ph->p_offset / SECTORSIZE + 1,
ph->p_filesz, ph->p_memsz);
}

// jump to the kernel

typedef void (*kernel_entry_t) (void)
kernel_entry_t kernel_entry = (kernel_entry_t)
kernel_entry();

__attribute__ ((noreturn));
ELFHDR->e_entry;

}

// programmed I/O for "read sector"
boot_waitdisk();

outb (0x1F2, 1); //

outb (0x1F3, src_sect); //
outb (0x1F4, src_sect >> 8);
outb (0x1F5, src_sect >> 16);
outb (0x1F6, (src_sect >> 24) |
outb (0x1F7, 0x20); //

‘count = 1°
‘src_sect?,

send
send

0xEQ0) ;
send the command:

// then move the data into memory
boot_waitdisk();

insl (0x1F0, (void*) dst, SECTORSIZE/4); // read

Oct 29, 25 0:01 handout10-2.txt Page 1/5 Oct 29, 25 0:01 handout10-2.txt Page 2/5
1 CS 202 73

2 Handout 10 (Class 16) 74

3 75 // boot_readseg(dst, src_sect, filesz, memsz)

4 1. Example use of I/O instructions: boot loader % // Load an ELF segment at virtual address ‘dst‘ from the IDE disk’s sector
5 7w // ‘src_sect'. Copies ‘filesz' bytes into memory at ‘dst' from sectors

6 Below is the WeensyOS boot loader . // ‘src_sect' and up, then clears memory in the range

7 9 // ‘[dst+filesz, dst+memsz) ‘.

8 It may be helpful to understand the overall picture 80 static void boot_readseg(uintptr_t ptr, uint32_t src_sect,

9 81 size_t filesz, size_t memsz) {

10 This code demonstrates I/0, specifically with the disk: the 82 uintptr_t end_ptr = ptr + filesz;

1 bootloader reads in the kernel from the disk. 83 memsz += ptr;

12 84

13 See the functions boot_waitdisk () and boot_readsect (). Compare to Figures 36 85 // round down to sector boundary

ect) {

(0x40 is on)

s ‘dst*‘.
c_sect) |

as an ATA argument
the sector number
0x20 =

read sectors

128 words from the disk

Wednesday October 29, 2025

handout10-2.txt

1/3

Printed by Michael Walfish

}
} else if (ch >= KEY_CAPSLOCK) {
modifiers = 1 << (ch - KEY_SHIFT);

ch = 0;

} else if (ch >= KEY_SHIFT) {
modifiers |= 1 << (ch - KEY_SHIFT);
ch = 0;

} else if (ch >= CKEY(0) && ch <= CKEY(21)) {

ch = complex_keymap[ch - CKEY(0)].map[modifiers & 3];
} else if (ch < 0x80 && (modifiers & MOD_CONTROL)) {

ch = 0;

return ch;

Oct 29, 25 0:01 handout10-2.txt Page 3/5 Oct 29, 25 0:01 handout10-2.txt Page 4/5
120 2. Two more examples of I/O instructions 190
130 191 (b) Setting the cursor position
131 (a) Reading keyboard input 192
132 193 The code below is also excerpted from WeensyOS’s k-hardware.c. It
133 The code below is an excerpt from WeensyOS’s k-hardware.c 194 uses I/0O instructions to set a blinking cursor somewhere on a 25 x 80
134 195 screen.
135 This reads a character typed at the keyboard (which shows up on the 196
136 "keyboard data port" (KkEYBOARD_DATAREG)) . 197 // console_show_cursor (cpos)
137 198 // Move the console cursor to position ‘cpos‘, which should be between 0
138 /* Excerpt from WeensyOS x86-64.h */ 199 // and 80 * 25.
139 // Keyboard programmed I/O 200
140 #define KEYBOARD_STATUSREG 0x64 201 void console_show_cursor (int cpos) {
141 #define KEYBOARD_STATUS_READY 0x01 202 if (cpos < 0 || cpos > CONSOLE_ROWS * CONSOLE_COLUMNS) {
142 #define KEYBOARD_DATAREG 0x60 203 cpos = 0;
143 204 }
144 int keyboard_readc (void) { 205 outb (0x3D4, 14); // Command 14 = upper byte of position
145 static uint8_t modifiers; 206 outb (0x3D5, cpos / 256);
146 static uint8_t last_escape; 207 outb (0x3D4, 15); // Command 15 = lower byte of position
147 208 outb (0x3D5, cpos % 256);
148 if ((inb (KEYBOARD_STATUSREG) & KEYBOARD_STATUS_READY) == 0) { 209
149 return -1; 210 }
150 } 211
151 212
152 uint8_t data = inb (KEYBOARD_DATAREG) ; 213
153 uint8_t escape = last_escape; 214
154 last_escape = 0;
155
156 if (data == 0xE0) { // mode shift
157 last_escape = 0x80;
158 return O;
159 } else if (data & 0x80) { // key release: matters only for modifier ke
ys
160 int ch = keymap|[(data & Ox7F) | escapel;
161 if (ch >= KEY_SHIFT && ch < KEY_CAPSLOCK) {
162 modifiers &= ~(1 << (ch - KEY_SHIFT));
163 }
164 return 0;
165 }
166
167 int ch = (unsigned char) keymap[data | escapel];
168
169 if (ch >= ’"a’ && ch <= "z") {
170 if (modifiers & MOD_CONTROL) {
171 ch —-= 0x60;
172 } else if (! (modifiers & MOD_SHIFT) != ! (modifiers & MOD_CAPSLOCK))
{
173 ch —-= 0x20;

Wednesday October 29, 2025 handout10-2.txt

2/3

Oct 29, 25 0:01 handout10-2.txt Page 5/5

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

3.

Memory-mapped I/0

a. Here is a 32-bit PC’s physical memory map:

+ + <- OxFFFFFFFF (4GB)
32-bit
memory mapped
devices
IN/N/N/N/N/N/N/N/N/N
INININININININ/N/N/N
Unused

+ + <- depends on amount of RAM

Extended Memory

0x00100000 (1MB)
BIOS ROM

+—+
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+—+

A
]

<- 0x000F0000 (960KB)
16-bit devices,
expansion ROMs

0x000C0000 (768KB)
\ VGA Display

+
:
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|

+—t

AN
|

<- 0x000A0000 (640KB)

Low Memory

+ + <- 0x00000000

[Credit to Frans Kaashoek, Robert Morris, and Nickolai Zeldovich for
this picture]

b. Loads and stores to the device memory "go to hardware".

An example is in the console printing code from WeensyOS. Here is an
excerpt from link/shared.ld:

/* Compare the address below to the map above. */
PROVIDE (console = 0xB8000);

/
prints a character to the console at the specified
cursor position in the specified color.
Question: what is going on in the check

if (¢ == '\n’)

* ok % ok k%

?
* Hint: ’\n’ is "C" for "newline" (the user pressed enter).
*/

static void console_putc(printer* p, unsigned char c, int color) {

console_printer* cp = (console_printer*) p;
if (cp->cursor >= console + CONSOLE_ROWS * CONSOLE_COLUMNS) {
cp—>cursor = console;
}
if (¢ == "\n’") {
int pos = (cp->cursor - console) % 80;
for (; pos != 80; pos++) {
*cp->cursor++ = ’ ' | color;
}
} else {
*cp->cursor++ = C | color;

}

Wednesday October 29, 2025

handout10-2.txt

Printed by Michael Walfish

3/3

