

1 CS 202, Spring 2024
2 Handout 6 (Class 7)
3
4 1. This monitor is a model of a database with multiple readers and
5 writers. The high−level goal here is (a) to give a writer exclusive
6 access (a single active writer means there should be no other writers
7 and no readers) while (b) allowing multiple readers. Like the previous
8 example, this one is expressed in pseudocode.
9

10 // assume that these variables are initialized in a constructor
11 state variables:
12 AR = 0; // # active readers
13 AW = 0; // # active writers
14 WR = 0; // # waiting readers
15 WW = 0; // # waiting writers
16
17 Condition okToRead = NIL;
18 Condition okToWrite = NIL;
19 Mutex mutex = FREE;
20
21 Database::read() {
22 startRead(); // first, check self into the system
23 Access Data
24 doneRead(); // check self out of system
25 }
26
27 Database::startRead() {
28 acquire(&mutex);
29 while((AW + WW) > 0){
30 WR++;
31 wait(&okToRead, &mutex);
32 WR−−;
33 }
34 AR++;
35 release(&mutex);
36 }
37
38 Database::doneRead() {
39 acquire(&mutex);
40 AR−−;
41 if (AR == 0 && WW > 0) { // if no other readers still
42 signal(&okToWrite, &mutex); // active, wake up writer
43 }
44 release(&mutex);
45 }
46
47 Database::write(){ // symmetrical
48 startWrite(); // check in
49 Access Data
50 doneWrite(); // check out
51 }
52
53 Database::startWrite() {
54 acquire(&mutex);
55 while ((AW + AR) > 0) { // check if safe to write.
56 // if any readers or writers, wait
57 WW++;
58 wait(&okToWrite, &mutex);
59 WW−−;
60 }
61 AW++;
62 release(&mutex);
63 }
64
65 Database::doneWrite() {
66 acquire(&mutex);
67 AW−−;
68 if (WW > 0) {
69 signal(&okToWrite, &mutex); // give priority to writers
70 } else if (WR > 0) {
71 broadcast(&okToRead, &mutex);
72 }
73 release(&mutex);

Feb 12, 24 6:06 Page 1/3handout06.txt
74 }
75
76 NOTE: what is the starvation problem here?
77

Feb 12, 24 6:06 Page 2/3handout06.txt

Printed by Michael Walfish

Monday February 12, 2024 1/5handout06.txt

78 2. Shared locks
79
80 struct sharedlock {
81 int i;
82 Mutex mutex;
83 Cond c;
84 };
85
86 void AcquireExclusive (sharedlock *sl) {
87 acquire(&sl−>mutex);
88 while (sl−>i) {
89 wait (&sl−>c, &sl−>mutex);
90 }
91 sl−>i = −1;
92 release(&sl−>mutex);
93 }
94
95 void AcquireShared (sharedlock *sl) {
96 acquire(&sl−>mutex);
97 while (sl−>i < 0) {
98 wait (&sl−>c, &sl−>mutex);
99 }
100 sl−>i++;
101 release(&sl−>mutex);
102 }
103
104 void ReleaseShared (sharedlock *sl) {
105 acquire(&sl−>mutex);
106 if (!−−sl−>i)
107 signal (&sl−>c, &sl−>mutex);
108 release(&sl−>mutex);
109 }
110
111 void ReleaseExclusive (sharedlock *sl) {
112 acquire(&sl−>mutex);
113 sl−>i = 0;
114 broadcast (&sl−>c, &sl−>mutex);
115 release(&sl−>mutex);
116 }
117
118 QUESTIONS:
119 A. There is a starvation problem here. What is it? (Readers can keep
120 writers out if there is a steady stream of readers.)
121 B. How could you use these shared locks to write a cleaner version
122 of the code in the prior item? (Though note that the starvation
123 properties would be different.)

Feb 12, 24 6:06 Page 3/3handout06.txt
1 Implementation of spinlocks and mutexes
2
3 1. Here is a BROKEN spinlock implementation:
4
5 struct Spinlock {
6 int locked;
7 }
8
9 void acquire(Spinlock *lock) {

10 while (1) {
11 if (lock−>locked == 0) { // A
12 lock−>locked = 1; // B
13 break;
14 }
15 }
16 }
17
18 void release (Spinlock *lock) {
19 lock−>locked = 0;
20 }
21
22 What’s the problem? Two acquire()s on the same lock on different
23 CPUs might both execute line A, and then both execute B. Then
24 both will think they have acquired the lock. Both will proceed.
25 That doesn’t provide mutual exclusion.
26

Feb 12, 24 5:53 Page 1/3spinlock−mutex.txt

Printed by Michael Walfish

Monday February 12, 2024 2/5handout06.txt, spinlock−mutex.txt

26
27 2. Correct spinlock implementation
28
29 Relies on atomic hardware instruction. For example, on the x86−64,
30 doing
31 "xchg addr, %rax"
32 does the following:
33
34 (i) freeze all CPUs’ memory activity for address addr
35 (ii) temp <−− *addr
36 (iii) *addr <−− %rax
37 (iv) %rax <−− temp
38 (v) un−freeze memory activity
39
40 /* pseudocode */
41 int xchg_val(addr, value) {
42 %rax = value;
43 xchg (*addr), %rax
44 }
45
46 /* bare−bones version of acquire */
47 void acquire (Spinlock *lock) {
48 pushcli(); /* what does this do? */
49 while (1) {
50 if (xchg_val(&lock−>locked, 1) == 0)
51 break;
52 }
53 }
54
55 void release(Spinlock *lock){
56 xchg_val(&lock−>locked, 0);
57 popcli(); /* what does this do? */
58 }
59
60
61 /* optimization in acquire; call xchg_val() less frequently */
62 void acquire(Spinlock* lock) {
63 pushcli();
64 while (xchg_val(&lock−>locked, 1) == 1) {
65 while (lock−>locked) ;
66 }
67 }
68
69 The above is called a *spinlock* because acquire() spins. The
70 bare−bones version is called a "test−and−set (TAS) spinlock"; the
71 other is called a "test−and−test−and−set spinlock".
72
73 The spinlock above is great for some things, not so great for
74 others. The main problem is that it *busy waits*: it spins,
75 chewing up CPU cycles. Sometimes this is what we want (e.g., if
76 the cost of going to sleep is greater than the cost of spinning
77 for a few cycles waiting for another thread or process to
78 relinquish the spinlock). But sometimes this is not at all what we
79 want (e.g., if the lock would be held for a while: in those
80 cases, the CPU waiting for the lock would waste cycles spinning
81 instead of running some other thread or process).
82
83 NOTE: the spinlocks presented here can introduce performance issues
84 when there is a lot of contention. (This happens even if the
85 programmer is using spinlocks correctly.) The performance issues
86 result from cross−talk among CPUs (which undermines caching and
87 generates traffic on the memory bus). If we have time later, we will
88 study a remediation of this issue (search the Web for "MCS locks").
89
90 ANOTHER NOTE: In everyday application−level programming, spinlocks
91 will not be something you use (use mutexes instead). But you should
92 know what these are for technical literacy, and to see where the
93 mutual exclusion is truly enforced on modern hardware.
94

Feb 12, 24 5:53 Page 2/3spinlock−mutex.txt
95 3. Mutex implementation
96
97 The intent of a mutex is to avoid busy waiting: if the lock is not
98 available, the locking thread is put to sleep, and tracked by a
99 queue in the mutex. The next page has an implementation.
100
101

Feb 12, 24 5:53 Page 3/3spinlock−mutex.txt

Printed by Michael Walfish

Monday February 12, 2024 3/5spinlock−mutex.txt

1 #include <sys/queue.h>
2
3 typedef struct thread {
4 // ... Entries elided.
5 STAILQ_ENTRY(thread_t) qlink; // Tail queue entry.
6 } thread_t;
7
8 struct Mutex {
9 // Current owner, or 0 when mutex is not held.

10 thread_t *owner;
11
12 // List of threads waiting on mutex
13 STAILQ(thread_t) waiters;
14
15 // A lock protecting the internals of the mutex.
16 Spinlock splock; // as in item 1, above
17 };
18
19 void mutex_acquire(struct Mutex *m) {
20
21 acquire(&m−>splock);
22
23 // Check if the mutex is held; if not, current thread gets mutex and returns
24 if (m−>owner == 0) {
25 m−>owner = id_of_this_thread;
26 release(&m−>splock);
27 } else {
28 // Add thread to waiters.
29 STAILQ_INSERT_TAIL(&m−>waiters, id_of_this_thread, qlink);
30
31 // Tell the scheduler to add current thread to the list
32 // of blocked threads. The scheduler needs to be careful
33 // when a corresponding sched_wakeup call is executed to
34 // make sure that it treats running threads correctly.
35 sched_mark_blocked(&id_of_this_thread);
36
37 // Unlock spinlock.
38 release(&m−>splock);
39
40 // Stop executing until woken.
41 sched_swtch();
42
43 // When we get to this line, we are guaranteed to hold the mutex. This
44 // is because we can get here only if context−switched−TO, which itself
45 // can happen only if this thread is removed from the waiting queue,
46 // marked "unblocked", and set to be the owner (in mutex_release()
47 // below). However, we might have held the mutex in lines 39−42
48 // (if we were context−switched out after the spinlock release(),
49 // followed by being run as a result of another thread’s release of the
50 // mutex). But if that happens, it just means that we are
51 // context−switched out an "extra" time before proceeding.
52 }
53 }
54
55 void mutex_release(struct Mutex *m) {
56 // Acquire the spinlock in order to make changes.
57 acquire(&m−>splock);
58
59 // Assert that the current thread actually owns the mutex
60 assert(m−>owner == id_of_this_thread);
61
62 // Check if anyone is waiting.
63 m−>owner = STAILQ_GET_HEAD(&m−>waiters);
64
65 // If so, wake them up.
66 if (m−>owner) {
67 sched_wakeone(&m−>owner);
68 STAILQ_REMOVE_HEAD(&m−>waiters, qlink);
69 }
70
71 // Release the internal spinlock
72 release(&m−>splock);
73 }

Feb 12, 24 5:53 Page 1/1fair−mutex.c
1 Deadlock examples
2
3 1. Simple deadlock example
4
5 T1:
6 acquire(mutexA);
7 acquire(mutexB);
8
9 // do some stuff

10
11 release(mutexB);
12 release(mutexA);
13
14 T2:
15 acquire(mutexB);
16 acquire(mutexA);
17
18 // do some stuff
19
20 release(mutexA);
21 release(mutexB);
22

Feb 12, 24 6:03 Page 1/3deadlock.txt

Printed by Michael Walfish

Monday February 12, 2024 4/5fair−mutex.c, deadlock.txt

23 2. More subtle deadlock example
24
25 Let M be a monitor (shared object with methods protected by mutex)
26 Let N be another monitor
27
28 class M {
29 private:
30 Mutex mutex_m;
31
32 // instance of monitor N
33 N another_monitor;
34
35 // Assumption: no other objects in the system hold a pointer
36 // to our "another_monitor"
37
38 public:
39 M();
40 ~M();
41 void methodA();
42 void methodB();
43 };
44
45 class N {
46 private:
47 Mutex mutex_n;
48 Cond cond_n;
49 int navailable;
50
51 public:
52 N();
53 ~N();
54 void* alloc(int nwanted);
55 void free(void*);
56 }
57
58 int
59 N::alloc(int nwanted) {
60 acquire(&mutex_n);
61 while (navailable < nwanted) {
62 wait(&cond_n, &mutex_n);
63 }
64
65 // peel off the memory
66
67 navailable −= nwanted;
68 release(&mutex_n);
69 }
70
71 void
72 N::free(void* returning_mem) {
73
74 acquire(&mutex_n);
75
76 // put the memory back
77
78 navailable += returning_mem;
79
80 broadcast(&cond_n, &mutex_n);
81
82 release(&mutex_n);
83 }
84

Feb 12, 24 6:03 Page 2/3deadlock.txt
85 void
86 M::methodA() {
87
88 acquire(&mutex_m);
89
90 void* new_mem = another_monitor.alloc(int nbytes);
91
92 // do a bunch of stuff using this nice
93 // chunk of memory n allocated for us
94
95 release(&mutex_m);
96 }
97
98 void
99 M::methodB() {
100
101 acquire(&mutex_m);
102
103 // do a bunch of stuff
104
105 another_monitor.free(some_pointer);
106
107 release(&mutex_m);
108 }
109
110 QUESTION: What’s the problem?

Feb 12, 24 6:03 Page 3/3deadlock.txt

Printed by Michael Walfish

Monday February 12, 2024 5/5deadlock.txt

